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SUMMARY

Proteomics has proved invaluable in generating
large-scale quantitative data; however, the develop-
ment of systems approaches for examining the pro-
teome in vivo has lagged behind. To evaluate protein
abundance and localization on a proteome scale, we
exploited the yeast GFP-fusion collection in a pipe-
line combining automated genetics, high-throughput
microscopy, and computational feature analysis. We
developed an ensemble of binary classifiers to
generate localization data from single-cell measure-
ments and constructed maps of �3,000 proteins
connected to 16 localization classes. To survey pro-
teome dynamics in response to different chemical
and genetic stimuli, we measure proteome-wide
abundance and localization and identified changes
over time. We analyzed >20 million cells to identify
dynamic proteins that redistribute among multiple
localizations in hydroxyurea, rapamycin, and in an
rpd3D background. Because our localization and
abundance data are quantitative, they provide the
opportunity for many types of comparative studies,
single cell analyses, modeling, and prediction.

INTRODUCTION

The regulation of most biological processes involves changes in

protein abundance and localization. However, because of an

absence of quantitative data describing global protein localiza-

tion and abundance, our understanding of proteome responses

to perturbations remains rudimentary. Methods for rapid acqui-

sition of in vivo quantitative data about the dynamic proteome

are needed to enable the identification of members of protein

complexes and coregulated proteins, give global information
about post-translational modifications, protein stability and ki-

netics, and suggest dependency relationships.

One of themost comprehensive reagent sets available for pro-

teome-wide surveys of cell biological phenotypes such as pro-

tein localization is the budding yeast open reading frame

(ORF)-GFP collection (Huh et al., 2003). Each strain in the

ORF-GFP collection carries a unique fusion gene construct in

which an ORF is fused to the GFP gene, generating a full-length

protein with a COOH-terminus GFP fusion, whose expression is

driven by the endogenous ORF promoter. The ORF-GFP collec-

tion contains �4,100 strains (of a possible 5,797; Saccharo-

myces Genome Database http://www.yeastgenome.org/) that

gave a GFP signal above background in standard growth condi-

tions and for the majority of proteins, the GFP moiety appears to

have little effect on protein function (Huh et al., 2003).

The ORF-GFP fusion collection has been analyzed usingwide-

field microscopy and manual inspection to assign �70% of the

proteome to subcellular locations (Huh et al., 2003). Additional

studies have examined the collection in various conditions and

several have quantified abundance of the GFP-tagged proteins

(Benanti et al., 2007; Breker et al., 2013; Mazumder et al.,

2013), but all have relied on manual assessment of localization,

which is non-quantitative and suboptimal since assignments

made by different individuals can be subject to biases and often

show poor agreement (for review, see Chong et al., 2012).

A few recent studies have used automated approaches to

analyze protein localization in yeast. Unsupervised clustering

of subcellular localization patterns identified colocalized proteins

(Handfield et al., 2013; Loo et al., 2014) and a classification

approach assessed a mixture of spatial patterns to identify

changes in protein localization in a microchemostat array

(Dénervaud et al., 2013). However, while these approaches are

information-rich, they have not attempted to computationally

assign a specific localization for each protein and thus are of

limited use to biologists. Here, we describe a high-content

screening and machine learning approach to measure protein

abundance and localization changes in a systematic and quanti-

tative fashion on a genome scale.
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RESULTS AND DISCUSSION

Automated Assessment of Protein Abundance and
Localization
Our goal was to create an automated platform to quantify the

abundance and localization of the �4,100 visible fusion proteins

in the ORF-GFP collection. To do this efficiently, we used yeast

synthetic genetic array (SGA) technology (Tong et al., 2001) to

introduce a cytosolic red fluorescent protein (RFP), a marker of

cell boundaries, into the ORF-GFP array (a list of all strains as-

sayed is shown in Table S1). SGA technology allows introduction

of any mutation of interest into the array, thus enabling us to

combine high throughput genetics and imaging. Our experi-

mental pipeline also includes high-throughput microscopy,

automated image analysis, and pattern classification through

machine learning. To develop and validate our screening proto-

col, we imaged our wild-type collections during early log-phase

growth, capturing data for >200 cells on average for each individ-

ual strain (�3 million cells total, n = 3). Cell boundaries were

defined in the red channel and features from both the red and

the green channel were extracted for each cell using CellProfiler

(Carpenter et al., 2006) (Experimental Procedures; Supplemental

Experimental Procedures; CellProfiler pipeline available at http://

cyclops.ccbr.utoronto.ca/DOWNLOAD/Download.html).

As an initial benchmark of the quality of our data, we extrapo-

lated protein abundance from the mean GFP intensity (Ig) for

each protein in the collection (Table S1A–S1D). Our measure-

ments agreed with other studies that estimated protein abun-

dance in strains from the original ORF-GFP collection using

flow cytometry (r � 0.9 for 2,172 proteins; Figure S1A) (Newman

et al., 2006), western blot analysis of TAP-tagged strains (r� 0.64

for 2,595 proteins; Figure S1B) (Ghaemmaghami et al., 2003),

and mass spectrometry (r� 0.66 for 2,684 proteins; Figure S1C)

(Kulak et al., 2014), and GFP intensities across all of our biolog-

ical replicates were highly correlated (r > 0.98; Figure S1D).

These findings validate our image acquisition and feature extrac-

tion pipelines for studying global protein abundance at the single

cell level.

To extract information about protein localization patterns from

our images, we adopted amachine learning approach. Individual

cells were segmented based on their cytosolic RFP and texture

measurements from both the RFP and GFP channels were ex-

tracted. These measurements, from a representative subset of

strains known to localize to single subcellular compartments

(Huh et al., 2003), were used to generate training sets for auto-

mated classification of remaining proteins. To discriminate

among multiple compartments, we found that we needed an

ensemble of 60 binary classifiers, which we developed from

training sets that comprised >70,000 cell instances hand-picked

from images from one of our wild-type screens (Data S1; Supple-

mental Experimental Procedures). We were able to com-

putationally distinguish among 16 subcellular compartments

(Supplemental Experimental Procedures); examples of cells

with an ORF-GFP corresponding to each localization are shown

in Figure 1A. The classifiers were used to generate a set of 16

quantitative localization scores (LOC scores) for each protein

that reflects the proportion of cells assigned to each of the 16

defined subcellular compartments under a given condition
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(Experimental Procedures; Table S2A). We assessed the perfor-

mance of our classifiers in several ways. First, we compared our

computationally derived pattern assignments to visually as-

signed localization annotations (Huh et al., 2003) and found

94% agreement among the set of 1,097 proteins assigned to a

single compartment by both methods (Figure S1E, upper). Sec-

ond, we assessed localization of proteins assigned to one or

more of seven major localization classes covering 91% of the

proteome by comparison to the manual assessment of the yeast

ORF-GFP collection (Huh et al., 2003) and found that our compu-

tational approach achieved >70% in recall and precision (Figures

S1E, lower, and S1F).

We explored instances in which our classifier ensemble incor-

rectly assigned a localization. We found that misclassified pro-

teins tended to be lower abundance (median Ig for correctly

classified proteins = 1.1 3 10�3, median Ig for incorrectly classi-

fied proteins = 6.6 3 10�4; p < 2.2 3 10�16, Wilcoxon rank sum

test). Most false positives also reflectedmis-assignment of local-

izations to compartments that look highly similar. For example,

the vacuole and nucleus are both large round compartments

and our computational approach misclassified a fraction of

vacuolar proteins as localizing to the nucleus or to both the

nucleus and the vacuole (�35% of the proteins assigned to the

vacuole in Huh et al., 2003) (Figure S1E, lower). In contrast, our

automated imaging approach had high precision for nucleus

(�70%) with only 0.7% of our nuclear proteins assigned to the

vacuole in Huh et al., 2003). Likewise, small punctate compart-

ments are difficult to distinguish computationally and we

observed occasional proteins misclassified as cortical patches,

spindle pole, peroxisome, or nucleolus. The original visual as-

signments of the ORF-GFP collection were validated using sec-

ondary assays for 700 proteins whose localization was difficult to

determine (Huh et al., 2003); our computational approach

achieved a relatively high level of precision and recall based on

a single experiment using automated analysis (Figures S1E

and S1F).

To display the results from our genome-wide screens in a way

that would facilitate the visualization of functional information

about the proteome, LOC scores, and protein abundance infor-

mation were extrapolated from GFP signals to generate an

‘‘abundance localization map’’ or ALM (Figure 1B; ALMs 1–18

in Data S2). The wild-type ALM consists of 2,834 proteins

(nodes) connected to one or more of 16 localization classes

(hubs). Because of auto-fluorescence of yeast cells, our

approach could not distinguish between cells with protein of

very low abundance and a complete absence of the protein

(see Experimental Procedures); 646 proteins with abundance

below our threshold are not included in the ALM (Table S1) as

well as 664 proteins that were below the threshold for significant

LOC scores. In addition to localization information, absolute pro-

tein abundance measurements are represented in the ALM by

node color (Figure 1B). A large cohort of proteins (1,029) local-

ized to both the cytoplasm and the nucleus; in the ALM, these

are divided into two groups: proteins whose localization is pre-

dominantly cytosolic and proteins whose localization is predom-

inantly nuclear.

By representing these data as an ALM, we are able to visualize

proteins with a common localization. The expanded views of
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Figure 1. Abundance Localization Map of a Wild-Type Strain
(A) Images of single cells, showing typical proteins assigned by our classifiers to each localization. Each strain produces a cytosolic RFP to mark cell boundaries

and a different GFP-tagged protein.

(B) Left: abundance LocalizationMap (ALM) illustrating protein abundance and localization information for 2,834 proteins (nodes) connected to one or more of 16

colored hubs that represent distinct cellular locations. Absolute protein abundancemeasurements are represented on a gray-green-yellow scale for each protein.

Right: expanded views of components of the network are shown in blue and red boxes. Micrographs of cells expressing proteins are shown, whose localization is

typical of the assigned compartment (nucleolus [blue box] and nuclear periphery [red box]) with protein abundance (inmolecules per cell), estimated from theGFP

intensity values.

See also Figure S1, Tables S1, S2, and S3, and Data S2.
components of the network in Figure 1B illustrate members of

known protein complexes that colocalize, with representative

micrographs. For example, our automated classifiers correctly
assigned all seven components of the t-UTP complex to the

nucleolus (Figure 1B, blue box) and 25 of the 27 components

of the Nup82 nuclear pore complex available in the GFP
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Figure 2. Thematic Diagram and Functional Enrichment Analysis of Shared Protein Localization

(A) A summary network of protein localization based on the data illustrated in Figure 1B is shown.

(B) Functional enrichment analysis of proteins assigned to various cell localizations using our automated classifiers. Log (p values) indicating the significance of

the functional enrichments are color-coded (key at top of graph).

See also Figure S2.
collection (Aitchison and Rout, 2012) to the nuclear periphery

(some of which are shown in Figure 1B, red box). Two com-

ponents of the Nup82 complex, Sec13, and Nup116, appeared

to behave differently because they were not assigned to the

nuclear periphery; our computational localization assignments

for these proteins correspond with published manual annota-

tions (Huh et al., 2003). These examples illustrate the utility of

ALMs for providing in vivo validation of protein complexes iden-

tified through biochemical or other means (see below for more

discussion).

For the purposes of visualizing broader trends in our data, we

summarized the ALM into a network where each compartment is

represented by a node whose size indicates the number of pro-

teins with that localization (Figure 2A). The edges connecting

nodes represent dual occupancy of proteins to more than one

subcellular compartment and edge thickness indicates the num-

ber of proteins that are shared between compartments (Fig-

ure 2A). Node and edge colors reflect mean protein abundance

(Figure 2A; Data S2). By depicting our ALM data in this manner,

we are able to easily visualize the proportion of shared localiza-

tion patterns between various subcellular compartments, as well

as the average abundances of shared proteins. For example, the

highest fraction of proteins with multiple localizations were those

shared between the nucleus and the cytoplasm (67% of 1,538

colocalized proteins), consistent with the well-characterized

shuttling of many proteins involved in transcription, RNA meta-

bolism, and DNA repair (Aitchison and Rout, 2012). We saw

strong colocalization of proteins to cortical patches, bud, bud-

site, and cell periphery (38% of the 264 localization assignments

to these four compartments), largely due to the localization of cell

polarity proteins associated with the actin cytoskeleton to each

of these compartments at different times in the cell cycle.
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We saw enrichment of proteins with annotated roles associ-

ated with specific organelles in cognate cellular compartments,

e.g., proteins with annotated roles in cytoskeletal organization,

budding, and cytokinesis were highly enriched in the bud-asso-

ciated compartments and cortical patches (Figure 2B). Essential

proteins were enriched in nucleus, nucleolus, and spindle pole

and were more frequently associated with multiple localization

classes (Figure 2B) and physical interactions among proteins

were enriched significantly within each organelle except for the

cytoplasm (Figure S2A). Finally, in agreement with previous

studies (Huh et al., 2003), the majority of the localizations were

to the cytoplasm (37%) and nucleus (28%; Figures 1B, 2A, and

S2B), with most of these proteins assigned to both classes (Fig-

ures 2B and S2C). However, even outside of the shared nuclear

and cytoplasmic proteins, 18% of the proteome (511 proteins)

showed multiple localizations in up to five different compart-

ments (Figures S2C and S2D), emphasizing that the proteome

is far more complex than a mutually exclusive organization of

subcellular units. Proteins that localize tomultiple compartments

were enriched in roles that involve regulation, such as cell cycle,

signaling, cytokinesis, and budding and were more likely to be

phosphoproteins, consistent with a role for phosphorylation in

regulating subcellular movement (Figure 2B).

Analysis of total GFP fluorescence also provided useful prote-

ome-wide information about protein abundance. For example,

the most abundant proteins in the cell were enriched in the

cytoplasm (some of which colocalized at the cell periphery)

and within the ER, Golgi, vacuole/vacuolar membrane, and

nucleolus, which function in part to maintain the integrity of

the intracellular environment (Figures 2A and S2E). Indeed,

highly abundant proteins were enriched for roles in cell

homeostasis (vacuole/vacuolar membrane, p < 5.9 3 10�5)



and transport (cell periphery, p < 4.53 10�8; ER, p < 2.03 10�6;

Golgi, p < 2.7 3 10�5), as well as translation (cytoplasm, p <

3.4 3 10�69) and metabolism (cytoplasm, p < 1.5 3 10�6) (Fig-

ures 2A and S2F). Our automated analysis allowed us to distin-

guish proteins that varied in concentration over three orders of

magnitude, from an estimated lower limit of �40 molecules per

cell for Are1, an ER protein that was undetectable by western

blot as a TAP-tagged protein, to an upper limit of �19,000 mol-

ecules per cell for Gln1, glutamine synthase, one of the highest

abundance proteins in the TAP data set (Ghaemmaghami

et al., 2003) (Figure 1B; Table S1).

Our data set can also be mined using more detailed single cell

analyses. For example, we compared single cells containing two

GFP-tagged proteins that are known to relocalize between nu-

cleus and cytoplasm in a cell cycle-dependent manner, Mcm2

(Yan et al., 1993) and Whi5 (Costanzo et al., 2004), and two pro-

teins that are localized to the nucleus but are degraded in a cell

cycle-specific manner, Sic1 (Visintin et al., 1998) and Far1 (Blon-

del et al., 2000). For each protein, we plotted the fraction of single

cells assigned to cytoplasm, nucleus, or whose protein was

below our threshold of detection for abundance (Supplemental

Experimental Procedures). The Mcm2 and Whi5 proteins in all

of the single cells were classified as localizing to either nucleus

or cytoplasm (Figure S2G) with a larger fraction of cells contain-

ing nuclear Mcm2 than nuclear Whi5, consistent with their cell-

cycle biology. In contrast, for Sic1 and Far1, most of the cells

that had detectable protein were classified as nuclear, while

themajority of cells had undetectable protein levels (Figure S2G),

suggesting that the protein had been degraded. Thus, process-

ing single cell data offers the potential to reveal complex regula-

tory mechanisms governing protein localization and abundance.

The increased sensitivity afforded by our approach allowed us

to reliably assign a quantitative localization for 52 of the 156 pro-

teins previously annotated as ‘‘ambiguous’’ (Table S3). For

example, we confidently assigned Itr2, a myo-inositol trans-

porter, Yeh1, a steryl ester hydrolase, and Bor1, a boron efflux

carrier (http://www.yeastgenome.org/), to the cell periphery.

Orthogonal functional genomic data sets supported our novel

assignments of several proteins to subcellular compartments.

We assigned the uncharacterized protein Ymr010w to the Golgi,

and YMR010W shows strong synthetic lethal interactions with

genes involved in transport/retention of proteins in the ER and

Golgi (Costanzo et al., 2010; Koh et al., 2010). We also assigned

Yir003w (Aim21) to cortical patches, and YIR003W has many ge-

netic interactions with known actin patch genes (Costanzo et al.,

2010). Together, these data suggest that our classifiers effi-

ciently capture localization patterns and abundance information

for most proteins and that these localizations can reveal impor-

tant biology and contribute to predictions of protein function.

Quantitative Analysis of Proteome Abundance Changes
in Response to Environmental and Genetic
Perturbations
We exploited the ALMs to explore the response of the proteome

to either environmental or genetic perturbation in an unbiased

and quantitative fashion. We chose two chemical perturba-

tions—rapamycin and hydroxyurea (HU) treatment—both of

which compromise yeast proliferation and have been used
extensively as reagents to study nutrient deprivation and DNA

replication stress, respectively. Rapamycin is an inhibitor of the

TORC1 kinase complex, which controls cell growth by affecting

protein synthesis andmetabolism (Loewith and Hall, 2011), while

HU inhibits DNA replication through deoxyribonucleotide deple-

tion (Alvino et al., 2007).

As a proof-of-principle for analysis of a genetic perturbation,

we also examined proteome abundance and dynamics in a

mutant lacking the catalytic subunit of a lysine deacetylase

(KDAC), Rpd3 (Yang and Seto, 2008), which we had previously

analyzed in systematic genetic screens (Kaluarachchi Duffy

et al., 2012). Rpd3-mediated lysine deacetylation is a dynamic

posttranslational modification with a well-defined role in nega-

tively regulating gene expression through modification of his-

tones. Rpd3 also deacetylates many non-histone proteins, regu-

lating properties such as protein stability and protein-protein

interactions (Kaluarachchi Duffy et al., 2012; Henriksen et al.,

2012). Our quantitative approach is ideal for identifying changes

in proteins that are not related to transcriptional changes.

Because of the automated nature of our analysis, wewere able

to examine 15 different screening conditions (three times for HU

treatment; nine times for rapamycin treatment; three rpd3D

screens) and extract features from a total population of >20

million cells. With our classifiers, we assigned localization pat-

terns for the GFP-fusion proteins expressed in �95% of cells

imaged. Our compendium of high-resolution images as well

as quantitative information on protein abundance and localiza-

tion in both wild-type and perturbed cells is available as a

searchable web-accessible interface called Collection of Yeast

Cells and Localization Patterns (CYCLoPs) (http://cyclops.

ccbr.utoronto.ca). Protein abundance information revealed 674

unique changes across the 15 conditional screens (Table S4;

proteins with abundance changes using a stringent 2-fold cut-

off (dPL); dPL <�1 (red) or dPL >1 (green) shown in Figure 3

and Table S5). Importantly, we detected protein abundance

changes consistent with known biology and with other studies.

For example, deletion of RPD3 largely resulted in increases in

protein abundance (Figure 3), consistent with the well-character-

ized role of Rpd3 as a repressor of gene expression. We also

observed 22 proteins, including several ribosome biogenesis

and ribosomal proteins, that were downregulated in rapamycin

and upregulated in rpd3D (Figure 3, center right). These findings

reflect that inhibition of TORC1 by rapamycin leads to repres-

sion of Ribi (ribosome biogenesis) and RP (ribosomal protein)

coding genes in a manner dependent on Rpd3 (for review, see

Broach, 2012). Inhibition of TORC1 by rapamycin also causes

repression of energy-consuming processes (Dechant and Peter,

2008)—our imaging assay showed a time-dependent decrease

in abundance of regulators of protein translation by rapamycin

(Figures 3, bottom right, and S3A) while levels of proteins

involved in vacuolar protein degradation (e.g., Prc1 peptidase)

and energy regeneration (e.g., Cox4 subunit of cytochrome c

oxidase) were increased (Figures 3, top right, and S3A). Interest-

ingly, there was very little overlap between our HU and rapamy-

cin screens with respect to protein abundance changes (Fig-

ure 3). This difference largely appears to reflect activation of

the Environmental Stress Response (ESR) (Gasch et al., 2000)

following rapamycin treatment and growth inhibition (209/355
Cell 161, 1413–1424, June 4, 2015 ª2015 Elsevier Inc. 1417
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Figure 3. Protein Abundance Changes

following Perturbations Detected Using

Automated Imaging

Hierarchical clustergram of GFP proteins showing

a >2-fold change in protein level (GFP intensity).

dPL values were calculated from treated over un-

treated data sets and clustered using average

linkage with uncentered correlation. Parts of the

clustergram showing distinct trends in the data

are boxed in yellow. To the right are shown

expanded views of the boxed regions, illustrating

groups of proteins that have increased abun-

dance in rapamycin (top), increased abundance

in rpd3D together with decreased abundance in

rapamycin (middle), and decreased abundance in

rapamycin (bottom). See also Figure S3 and Tables

S4 and S5.
of total changes occurred in proteins encoded by ESR genes;

Table S5) but not following HU treatment (only 28/91 total

changes occurred in proteins encoded by ESR genes; Table

S5) (Dubacq et al., 2006). This difference may be explained by

the effect of HU versus rapamycin on growth of the cells: HU

treatment activates the intra-S phase checkpoint, causing

cycling cells to accumulate in S/G2 (Alvino et al., 2007), whereas
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rapamycin causes inhibition of growth

(Loewith and Hall, 2011), which is associ-

ated with the ESR (Brauer et al., 2008).

The changes in protein abundance in

cells treated with rapamycin correlated

closely with published protein abundance

changes assessed by mass spectrometry

(Fournier et al., 2010) (Figure S3B, upper).

To ask if protein abundance changes

correlated with changes in transcript

levels, we compared the protein abun-

dance values from our rapamycin experi-

ment with published data sets measuring

mRNA levels. We saw that rapamycin

caused a delayed relationship between

mRNA and protein levels with maximal

correlation between mRNA expression

at 120 min and protein levels at 620 min

of rapamycin treatment (R = 0.7), similar

to the findings by mass spectrometry

(Fournier et al., 2010) (Figure S3B, lower).

To ask if transcript and protein abun-

dance were also correlated following a

genetic perturbation, we considered any

protein whose abundance changed de-

tectably in the rpd3D strain (no stringent

cut-off applied). Of all the proteins that

increased in abundance, 79% were

associated with genes whose transcript

levels increased in the absence of RPD3

(p < 3.3 3 10�12) (Figure S3C) (Fazzio

et al., 2001), and this set of proteins was

enriched for components of the cellular
stress response (Figure S3A), consistent with Rpd3 biology (Ale-

jandro-Osorio et al., 2009). While we see generally good agree-

ment between our protein levels and published mRNA levels,

proteins that change in abundance in the absence of changes

in the corresponding transcript are of particular interest as can-

didates for post-translational regulation. For example, of the

seven proteins that changed in abundance >5-fold with no



corresponding change in publishedmRNA levels (Table S4) (Faz-

zio et al., 2001), three have been found to be hyperacetylated in

an rpd3D strain by mass spectrometry (Henriksen et al., 2012):

Pbi2, Tsl1, and Hyr1. Acetylation of these proteins may be regu-

lating their abundance, consistent with known roles for acetyla-

tion in negatively regulating protein stability in yeast (Robert

et al., 2011). Because our data are quantitative, we can identify

unexpected changes in the proteome, even with a high back-

ground of protein abundance changes resulting from Rpd3 re-

pressing transcription.

Flux Networks Map Localization and Abundance
Changes in Environmental and Genetic Perturbations
As described above, ALMs provide a useful means of displaying

proteome-scale information about protein abundance and local-

ization in living cells. We reasoned that comparative analysis of

ALMs derived from perturbed cell populations would enable us

to examine protein dynamics in an unbiased and quantitative

manner. To do this, we used LOC scores derived from wild-

type and perturbed ALMs to define a ‘‘z-LOC score.’’ The

z-LOC score quantifies changes in protein localization between

sub-cellular compartments; a negative z-LOC value denotes

the exit of a protein from a particular compartment, while a pos-

itive z-LOC value represents movement toward a specific loca-

tion. For example, in the rpd3D strain, Pct1, an enzyme involved

in phospholipid biosynthesis (Howe et al., 2002), showed a nega-

tive z-LOC score for the nuclear periphery and a positive z-LOC

score for the nucleus, indicating displacement from the nuclear

periphery to the nucleus (Figures 4A–4D).

To display z-LOC score data in a biologically useful way, we

generated ‘‘flux networks,’’ which are directional, quantitative

vectors that define the relationship between two ALMs and

represent the dynamic localization and abundance changes

following a perturbation. In the flux networks, large nodes repre-

sent subcellular locationswhile small nodes aremoving proteins,

whose abundance relative to unperturbed cells is color-coded.

The vectors illustrate the direction of movement of the protein

and the thickness of the vector corresponds to the proportion

of cells in the population with the indicated change in localiza-

tion. The flux networks for our rpd3D, HU, and rapamycin exper-

iments are shown in Figures 4C, S4A, and 5A. Some proteins,

such as Dig2, a repressor of mating-specific gene expression

(Figures 4C and 4D), are computationally scored with a specific

localization pattern only in the perturbed situation (Dig2 retains

some cytoplasmic localization but is enriched in the nucleus in

the rpd3D strain). In this case, the vector on the rpd3D flux

network shows movement into a compartment with no specific

departure localization (Figure 4C). Interestingly, both Pct1 (see

above) and Dig2 are acetylated proteins in vivo and both are hy-

peracetylated in an rpd3D strain (Henriksen et al., 2012), sug-

gesting that Rpd3-mediated deacetylation may regulate their

localization. In general, flux networks provide a quantitative

snapshot of protein changes within the cell following environ-

mental or genetic perturbation.

A recent screen visually identified localization changes in the

GFP collection treated with HU (Tkach et al., 2012), allowing us

an opportunity to benchmark our computational method for de-

tecting protein localization changes. Our computational analysis
identified 54 of the 97 proteins for which we could visually iden-

tify the changes reported by Tkach et al. in our images (Fig-

ure S4A; Table S6A; Supplemental Experimental Procedures).

For another 36 of the 97 proteins, our computational approach

identified the relevant localization in wild-type and HU but the

change was not statistically significant; generally for these pro-

teins a small fraction of the cells showed the localization change.

Our computational approach also identified a novel set of 40 sig-

nificant localization changes that had not been scored in the pre-

vious manual screen (Figure S4A; Table S6B). The majority of

these (34) were proteins that had a mixed localization pattern

in wild-type (for example nucleus and cytoplasm), which trans-

lates to more subtle quantitative localization changes in HU

that would be challenging to score manually. Thus our computa-

tional approach is able to efficiently and quantitatively detect

changes in protein localization with high sensitivity, capturing dy-

namic information that cannot be reasonably scored by assess-

ment of thousands of images by eye.

Integrating protein interaction information into flux networks

highlights co-translocation of protein complexes or functionally

related proteins. For instance, HU treatment resulted in relocal-

ization of several proteins that form P-bodies or cytoplasmic

granules, which sequester untranslated mRNAs under certain

stresses like glucose deprivation (Teixeira and Parker, 2007;

Tkach et al., 2012). We observe nine P-body proteins recruited

from a diffuse cytoplasmic pattern to foci (Figures S4A and

S4B), which expands upon similar observations (Tkach et al.,

2012; Dénervaud et al., 2013).

Proteins Change in Localization or Abundance but
Usually Not Both
Flux networks can also be used to explore the general relation-

ship between protein abundance and localization changes.

Following 80 min of HU treatment, 28 localization and 40 abun-

dance changes (vPL > 1) were observed in the yeast proteome

(Tables S2 and S4). Remarkably, only one protein, Smf3, an

iron transporter, changed both localization and abundance using

our criteria. Treatment with HU induces activation of the Aft reg-

ulon, which controls iron mobilization (Dubacq et al., 2006), lead-

ing to an increase in SMF3 transcript abundance; however,

relocalization of Smf3 has not been previously observed. Similar

trends were seen after prolonged exposure to HU and in cells

perturbed by rapamycin treatment or deletion ofRPD3, suggest-

ing that the response of the proteome to genetic or chemical in-

sults involves a change in protein abundance or localization but

rarely both (Figure S4C).

Our Rapamycin flux networks (Figure 5) also uncover intriguing

time-dependent changes in the proteome that recapitulate

known and meaningful biology. For example, our flux network

displaying changes after 140 min of rapamycin treatment

(RAP140) (Figure 5A) revealed translocation of transcription fac-

tors Sfp1, which promotes RP gene transcription, and Stp1,

which is involved in amino acid sensing, from the nucleus to

the cytoplasm. In contrast, Stb3, a repressor of RP gene expres-

sion, moved from the cytoplasm to the nucleus, reflecting

the need to inhibit protein translation in starvation conditions,

which aremimicked by rapamycin treatment (Figure 5A) (Broach,

2012) We also detected subcellular movement of two other
Cell 161, 1413–1424, June 4, 2015 ª2015 Elsevier Inc. 1419



A

C

D

B Figure 4. Automated Assessment of the

Proteome in an RPD3 Deletion Mutant

(A) Changes in protein localization to the nucleus in

an rpd3D strain. The graph illustrates the distribu-

tion of z-LOC scores of all GFP-fusion proteins

scored using our nuclear classifier in an rpd3D

strain relative to wild-type. One outlier, Pct1, with

increased nuclear localization is highlighted by the

arrow.

(B) Pairwise comparison between z-LOC scores

for the nucleus versus those for nuclear periphery

localization in rpd3D relative to wild-type. Pct1 is

highlighted as an example of a protein showing

obvious relocalization from the nuclear periphery

to a more general nuclear localization in the rpd3D

strain.

(C) Flux network illustrating abundance and local-

ization changes in the proteome in an rpd3D strain.

The wild-type and rpd3D ALMs were used to

generate the flux network where large nodes

represent cell locations while the small nodes are

moving proteins.

(D) Representative micrographs showing Pct1-

GFP and Dig2-GFP localization in wild-type and

rpd3D cells.

See also Figure S4.
transcription factors, Gln3 and Gat1, whose translocation to the

nucleus is a hallmark of TORC1 inhibition (Figure 5A) (Broach,

2012).

Observing cells over time following rapamycin treatment

allowed us to track proteins that move transiently between com-
1420 Cell 161, 1413–1424, June 4, 2015 ª2015 Elsevier Inc.
partments. A striking example is Rts3, a

PP2A and Sit4 phosphatase-associated

protein of unknown function (Gavin et al.,

2006; Breitkreutz et al., 2010). Rts3 re-

distributed from the nucleus to the cyto-

plasm at early time points (Figure 5B),

with a re-concentration in the nucleus

after prolonged rapamycin treatment,

which excludes it from the flux network

in Figure 5A. This type of movement is

often associated with signaling molecules

that respond to a change in a stimulus and

then adapt and return to their stead- state

localization, e.g., the Hog1 MAP kinase in

response to high osmolarity (Ferrigno

et al., 1998). Our flux network also

revealed an increase in Rts3-GFP abun-

dance, which we confirmed using a TAP-

tagged version of Rts3 (Figure 5B). The

transient relocalization and the abun-

dance change suggest that Rts3 may

play a key role in response to TORC1 inhi-

bition. Indeed, we and others have found

that Rts3 is required for cell survival in

rapamycin (Figure 5B) (Parsons et al.,

2004; Xie et al., 2005; Hood-DeGrenier,

2011). Thus, flux network-based analysis
of the proteome over time can highlight unusual proteome dy-

namics in response to environmental or genetic stress and facil-

itate attribution of protein function.

Several proteins that translocated out of the nucleolus following

exposure of cells to rapamycin for 140 min also shared physical
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Figure 5. Proteome Dynamics in Rapamycin-Treated Cells over Time

(A) Flux network illustrating protein localization and abundance changes after 140min of rapamycin treatment. Proteins annotated as having physical interactions

(BioGrid) are indicated with red edges. Representative micrographs of cells expressing GFP-fusions of transcription factors whose localization is influenced by

rapamycin treatment are shown below: untreated cells (RAP0) and cells treated with rapamycin for 140 min (RAP140).

(B) Micrographs showing transient relocalization of Rts3 from largely nuclear in untreated cells to diffusely cytoplasmic within 15min of rapamycin treatment, with

a re-concentration in the nucleus after prolonged rapamycin treatment (120 min). At bottom left is a western blot showing Rts3-TAP, following treatment with

rapamycin for times indicated, with Swi6 loading control. Bottom right shows spot dilutions revealing sensitivity of an rts3D strain to rapamycin.

(C) Pairwise comparison between z-LOC scores for the nucleus versus those for the nucleolus in cells treated with rapamycin for 60 min. Components of the

exosome are highlightedwith red arrowswhile proteins involved in ribosome biogenesis are highlightedwith blue arrows. Rapamycin treatment induces exosome

complex redistribution from being concentrated in the nucleolus to becoming dispersed throughout the nucleus as early as 60 min.

(D) Representative micrographs of untreated and rapamycin-treated cells expressing GFP-fusions to exosome components (left; green images), a Sik1-RFP

nucleolar marker (middle; red images) and an overlay of the two images (right).
interactions (Figure 5A, protein interactions indicated by red

edges). Rrp43, Rrp42, Rrp4, Ski6, and Dis3 are members of

the exosome, a complex involved in processing of rRNA, small

nucleolarRNAs (snoRNAs), small nuclearRNAs (snRNAs), tRNAs,

and cryptic unstable transcripts (CUTs) (Lykke-Andersen et al.,

2009). A re-distribution from the nucleolus to the nucleus was
observed for eight out of ten components of the exosome after

a 60 min exposure to rapamycin (Figure 5C). We confirmed this

movement of the exosome using colocalization of GFP-tagged

exosome components in cells expressing the nucleolar marker

Sik1-RFP (Figure 5D). Subcellular movement of the exosome

during rapamycin treatment has not been observed previously,
Cell 161, 1413–1424, June 4, 2015 ª2015 Elsevier Inc. 1421



and suggests a significant nuclear role for the complex and

perhaps theneed for specificRNAregulationorprocessingevents

during the cellular response to rapamycin. Thus, integrating flux

networks with protein interaction data can provide new insight

into protein dynamics and point to new compartment-specific

functions for protein complexes.

PERSPECTIVE

Although incredibly powerful, functional genomic approaches

that explore gene expression (Kemmeren et al., 2014), pro-

tein-protein interactions (Rees et al., 2011) and genetic interac-

tions (Costanzo et al., 2010) fail to yield a spatio-temporal

resolution that will be required to understand biological pro-

cesses as complex dynamic systems. Here, we describe a

high-content screening system that allows us to rapidly survey

proteome dynamics in living cells. This approach is designed to

define proteome flux using a computational image-based

method and provide a proof-of-principle for both a technical

and a conceptual platform that ought to be easily adapted to

other systems.

This study is our first attempt at a quantitative exploration of

abundance and localization of the proteome. We used a high

quality, available resource, the ORF-GFP collection, which in-

cludes 71% of the full proteome, with 1,492 strains excluded

that failed to yield a GFP signal above background in the original

manual assessment of the collection under standard growth

conditions (Huh et al. [2003] and Saccharomyces Genome

Database http://www.yeastgenome.org/). Our experimental

approach can be readily modified to include technical improve-

ments that should enable more comprehensive analysis of the

proteome. A number of the ‘‘missing’’ proteins are detectable

by western blot when C-terminally tagged with the TAP moiety

(344 proteins) (Ghaemmaghami et al., 2003) and peptides corre-

sponding to another 543 proteins have been identified in at least

one mass spectrometry study (Nagaraj et al., 2012; Kulak et al.,

2014); these proteins are clearly produced under standard con-

ditions. Some proteins may be undetectable due to destabiliza-

tion caused by the C-terminal tag; for these, insertion of the tag

at the N terminus of the protein may produce useful alleles. In

general, use of yeast-optimized versions of GFP that outperform

the original GFP(S65T) for brightness, photostability, and func-

tion as fusion proteins (Lee et al., 2013) is likely to allow visuali-

zation of more low abundance proteins. In addition, low

abundance proteins may be detectable using a recently devel-

oped protein tag known as the SunTag, which can recruit

multiple copies of an antibody-GFP fusion protein and permits

imaging of single molecules (Tanenbaum et al., 2014). The re-

maining proteins, which are likely not expressed under standard

conditions, will have to be characterized on a case-by-case

basis; growth in other conditions, chosen from transcription

data or that affect growth of the corresponding mutant, may

enable image-based analysis of these proteins.

Automated image analysis of the proteome offers biological

insight at several different levels. First, our compendium of im-

ages offers a qualitative view of the abundance and localization

of each protein. In contrast to some other imaging data sets, we

provide data for an average of 80 cells per image, allowing
1422 Cell 161, 1413–1424, June 4, 2015 ª2015 Elsevier Inc.
assessment of general trends for each protein, including cell-

cycle distribution and variability within a population. Second,

these data reveal previously unidentified regulatory events and

offer many opportunities for generation of particular hypotheses.

Third, although our data set contains many interesting individual

findings, we predict that this type of data will be of particular

value for comparative analyses using quantitative methodolo-

gies. Comparison of image compendia from different mutant

strains or conditions with relevant proteomic data sets promises

to provide insight into regulated proteolysis, post-translational

modifications, and the regulation of protein-protein interactions.

We also demonstrate that we can use single cell measurements

to identify and distinguish two types of changes in cell-cycle-

regulated proteins and many other types of single-cell analysis

should be possible with our data.

Finally, quantitative data sets are particularly important for the

development of models for pathway activity and cellular func-

tion. Just as transcriptome data have revolutionized our under-

standing of gene regulation, quantitative proteomic data, with

the dimension of localization added to more straightforward

abundance measures, will change the way researchers under-

stand the cellular consequences of genetic and environmental

stress. We suggest that integrating condition-specific quantita-

tive abundance and localization data for the proteome will allow

even greater predictive power and represent an essential

component underlying modeling approaches.
EXPERIMENTAL PROCEDURES

Generation of Yeast Strains and Growth Conditions

S. cerevisiae strains used in this experiment are listed in Table S1. Using a

modified SGA protocol (Tong et al., 2001) RPL39pr-tdTomato and marked

alleles were introduced into the arrayed yeast GFP collection (Huh et al.,

2003). HaploidMATa strains from SGA were grown and imaged in low fluores-

cence synthetic medium (Sheff and Thorn, 2004) supplemented with methio-

nine, NAT, and 2% glucose.

Image Acquisition, Analysis, and Pattern Classification

Large-scale acquisition of fluorescent micrographs was conducted using a

high-throughput spinning-disc confocal microscope (Opera, PerkinElmer).

For co-localization analysis, images were acquired using a spinning-disc

confocal (WaveFX, Quorum Technologies) connected to a DMI 600B fluores-

cence microscope (Leica Microsystems) and ImagEM charge-coupled device

camera (Hamamatsu C9100-13, Hamamatsu Photonics).

Image analysis, segmentation, and acquisition of measurements (Fig-

ure S5A) were conducted using CellProfiler (Carpenter et al., 2006). Mean

GFP intensity was used to represent the protein abundance in the cell and

changes > 2-fold compared to wild-type were defined as significant. To

generate the training sets, objects from the WT1 screen were visually in-

spected using CellProfiler Analyst (Jones et al., 2008), to select objects suit-

able for training different patterns (see Data S1) representing distinct

locations and stages of the cell cycle. The resulting handpicked ‘‘designer’’

training sets consisted of over 70,000 objects. Using a supervised machine

learning approach, an ensemble of 60 binary classifiers was generated to

identify cells in 3 stages of the cell cycle, 16 localization patterns, ghost ob-

jects, and dead cells (Figures S5B–S5D). Classifiers were generated using

SVM (Platt, 1998) (sequential optimization, PolyKernel with 1 as exponent)

and improvement in accuracy was achieved through bootstrap aggregation

(Breiman, 1996). An automated classification system was developed, using

WEKA (Hall et al., 2009) and in-house statistical programs to generate

training models from WT1 and to apply classifiers to all single cell instances

across 18 screens.

http://www.yeastgenome.org/


Defining Changes in Localization

For a protein i, the LOC score reflects the proportion of cells that are assigned

to a specific localization class j under condition k:

LOCijk =
nijkP

j

nijk

:

For each localization a cutoff was determined such that each strain was as-

signed to that localization if the fraction of cells assigned to that localization

passed the cutoff (Table S7).

Data Visualization

The abundance localization maps (ALMs) and flux networks were generated

using Cytoscape (Cline et al., 2007). Two types of node were defined in the

ALMs: 16 localization classes as ‘‘hub’’ nodes, and individual proteins as

‘‘protein’’ nodes. For the ALMs in Data S2, node positions were determined

by edge-weighted spring-embedded layout, and the visual distance of

the edge between the hub and protein node depicts the quantitative

localization membership of the protein to the specific organelle (i.e., shorter

distance for higher LOC score). For the WT1 ALM shown in Figure 1B, the

positions of the localization clusters were determined by edge-weighted

spring-embedded layout and protein nodes were manually shifted to more

clearly show abundance groupings. The node colors in gray-green-yellow-

scale are proportional to the Ig value (e.g., darker node for more abundant

protein).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, seven tables, and two data sets and can be found with this article

online at http://dx.doi.org/10.1016/j.cell.2015.04.051.
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