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Although the quantity and quality of single-cell data have progressed

rapidly, making quantitative predictions with single-cell stochastic models

remains challenging. The stochastic nature of cellular processes leads to at

least three challenges in building models with single-cell data: (a) because

variability in single-cell data can be attributed to multiple different sources,

it is difficult to rule out conflicting mechanistic models that explain the

same data equally well; (b) the distinction between interesting biological

variability and experimental variability is sometimes ambiguous; (c) the

nonstandard distributions of single-cell data can lead to violations of the

assumption of symmetric errors in least-squares fitting. In this review, we

first discuss recent studies that overcome some of the challenges or set up a

promising direction and then introduce some powerful statistical

approaches utilized in these studies. We conclude that applying and devel-

oping statistical approaches could lead to further progress in building

stochastic models for single-cell data.

Introduction: modeling single-cell data
in systems biology

Over the last 20 years, there has been increasing inter-

est in quantifying molecular biology at the single-cell

level, ranging from HIV-1 reactivation [1] to bacterial

motility [2] to gene expression in single neurons [3].

Unlike approaches that average over bulk populations

of cells, single-cell approaches quantify features of

large numbers of individual cells. This has led to

insight into various biological reaction networks,

including those that underlie gene regulation, signaling

transduction, and metabolism. For example, studies of

key steps in gene expression [4] and large-scale explo-

rations at the single-cell level (e.g., single-cell metabo-

lomics [5]) have been achieved. Properties of cells

previously buried under the population average have

been discovered: Examples include the fundamental

‘noise’ in gene expression [4,6,7], mRNA transcription

bursting dynamics [8–10], ON/OFF responses (besides

the expected graded responses [11–13]), and stochastic

nuclear localization dynamics of transcription factors

[14,15]. More recently, lessons learned from single cells

are being applied to medicine (e.g., personalized cancer

therapy [16]).

To facilitate this single-cell research, systems biology

tools have been developed. One of the widely used

tools is flow cytometry [17], which can quantify prop-

erties (e.g., cell sizes, fluorophore concentrations) of

many individual cells at a time point (an example of

time point measurements [18]). Advanced microfluidic

systems and other devices [19–21] are now combined

with quantitative fluorescence microscopes and have
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assisted high-throughput screening [22–24] and time-

lapse imaging [25]. New imaging techniques [26,27]

provide even more detailed information about single

cells. More recently, single-cell sequencing [28] has

been applied to explore developmental trajectories dur-

ing embryogenesis [29] and neurogenesis [30], to

develop the human cell atlas [31], and to characterize

cell fate choice [32] and epigenomic cell-state dynamics

[33]. Although various sources of technical variability

still need to be addressed [34,35], the single-cell

sequencing data will undoubtedly lead to even more

discoveries.

Alongside the new experimental data, stochastic

modeling and powerful simulations have been devel-

oped [36–41]. Models have explained many phenom-

ena, including variability in developmental switching

[42–44], incomplete penetrance [45], single-molecule

protein distributions [46,47], and bimodality in gene

expression [12]. Modeling approaches used in systems

biology are diverse (comprehensively reviewed in Ref.

[48]). Here, we focus on quantitative stochastic models

that can be inferred from single-cell data.

There are many reasons why systems biologists want

to construct stochastic models at the single-cell level.

First of all, isogenic cells display wide cell-to-cell varia-

tions [49]. These variations can be due to low numbers

of components in the cellular processes or introduced

by some external processes with which the cell inter-

acts [6,7]. Single-cell models can provide support and

interpretation for single-cell molecular mechanisms

that generate this variability [7,50]. Hence, in the areas

where cell-to-cell variability has been appreciated (e.g.,

gene expression, signaling transduction [51]), single-cell

modeling is widely applied, while for other areas, such

as metabolism, it is less widely applied. Secondly,

advanced single-cell technologies allow precise quan-

tification of cell subpopulations and subcellular struc-

ture [52,53], suggesting the possibility to test

quantitative predictions. Finally, the single cell is the

fundamental unit of an organism. Models at the sin-

gle-cell level can serve as the basis for multiscale mod-

els of more complex processes (e.g., the immune

system [54], stem cell differentiation [52], and cancer

progression [55]).

Optimizing models to minimize differences between

predictions and data (model fitting) does not always

improve predictive power. For example, an overly

complex model may explain idiosyncrasies of certain

datasets but may not be generalizable for predictions

that help researchers design new experiments. Hence,

improving model predictions for unseen experiments is

critical. Although models have been widely applied in

systems biology, they are rarely used to make

quantitative predictions. For example, engineered sin-

gle-cell systems, also known as cell circuits, are often

designed based on qualitative use of models [56–58],
but stochastic models have not been widely used to

design these circuits in the context of single-cell vari-

ability (examples of notable exceptions include refer-

ences [59–61]). We believe technical challenges limit

the use of stochastic models, so in this review, we shall

focus on challenges in developing mechanistic models

that quantitatively predict cellular phenomena (Box 1).

Throughout, we refer the reader to more comprehen-

sive reviews of the areas of data analysis that we touch

upon.

To correctly predict cellular behaviors and provide

support for single-cell mechanisms, ruling out models

with the wrong molecular interactions (referred to here

as model structure) is crucial. The model structure

defines a set of equations that describe how compo-

nents in a mechanism interact with each other. Differ-

ent model structures may lead to different predictions

about cellular processes—for example, different ways

to form an integral-feedback mechanism will lead to

different steady-state behaviors [64] and dynamics [65].

Ideally, differences in predictions about quantifiable

features (e.g., how mean expression level relates to the

noise in gene expression, how expression level changes

across time) can be used to rule out some models

(Fig. 1). In practice, we would like to rule out as many

model structures as possible with the data we have, so

we can specifically design experiments (and collect

more data) to test the remaining models.

In addition to the model structure, the equations in

a model are associated with parameters, which are

numbers that determine the quantitative properties of

the interactions (such as strength or rate). Choosing

optimal values of these parameters, usually by parame-

ter fitting (also known as estimation), is necessary

before making successful quantitative predictions

[66–68]. One common technique of parameter fitting is

maximum-likelihood estimation [48], which refers to

the method that searches for the parameter values that

maximize the likelihood function [48]. Conventional

tools for parameter fitting minimize the sum-of-

squared differences between predictions and observa-

tions (least-squares fitting), which is equivalent to max-

imum-likelihood estimation only if the distributions of

errors are assumed to be Gaussian [69].

Challenges in building stochastic
models with single-cell data

There are at least three major challenges in using

stochastic single-cell models. First, because the number
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of possible model structures is large, there may be

many models that can explain data equally well [70].

Cellular mechanisms usually interact with other com-

ponents and systems that are not well-described in the

model, leading to extra variability [71] that makes rul-

ing out models difficult. Second, when we observe

stochastic cellular processes, we necessarily measure

both experimental and biological variability. In other

words, it is often ambiguous where the experimental

noise ends and (interesting) biological fluctuations

begin. This is a particular difficulty in time-series anal-

ysis. For example, the (interesting) stochastic oscilla-

tions are hard to separate from random fluctuations.

Finally, even when we know the model structure,

parameter fitting is a challenge because random

motions of small numbers of components in cellular

processes are a fundamental source of variability [6]

and lead to discrete, heavy-tailed [62], and sometimes

bimodal [12] distributions. The non-Gaussian distribu-

tions may lead to nonsymmetric fitting errors, violat-

ing a key assumption in the least-squares method or in

the likelihood functions that assume normality. Viola-

tions of these assumptions have been shown to lead to

poor model predictions [72].

For each of these challenges, we will discuss some

recent research that we believe greatly improves our

ability to overcome it, or, at least, points us in a

promising direction. Throughout, we refer the reader

to more comprehensive reviews to obtain more context

for the topics we discuss. Taken together, this recent

work suggests that progress can be made by exploring

and applying more powerful statistical approaches to

extract mechanistic information from the inevitably

noisy biological systems.

Ruling out models using correlations
between components: the case of
mRNA and protein numbers in E. coli

Cellular mechanisms are usually embedded in a larger

system (e.g., organelles like mitochondria [73], regula-

tory networks like signaling pathways [56], or the whole

cell [74]). The unknown or unaccounted components

lead to biological fluctuations in single-cell observa-

tions. Although they are not random noise, these fluctu-

ations appear random in our observations because we

do not know how to control or predict them. This pre-

sents a great challenge when modeling a mechanism

Box 1. Qualitative vs. quantitative use of stochastic models, using gene expression as an example

The key components involved in gene expression are the DNA, mRNA, and protein. Their numbers can be generated

by the following random processes:

DNA�!k1 DNAþmRNA

mRNA�!k2 mRNAþprotein

mRNA!k3 ;
protein!k4 ;

where rates represent the probabilities of each reaction to occur in a given amount of time, k1 and k2 represent

the transcription rate and translation rate, respectively, and k3 and k4 represent the degradation rates of

mRNA and protein, respectively. If we interpret the model qualitatively, at equilibrium, we predict a simple

positive relationship between mRNA and protein. The distributions of mRNA and protein numbers can range

from Poisson to heavy-tailed (negative binomial or geometric) depending on the parameters [62,63]. These pre-

dictions give us intuition about the problem but do not strongly constrain any particular set of observations,

limiting the falsifiability.

On the other hand, if we interpret the model quantitatively, and we can estimate k1, k2, k3, and k4 for a given gene,

we obtain specific predictions about the mean, variance, and shapes of the distributions, as well as a quantitative pre-

diction about the relationship between mRNA and protein numbers. We can then compare the predictions to the

experimental data and quantify how accurate the models are. In addition, we can identify which genes violate the

model and study them further. These models allow quantitative comparison between experimental data and can be

used for biological discovery in a different way than theoretical models that only determine what phenomena are pos-

sible. It is in this sense that we believe quantitative models offer greater falsifiability.

We believe these issues are particularly important to consider for stochastic models (that include variability) because

experimental variability can be confused or misinterpreted in the context of the variability predicted by the model.
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quantitatively: These variations can be lumped together

with fundamental stochastic processes included in a

model, leading to conflicting interpretation of the model

parameters. To illustrate this point, here we consider the

mechanism of gene expression (Box 1).

Gene expression can be measured through the num-

bers of mRNA and protein with techniques like fluo-

rescence in situ hybridization and fluorescence imaging

with single-molecule sensitivity [75]. Steady-state gene

expression shows large cell-to-cell variability in the

numbers of mRNA and protein. One of the sources of

variation in gene expression is the low numbers of

components that fluctuate leading to so-called bursting

dynamics [6,62]. If we simulate gene expression with a

simple stochastic model (Box 1), the steady-state distri-

bution of protein number will be heavy-tailed and has

been shown as a Gamma distribution under some

assumptions [62]. This simple model does not include

any connection to biological fluctuations (formally, k1,

k2, k3, and k4 are not functions of any other cellular

components, for example, transcription factor concen-

trations [6], available ribosomes [60], cell cycle [76]).

Nevertheless, it can still fit observations resulting from

natural fluctuations because natural fluctuations will

also lead to heavy-tailed distributions for protein

numbers [62], and be conflated with fundamental noise

due to low numbers of components. For example, a

previous study showed that distributions of protein

numbers for 137 highly expressed genes in Escherichia

coli fit well to the simple model, but it would not be

reasonable to explain their large cell-to-cell variations

as the result of low component numbers [75].

We often do not know how connecting a model

parameter to natural biological fluctuations affects

model predictions for new, and model interpretation

can become ambiguous. For example, although the

model above (Box 1) predicts a positive correlation

between cellular mRNA and protein numbers during

equilibrium, single-cell mRNA and protein numbers

of the 137 highly expressed genes showed no correla-

tion [75]. The authors suggested that the lack of cor-

relation could result from a biological fluctuation in

k1. In other words, their data, which represent a

snapshot of the cells, might capture a long-time aver-

age of the number of proteins in a cell, while the

number of mRNAs produced these proteins has

already changed. However, we could also consider

another model with a biological fluctuation in the

translation rate k2 (e.g., variability in the available

ribosomes). This model would also predict no
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Stochastic single-cell models M

Protein
k2(S)k1 Ø

M2(k1, k2)

Protein
k2k1(S)

Ø

Parameter fitting

Maximize P(X|S, M, k1, k2)

M1(k1, k2)

Model predictions 

M1 ruled out
Unmeasured 

or
Hidden from Models

Ruling out models 
with new data

Model design

Predictions with unseen 
input S(t1,t2) and fitted k1 and k2

Fig. 1. Models that fit current data equally well can be ruled out through differences in model predictions. In this example, two models of

gene expression, M1 and M2, are connected to the input signal S through different parameters: protein synthesis rate k1 is assumed to be a

function of S In M1, and degradation rate k2 is assumed as a function of S in M2. The exemplary single-cell trajectory of protein abundance

X (middle plots) is assumed as the response to the pattern of the input signal (top plots). Parameter values would be estimated by

maximizing the probability of observing the single-cell trajectory X given the input signal S, the models, and a set of parameter values, P(X|
S, M, k1, k2). Two models may fit the data equally well and show similar solutions (bottom plot, solid lines) with minimal distances from X

(blue dots). However, they may make different predictions about how the cell responds to a different input signal type. In that case, the

model that makes a worse prediction is ruled out.
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correlation, and we cannot tell which one of the two

models is more accurate.

In a promising approach to this challenge, Hilfinger

et al. [77] proved that the correlation coefficient between

the numbers of protein p and mRNA m (denoted as

ρpm) depends on the mechanisms. For example, ρxsis
equal to the ratio of noises

CVp

CVm
(CV means coefficient of

variation) when extrinsic noise only affects the tran-

scription rate k1and is equal to the time-averaged ratio

of noises
τp

τpþτm
CVp

CVm
(τ means the lifetime of protein or

mRNA) when extrinsic noise only affects the translate

rate k2. To test this, Hilfinger et al. [77] used the same

data from 137 highly expressed genes and found that

the correlation coefficients of each gene are independent

of the noise ratio
CVp

CVm
. The data are also inconsistent

with the prediction of a model that explains the lack of

correlation by invoking a much shorter mRNA lifetime:

if the mRNA number fluctuates rapidly (large CVm)

and is not correlated with the protein number (small

ρpm), then there should be a relatively small variation in

protein number (small CVp) because many mRNA

bursts should not be transmitted to protein bursts. This

model also predicts ρpm ¼ CVp

CVm
, which is not what has

been observed. Therefore, the short lifetime of mRNA

cannot explain the lack of correlation, and a broad class

of models is now rejected. A similar argument combined

with reported mRNA lifetimes leads to a different pre-

diction in the presence of translation rate variability,

and it also cannot explain the lack of correlation. There-

fore, another broad class of models that connect the

translation rate to natural fluctuations is rejected. Even-

tually, Hilfinger et al. showed that a class of model

structures that include an antagonistic, noise-canceling

interaction from protein to mRNA is consistent with

both observations [77], shedding light on further

hypothesis testing for the mechanism of gene expres-

sion.

This example highlights a general need for a more

powerful statistical approach to analyze predictions of

stochastic models based on a wider variety of statisti-

cal summaries. Taken together, we suggest that the

development of diagnostic statistical summaries can

yield surprising insight into what types of models are

possible. This approach seems to have great promise

for ruling out model structures.

Gaussian processes provide an
objective statistical method for
testing model predictions about
stochastic single-cell trajectories

The time dynamics of cellular components provide a

rich amount of information about biological functions,

including intercellular signaling [78], homeostasis

[79,80], circadian rhythm [81], cell cycle [82], etc. Oscil-

latory or periodic dynamics have been known to be

involved in biological functions at the single-cell level

and can be found in many signaling pathways [83–85].
However, more and more studies have shown that cel-

lular processes can also carry out signaling functions

by stochastically switching between damped oscilla-

tions (periodic dynamics that disappear) and noisy

fluctuations [84,86,87]. Similarly, a class of transcrip-

tion factors has been identified to encode environmen-

tal or intracellular stresses through aperiodic stochastic

pulsatile nuclear localization [14] and has been linked

to cell-state decisions [88,89].

Deterministic models have been constructed to

explain how stochastic dynamics are generated [90,91].

The general explanation is that the systems are capable

of generating periodic dynamics in a small region of

parameter space and are pushed into a region of non-

periodic dynamics by noises (or fluctuations). This

qualitative difference between two adjacent regions in

parameter space is called bifurcation [92] and has been

found in models of many different biological

functions.

Although the deterministic models explain the phe-

nomena qualitatively, fitting them with data is chal-

lenging. The moment when a trajectory (time-series

data) switches from damped oscillations to noisy fluc-

tuations, for example, is hard to pin down because of

measurement error and limitations of signal to noise

ratio in single-cell data. If the two states of the trajec-

tory cannot be reliably separated, then parameter val-

ues could be incorrectly determined or biased. One

approach employs stochastic models of a biochemical

reaction network to estimate parameter values [93] and

perform other analyses [18,94]. The benefit of this

approach is that the models provide mechanistic inter-

pretability. However, because biological oscillations

usually result from a combination of feedback loops

with a time delay [95], dynamical features like period-

icity are usually not represented by one single parame-

ter. Hence, this approach usually does not provide a

straightforward test for identification of oscillations or

other dynamical features [96].

A promising alternative approach is to fit stochastic

models that explicitly model the noise in the data. The

noise around a steady state in the chemical master

equations (CME, Box 2) can be approximated by a

Gaussian process [96]. Hence, Gaussian processes

regression models [97] are an appealing candidate for

time-series data, and they have been used to determine

if peaks in a given time series are damped oscillations

or noisy fluctuations [96]. Gaussian processes describe
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how the covariance changes as a function of the differ-

ence between two time points (referred to as the ‘ker-

nel’ in the Gaussian Process literature). For example,

the covariance may drop exponentially, so two close

time points covary tightly while distanced time points

vary a lot. This approach provides a more realistic

description of random fluctuation than white noise,

which assumes independent samples for each time

point. However, a key limitation of this approach is

the loss of mechanistic interpretability. It also assumes

that fitting error is Gaussian and that the dynamics

are unimodal (limitations that could in principle be

addressed using generalizations such as the recently

proposed infinite Gaussian process mixture model

[98]).

The Gaussian process model for steady-state fluctua-

tions in the CME leads to two kernels to fit either ran-

dom fluctuations or damped oscillations [96]. The

forms of the kernels are

KOU ¼ expð�τÞ

KOUosc ¼ expð�τÞcosðτÞ

where τ is the diffenence between two time points.

KOU defines a multivariate Ornstein–Uhlenbeck (OU)

process that has been widely used for modeling noisy

fluctuations [99], and KOUosc define oscillations

damped by the OU process. The cosine function in

KOUosc suggests periodic peaks of covariance between

time points, so KOUosc describes damped oscillation as

a process returning to equilibrium: When a cellular

process is displaced from its equilibrium by some

noises, a damped oscillation follows if some negative

feedback loops or time delay reactions transform the

displacement into restoring forces (e.g., feedbacks

between the rates of different ion fluxes restore electric

potential energy [100]).

The two kernels can fit time-series data by standard

maximum-likelihood methods [96], and the log-likeli-

hood ratio (LLR) of the data under the two kernels

can be computed. For example, this approach was

used to quantify HES5 protein fluctuations, which is a

transcription factor regulating neurogenesis [89]. Based

on the linear stability analysis of a deterministic

model, the genetic circuit of HES5 in neural progeni-

tors was predicted to lie on the boundary of bifurca-

tion and linked to dynamics and fate decision.

However, because of the noisy nature of the HES5

dynamics, deterministic models cannot be directly

compared to data. By using a Gaussian process, they

showed that the dynamics of HES5 are more periodic

in differentiating cells than progenitors and linked the

HES5 dynamics to the fate of neural progenitors dur-

ing embryogenesis.

Because the model is generic, the data are not lim-

ited to gene expression. We, for example, used the

same Gaussian process regression model to quantify

the pulsatile nuclear localization dynamics of Crz1

Box 2. The Chemical Master Equation

Because of the stochasticity, modeling single-cell gene

expression predicts gene expression in a large number

of cells as an ensemble. The CME has been introduced

to describe stochastic biological reactions [50]. The

CME is a set of linear differential equations that

explicitly demonstrate how the probability density vec-

tors of every chemical component affect each other

over time. The CME can be written as

d

dt
pðn, tÞ¼ ∑

m

i¼1

�pðn, tÞ fi ðnÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
flowout fromn

þpðn�di, tÞfi ðn�diÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
flow inton

0
B@

1
CA

where n is a vector of non-negative integers repre-

senting copy numbers as the state of each compo-

nent, p n, tð Þ mean the probability for all the

component to be in the states represented by n at

time t, mis the number of reactions in the model,

fiis the propensity function of reaction ias a func-

tion of every component, and diis a vector of jump

sizes of each component when reaction ioccurs. The

first term describes the flow out of state, and the

second term describes the flow into state n.

The gene expression model in Box 1 is a case of the CME

with the numbers of DNA, mRNA, and protein

n¼ nd nm np½ �, number of reactions m¼ 4, jump sizes of

DNA, mRNA, and protein of each reaction d1 ¼ 0 1 0½ �,
d2 ¼ 0 0 1½ �, d3 ¼ 0 �1 0½ �, d4 ¼ 0 0 �1½ �, and

propensity functions f1 ¼ k1nd, f2 ¼ k2nm, f3 ¼ k3nm,

f4 ¼ k4np, where ki is the reaction rate of reaction i.

With the widely used stochastic simulation algorithm

(SSA) [50], researchers can simulate an ensemble of

cells for t equal to an arbitrarily long time and com-

pare the simulated distribution to the experimental

distribution. However, the non-normal distribution of

both the simulated and experimental distributions vio-

lates the assumptions of conventional statistical tools

for comparison. Estimating the parameters (ki) in this

model by matching the mean and variance to simula-

tions is not likely to produce unbiased estimates in

general because these are not sufficient statistics for

non-Gaussian distributions produced by the CME.
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before and after calcium bursts [101]. More Crz1

pulses were found after calcium bursts than before the

bursts, and we proposed a time delay model to explain

the link between the two dynamics. One prediction of

the model is that Crz1 dynamics are damped oscilla-

tions after calcium bursts and are noisy fluctuation

before the burst; moreover, larger calcium bursts are

followed by more periodic Crz1 dynamics. Using the

LLR statistic, we found a trend of periodicity in Crz1

dynamics that increased with preceding calcium burst

sizes, providing direct evidence for the model from the

time-series data.

In these examples, Gaussian processes are fit to sin-

gle-cell stochastic time-series data to distinguish oscil-

lating models from stochastic fluctuations. In the

future, perhaps other mechanistic models can be con-

nected to the parameters of Gaussian Process kernels,

and so model structure and parameters may be

inferred directly from time-series [102].

Using the whole distribution of data
to fit stochastic models helps make
precise predictions

A single-cell model with a correct structure sometimes

fails to make a correct prediction even after its parame-

ters are fitted to a rich amount of data [72]. One reason

is that the statistical tools for fitting parameters (such as

the Gaussian processes described in the previous sec-

tion) assume normally distributed errors. However, as

discussed above, distributions in isogenic populations

are often non-Gaussian. Ideally, analytic forms of the

data distribution as a function of the parameters could

be derived from the CME (Box 2) or other stochastic

models. In that case, parameter fitting could proceed

using standard approaches such as maximum-likelihood

estimations. In practice, explicit forms of the likelihood

are rarely obtained even for simple models.

One approach to estimate model parameters is by

optimizing parameter values to maximize the likeli-

hood of observing the measured moments [103].

Although sometimes the first two or higher moments

are sufficient for fitting a simple model to non-Gaus-

sian distributions [104,105], for a model with many

unknown parameters or high dimensional multi-modal

distributions, a handful of moments are not expected

to constrain the parameters [72].

Another approach is by optimizing parameter values

to fit the entire (non-Gaussian) distributions obtained

through simulations. Examples include measuring dif-

ferences between distributions through information-

theoretic metrics [106] or approximating the whole dis-

tributions with finite numbers of every chemical species

(known as finite-state space systems [107]). Compared

to the moment-based approach, this approach is more

computationally expensive because it requires a large

amount of stochastic simulation or, in the case of

finite-state space systems, high-dimensional matrix

exponentiation [106,108]. Major approximation meth-

ods are comprehensively reviewed in reference [108].

When feasible, we think this approach can improve

model predictions and will discuss two recent applica-

tions of this approach.

A general method to quantify the difference between

model predictions obtained through stochastic simula-

tions and observations is needed. Kullback–Leibler
(KL) divergence can quantify distance with the whole

continuous distributions and is 0 if and only if two

distributions are identical [109]. The KL divergence

defined in the continuous case is

DðPjQÞ¼
Z ∞

�∞
PðxÞ log PðxÞ

QðxÞdx≥ 0,

where P is the experimental distribution, and Q is the

normalized simulations of the CME (e.g., molecule

numbers divided by cell sizes to get concentration x

[62]). It is well known that minimizing KL divergence

is mathematically equivalent to maximizing the likeli-

hood, assuming accurate enough simulation to obtain

Q. Unfortunately, the infinity and negative infinity in

the formula prevents a straightforward approximation

of KL divergence through binning [110]. Hence, spe-

cialized estimators of KL divergence must be used in

practice [111].

We used KL divergence between the simulated and

experimental distributions to fit a stochastic model

representing the high osmotic glycerol (HOG) pathway

[12] to data from flow cytometry [112]. This system

shows bimodal single-cell gene expression [12] and is

therefore poorly described by the mean and variance.

We tested the capacity of the model to explain the

mutations we made in the components of the signaling

pathway. Interestingly, the model could reproduce the

quantitative effects of four out of seven mutations,

suggesting that fitting stochastic models based on the

KL divergence may be a promising approach when

nonstandard distributions are observed.

Although the CME can describe stochastic cellular

processes in general, analytic approximations to the

CME are only available in simple cases and the algo-

rithms for obtaining numerical solutions can be

another challenge in the simulation-based paradigm

for parameter fitting. In some studies, models are

designed to describe highly skewed distributions and

require a large number of simulation runs to estimate
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the predicted distribution. Widely used algorithms like

Gillespie’s SSA can miss the long tail of an asymmetri-

cal distribution if the number of simulations is not

large enough [107]. To overcome this problem, Mun-

sky et al., 2018, used the finite state projection (FSP)

algorithm to approximate the probability of the whole

distribution [107] before they fitted parameters. The

goal of their FSP algorithm is to approximate a system

of infinite states (i.e., no upper bound of components’

numbers) with finite states. In their algorithm, the

numbers of states expand until the sum of every state’s

probability density is above one minus an allowable

error, for example, 1–10−6 (where the real sum of the

probability density of all infinite states is 1 by defini-

tion [107]). This way, they can approximate the small

probability density of the long tail.

Again, using gene expression responses of the HOG

pathway [72] as a model system, single-cell time series

of mRNA copy number in the nucleus and cytoplasm

was fit with the whole distribution calculated via FSP.

The authors reported a precise prediction of their gene

regulation model, which contains 13 nonspatial or 15

spatial parameters to predict nascent RNA [72]. In

contrast, by fitting the same gene regulation model

with the moment-based approach [103], the authors

showed that the moment-based approach led to predic-

tions wrong by four orders of magnitude [72].

Conclusion

The stochastic processes quantified at the single-cell

level revealed exciting and puzzling phenomena that

challenged our previous understanding about cellular

mechanisms, including gene regulatory networks

[12,66,113] and signal transduction pathways

[83,91,114]. Although advanced experimental tech-

niques assist researchers in collecting an ample amount

of data, modeling single-cell stochastic dynamics

remains challenging. The challenges include weak falsi-

fiability of models, ambiguous boundaries between

damped oscillations and noisy fluctuations on time tra-

jectories, and violation in the assumptions of conven-

tional tools for parameter fitting. We reviewed recent

research that addresses each challenge. One common

theme among these is the application of statistical the-

ories that provide a clearer framework to interpret

data, enhance the power to distinguish similar dynam-

ics, and increase the precision of parameter fitting,

hence improving the falsifiability of models.
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