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Abstract

Background: The regulatory network underlying the yeast galactose-use pathway has emerged as a model system
for the study of regulatory network evolution. Evidence has recently been provided for adaptive evolution in this
network following a whole genome duplication event. An ancestral gene encoding a bi-functional galactokinase
and co-inducer protein molecule has become subfunctionalized as paralogous genes (GAL1 and GAL3) in
Saccharomyces cerevisiae, with most fitness gains being attributable to changes in cis-regulatory elements. However,
the quantitative functional implications of the evolutionary changes in this regulatory network remain unexplored.

Results: We develop a modeling framework to examine the evolution of the GAL regulatory network. This enables
us to translate molecular changes in the regulatory network to changes in quantitative network function. We
computationally reconstruct an inferred ancestral version of the network and trace the evolutionary paths in the
lineage leading to S. cerevisiae. We explore the evolutionary landscape of possible regulatory networks and find
that the operation of intermediate networks leading to S. cerevisiae differs substantially depending on the order in
which evolutionary changes accumulate; in particular, we systematically explore evolutionary paths and find that
some network features cannot be optimized simultaneously.

Conclusions: We find that a computational modeling approach can be used to analyze the evolution of a well-
studied regulatory network. Our results are consistent with several experimental studies of the evolutionary of the
GAL regulatory network, including increased fitness in Saccharomyces due to duplication and adaptive regulatory
divergence. The conceptual and computational tools that we have developed may be applicable in further studies
of regulatory network evolution.

Background
Regulatory networks are known to underlie many biolo-
gical processes, and therefore their characterization and
analysis forms a central focus of systems biology [1-4].
Despite their importance, relatively little is known about
how regulatory networks are formed during evolution
and shaped by natural selection.
One of the best studied regulatory networks in mole-

cular biology is the “GAL network”, which is responsible
for the inducible metabolism of galactose in budding
yeast. In addition to being extremely well-characterized
in S. cerevisiae [5-7] it has also been the subject of a
number of quantitative modeling efforts [8-11] and evo-
lutionary studies, which have revealed many interesting
patterns of regulatory network evolution [12-15].

Perhaps most general of these evolutionary paradigms is
the duplication and divergence of function of an ances-
tral bi-functional gene. Before the whole genome dupli-
cation (WGD), which occurred along the lineage leading
to S. cerevisiae [16,17], the GAL network is thought to
have employed the Gal1/3 protein to perform both an
enzymatic and regulatory function. This bi-functional
protein has been retained in species that diverged before
the WGD [18]. Following the WGD, the two gene
copies of GAL1/3 were converted to a highly inducible
enzyme (GAL1) [19] and a weakly inducible regulatory
protein (GAL3) [20] in post-WGD species. Recent work
has demonstrated that these changes confer a growth
advantage in galactose [21], and suggested that gene
duplication and subsequent neofunctionalization repre-
sented an example of how a regulatory network can
overcome an adaptive conflict, whereby the network* Correspondence: alan.moses@utoronto.ca
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cannot improve in one aspect without impairing func-
tion in another.
Here we set out to explore the consequences of evolu-

tionary changes in the GAL network using a model of
the regulatory network (Figure 1) to relate specific
sequence changes to changes in quantitative function.
Starting with experimentally characterized regulatory
differences between the pre- and post-WGD GAL genes
(see Methods), we inferred an ancestral organization of
the regulatory network (see Results). Simulations of the
ancestral and S. cerevisiae networks show that gene
duplication and specialization lead to elevated gene
expression in the presence of galactose, and decreased
gene expression in the absence of galactose, thus leading
to an improved switch-like system in S. cerevisiae. We
then use the model to explore the significance of the
order in which a set of maximally parsimonious evolu-
tionary events separating a post-WGD ancestor and

S. cerevisiae occur, and find important consequences for
the function and evolution of the switch. We introduce
the idea of evolutionary paths in the space of possible
regulatory networks and develop quantitative measures
to compare paths. We find that there are evolutionary
paths in the lineage to S. cerevisiae that optimize parti-
cular features of their constituent network intermedi-
ates, some of which have been shown to be directly
related to fitness. Perhaps more importantly, we find
that it does not seem possible to optimize all network
features in any single path.

Results
A hybrid stochastic-deterministic modeling framework for
examining the evolution of the GAL regulatory network
In order to explore the functional consequences of evo-
lutionary changes in the GAL network, we sought a
quantitative approach to relate these molecular changes
to changes in network operation. Because the evolution-
ary events of interest include variations in gene copy-
number, changes in protein function, as well as changes
in the number and spacing of cis-regulatory sequences,
we required a modeling framework in which we could
incorporate all these features and relate them to net-
work behavior.
To model transcription/translation we modified and

implemented a general physicochemical model of tran-
scription regulation [22,23] in a stochastic context. This
allowed us to vary the regulatory features of promoters
driving the GAL genes and hence to predict the effects
of evolutionary changes in the cis-regulatory sequence of
a particular promoter. To model changes in gene copy
number, we simply changed the corresponding probabil-
ity of transcription, for example, to model a gene dupli-
cation event, we multiplied the probability of that gene’s
transcription by two. Because of the difference in time
scales and species numbers between transcription/trans-
lation reactions and protein-protein/galactose interac-
tions [24], we modeled the latter using a system of
ordinary differential equations. In order to model the
effect of evolutionary changes in protein function, we
assigned different sets of reaction possibilities to new
molecular species created during the evolution of the
network.
Hybrid approaches [25-28] such as this permit the

inclusion of gene expression noise [29,30], multiple time
scales, and variable system mass in biological models
while making simulations computationally feasible.
Briefly, each step of the hybrid simulation algorithm
consists of a stochastic part for the slow transcription/
translation/degradation processes, and a deterministic
part for the fast molecular interactions which is solved
to equilibrium (Figure 2a, see Methods section for a
detailed description of the simulation algorithm).
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Figure 1 Schematic of the GAL regulatory network model.
A transcriptional activator protein, Gal4p, binds a consensus
upstream activating sequence (UAS) in the promoter region of
structural and regulatory genes promoting their expression. In the
absence of galactose, however, Gal4p forms a complex with the
Gal80p repressor molecule, which masks its C-terminal activation
domain, preventing the recruitment of transcriptional machinery.
Galactose is imported from the environment by non-specific hexose
transporters, as well as by highly-specific Gal2p permeases, and
activates the co-inducer Gal3p molecule or the bi-functional Gal1/3p
if it is present in the network. The activated form of Gal3p (and/or
Gal1/3p) can then bind and sequester Gal80p, relieving the
inhibition of gene expression and permitting induction of the GAL
cluster. GAL1 has a core of three UASs arranged in an in-phase
helical manner. This configuration allows cooperative interactions
(black connecting lines in figure) between adjacently bound
activating (Gal4p) and inhibiting (Gal4p-Gal80p complex, not shown)
protein pairs, which enhance gene expression or inhibition in
induced or uninduced conditions respectively. The promoter region
of GAL1/3 also contains this core, but, unlike GAL1, these sites are
arranged in an anti-phase helical configuration which does not
permit cooperative interactions. GAL3 has retained only one UAS,
resulting in decreased inhibition in uninduced conditions and a
relatively small induction in the presence of galactose. In addition
to the changes in the number and arrangement of cis-regulatory
elements, differences also exist between the intrinsic strengths of
ancestral and extant promoters (see Table 4). Note that cooperative
interactions between the two UASs on GAL2 are permitted [5], and
that the 4th UAS on GAL1 (and GAL1/3) is not included in the model
after indications that it may not be as important for gene
expression as the other UASs [42].
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Figure 2 Simulation algorithm and results. a. The deterministic part models galactose transport and protein-protein/galactose interactions.
Steady-state concentrations are used to update the system’s components but, regardless of the time taken to reach equilibrium, simulation time
is not advanced. The state of the system ([Gal4p], and [Gal4-80p], in particular) is then used to update the stochastic propensity functions for
protein synthesis via the statistical-mechanical promoter models. The Gillespie algorithm selects a reaction channel and a time, τ containing no
protein synthesis or degradation reactions, which is used to update the simulation time. The system’s components are updated according to the
selected reaction, and the algorithm re-iterates. b. Typical time-series data from a single simulation of the GAL network in S. cerevisiae in very
low galactose (10 -7 M). c. Gal1p equilibrium protein distributions obtained from 100 simulations of the S. cerevisiae GAL network in very low
galactose. d. Induction-response curves were constructed from equilibrium protein distributions in increasing concentrations of galactose. Bars
indicate +/- standard deviation. Prior to the WGD, the bi-functional Gal1/3p molecule served as the network’s co-inducer and galactokinase.
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Model parameters were chosen to reproduce the
quantitative operation of the GAL network in S. cerevi-
siae ([5,6,9,21], see Methods for details of parameter
choice and parameter sensitivity). Typical traces from
simulations are shown in Figure 2b. Protein distribu-
tions were obtained at equilibrium from 100 indepen-
dent simulations of each variant network at constant
extracellular galactose concentrations in the range [10-8,
10-1] M in the absence of glucose (Figure 2c). The
induction-response curve for S. cerevisiae in increasing
concentrations of galactose displays the characteristic
switch-like response (Figure 2d) and fold-inductions in
gene expression are consistent with previously published
experimental data (Table 1 in Methods).

Reconstructing the operation of an inferred ancestral
network
GAL1 and GAL3 are paralogous genes which have
diverged after a WGD event in the lineage leading to
S. cerevisiae from a common bi-functional ancestor,
GAL1/3, which serves as both the galactokinase and co-
inducer molecule. It has recently been shown that the
fitness of cells growing in galactose is related to the
phenotype and operation of the GAL network. The cis-
regulatory evolution of GAL1 and GAL3 has led to a
more efficient genetic switch by subfunctionalizing the
processes and regulation of galactose phosphorylation
and induction [21].
To study the effects of these changes on the network’s

quantitative function we inferred an ancestral form of the
network by removing the GAL1 and GAL3 genes from
the S. cerevisiae network and substituting a bi-functional
GAL1/3 gene driven by the ancestral promoter for Klac-
GAL1 [21]. We have assumed that the other ancestral
regulatory genes have remained unchanged in function
and copy-number compared to S. cerevisiae.
We find that, relative to the inferred ancestor, the

number of Gal1p (galactokinase) molecules in S. cerevi-
siae is increased in high galactose and reduced in very
low galactose, which implies a more switch-like response
in (105 fold in S. cerevisiae vs. 6 fold in the ancestor). At
the same time, the number of Gal3p (inducer) molecules

is decreased in all conditions relative to the ancestral
protein (e.g., at very low galactose, there are ~5000
molecules in S. cerevisiae vs. ~27000 in the ancestor,
Figure 2d). Thus, a single bi-functional gene seems to
perform poorly in controlling the enzymatic and regula-
tory aspects of the network, consistent with experimen-
tal results [21].

The effect of an evolutionary change on the quantitative
function of the GAL network depends on the network’s
evolutionary history
Having established the quantitative differences in net-
work function between the ancestral and extant GAL
network in S. cerevisiae, we next sought to explore the
significance of the order of evolutionary events after the
WGD on network operation.
Five events were considered: the regulatory and func-

tional divergence of the two GAL1/3 copies, and the
loss of the GAL2, GAL4, and GAL80 gene duplicates,
according to the principle of maximum parsimony [31].
Since we know that there was an ancestral genome
duplication event, we expect each gene to have been at
two copies in some ancestor. We then make the maxi-
mally parsimonious assumption that each other gene
was lost once. This is the minimum number of evolu-
tionary changes that could have occurred, though not
necessarily the scenario that was actually followed. Simi-
larly, we know that there are three active promoter
binding sites in the extant GAL1 promoter, and three in
the ancestral GAL1/3 promoter, so we assume that were
no additional binding site gains and losses during the
specialization of GAL1/3 to GAL1. Likewise, we know
that the GAL3 promoter has a single binding site, so we
assume that two sites in GAL1/3 were lost without any
additional intervening binding site gains or losses.
Finally, since there is little data from other species to
estimate parameter changes in the GAL network, we
have assumed that these either remained unchanged or
have incurred small changes (see Methods for parameter
perturbation experiments).
We simulated all 33 of the possible network config-

urations that can arise as combinations of the regulatory

Table 1 Simulation and literature results for the GAL network in S. cerevisiae

Simulation Literature

Gene # molecules (uninduced) #molecules (induced) Fold-increase Fold-increase

GAL1 2567 +/- 494 270810 +/- 20757 105 100-1000 [5,6,9]

GAL2 1010 +/- 329 119130 +/- 8467 118 100-1000 [5,6]

GAL3 5791 +/- 254 29410 +/- 1810 5 3-5 [5,6]

GAL4 755 +/- 75 750 +/- 66 1 1

GAL80 1101 +/- 94 6390 +/- 449 6 5-10 [5,6]

Mean numbers of molecules +/- standard deviation is reported from equilibrium protein distributions of 100 simulations in very low galactose (uninduced) or
very high galactose (induced).
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changes required for the ancestral network configuration
to evolve to the extant configuration in S. cerevisiae
(1 pre-WGD ancestor + 1 post-WGD ancestor + 5
configurations with one event + 10 configurations with
two events + 10 configurations with three events + 5
configurations with four events + 1 S. cerevisiae. See
Table 2). These networks link S. cerevisiae and its
ancestor via 120 unique evolutionary paths. Each path
consists of 7 networks which are connected via the

WGD event and a unique sequence of five evolutionary
changes (Figure 3a).
To evaluate the quantitative function of a network we

considered the number of protein molecules at equili-
brium in very low galactose (10-8M, the “uninduced
state”) and conditions of very high galactose (0.1 M, the
“induced state”). We defined three network features of
interest for further examination:
Feature 1 “repression strength”, is defined as the num-

ber of galactokinase molecules (Gal1p, Gal1/3p) in the
uninduced state (10-8 M galactose), such that a smaller
number indicates better repression;
Feature 2 “induction strength”, is defined as the num-

ber of galactokinase molecules in the induced state
(0.1 M galactose), such that a larger number indicates
stronger induction;
Feature 3 “switch effectiveness” is defined as the num-

ber of co-inducers (Gal3p, Gal1/3p) in the uninduced
state (10-8 M galactose), such that a smaller number
indicates a more effective switch.
Changes in gene copy-number, protein function, and

the number and arrangement of cis-regulatory sequences
often resulted in significant changes in the network’s
quantitative function, as indicated by the differences in
the steady-state galactokinase and co-inducer concentra-
tions between the 33 network configurations (Figure 3b).
The magnitude and direction of these changes, however,
depended both on the particular evolutionary event being
effected as well as on the configuration of the network
being changed - that is, on the history of evolutionary
changes that a network has accumulated. For example,
we found that loss of the GAL80 repressor gene duplicate
has a significantly smaller impact on repression strength
if it occurs prior to the specialization of both copies of
GAL1/3 (data not shown). This is because Gal80p-
mediated repression of GAL1 is much stronger than that
of GAL1/3 due to differences in the promoter regions of
the two genes.

Quantitative assessment of the order of evolutionary
changes reveals that there are evolutionary paths that
optimize specific network features
All of the evolutionary paths in the space of possible
regulatory networks terminate at S. cerevisiae and, as a
consequence, eventually accrue identical changes in
function relative to the inferred ancestral network.
Nevertheless, because the effect of an evolutionary
change depends on the configuration of the network at
that point in evolution, intermediate GAL networks
leading to S. cerevisiae occupy markedly different
regions in functional space depending on the sequence
in which evolutionary changes accumulate.
For each of the 120 evolutionary paths we applied

a scoring scheme (Figure 4a) which penalizes an

Table 2 Configurations for the GAL network variants
modeled in this study

Gene copy-number

Network GAL1 GAL2 GAL3 GAL4 GAL80 GAL1/3

1 0 1 0 1 1 1

2 0 1 0 1 1 2

3 0 1 0 1 2 2

4 0 1 0 2 1 2

5 0 1 0 2 2 2

6 0 1 1 1 1 1

7 0 1 1 1 2 1

8 0 1 1 2 1 1

9 0 1 1 2 2 1

10 0 2 0 1 1 2

11 0 2 0 1 2 2

12 0 2 0 2 1 2

13 0 2 0 2 2 2

14 0 2 1 1 1 1

15 0 2 1 1 2 1

16 0 2 1 2 1 1

17 0 2 1 2 2 1

18 1 1 0 1 1 1

19 1 1 0 1 2 1

20 1 1 0 2 1 1

21 1 1 0 2 2 1

22 1 1 1 1 1 0

23 1 1 1 1 2 0

24 1 1 1 2 1 0

25 1 1 1 2 2 0

26 1 2 0 1 1 1

27 1 2 0 1 2 1

28 1 2 0 2 1 1

29 1 2 0 2 2 1

30 1 2 1 1 1 0

31 1 2 1 1 2 0

32 1 2 1 2 1 0

33 1 2 1 2 2 0

Evolutionary changes, such as the WGD, gene duplicate loss, and
specialization of GAL1/3 to GAL1 and GAL3 connect these networks along
evolutionary trajectories to S. cerevisiae (see Figure 4).
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evolutionary event at that intermediate if it does not
result in the best possible change in the network fea-
ture being scored (see Methods for a detailed explana-
tion of our scoring scheme). We find large variations
in these scores (Figure 4b) confirming that different
sequences of evolutionary changes lead to different
quantitative network function in the evolutionary
intermediates. Of the three features considered, induc-
tion strength shows the smallest variation, perhaps
indicating that there is the least potential for evolution
in this axis (see Discussion).
The path that optimizes repression strength (0 pen-

alty) consists of the sequence: specialization of GAL3,
specialization of GAL1, loss of GAL4 duplicate, loss of
GAL2 duplicate, loss of GAL80 duplicate (red path in
Figure 3a, b). The sequence: specialization of GAL1, spe-
cialization of GAL3, loss of GAL4 duplicate, loss of
GAL2 duplicate, loss of GAL80 duplicate, optimizes
switch effectiveness. The sequence: specialization of
GAL1, loss of GAL2, loss of GAL80, specialization of
GAL3, loss of GAL4 (green path in Figure 3a, b) opti-
mizes induction strength.
We found that evolutionary paths where the two spe-

cialization events of GAL1/3 to GAL1 and GAL3 occur
in close sequence perform well in maximizing repression
strength and switch effectiveness for intermediate GAL
networks. Path scores in these two features are

negatively correlated (R2 = 0.85) with the number of
evolutionary events separating the specialization of
GAL1 and GAL3 (Figure 5a). In addition, paths where
the second copy of GAL80 is lost after all other evolu-
tionary changes show significantly higher repression
strength compared to other paths (-0.34+/-0.19 vs. -1.96
+/-1.05, P = 0.001, two-sample t-test, Figure 5b). It was
also found that the group of paths where specialization
of GAL1/3 takes place before any gene duplicates are
lost has a higher average switch effectiveness score than
paths where duplicates are lost prior to specialization
(-0.16+/-0.12 vs. -1.24+/-0.57, P < 0.001, two-sample
t-test, data not shown). Finally, we find a correlation
(R2 = 0.72) between how early GAL1 specializes and the
strength of induction (Figure 5c), as well as a weaker
correlation with how late GAL3 specializes and the
induction strength scores (R2 = 0.34, data not shown).
We next explored the relationship between the scores

of the different features. Evolutionary paths tend to
maximize switch effectiveness scores and repression
strength scores together (R2 = 0.72, data not shown).
Interestingly, however, paths cannot optimize induction
strength and switch effectiveness/repression strength
simultaneously (Figure 5d). As a result, evolutionary
paths may optimize switch effectiveness/repression or
strength of induction, but not both features at the same
time.
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In the preceding sections, we have made the assump-
tion that the parameters of the network remain the
same as those observed or inferred in S. cerevisiae.
However, in order to test whether the results presented
above are sensitive to parameters, we have performed a
series of perturbation experiments in which parameters
were randomly modified during evolution and found
that the observations presented were all recapitulated in
the perturbed networks (see Methods).

Discussion
Using a quantitative model of the regulatory network we
were able integrate the wealth of experimental knowl-
edge about the S. cerevisiae GAL network with promo-
ter swap experiments and to infer and simulate the

operation of an ancestral form of the GAL network.
Two of our observations are consistent with the report
of increased fitness after promoter specialization [21].
First, our observation of a higher expression of GAL1
relative to the ancestor could lead to an elevated meta-
bolic capacity (galactose flux through the galactokinases)
for S. cerevisiae in high galactose, and therefore perhaps
to increased growth rate. Second, we observed a
decrease in the number of protein molecules in the
absence of galactose, which could lead to increased
growth in the absence of galactose through a decrease
in the energetic cost of protein synthesis (smaller num-
ber of protein molecules) (see [32] for an account of
cost-benefit analysis of gene expression in a different
system).
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Despite the apparent consistency between our results
and the report of adaptive specialization along the
S. cerevisiae lineage, we found it difficult to establish a
rigorous relationship between the quantitative function
of the network and the network’s fitness landscape. For
example, in order to understand the potential benefit of
increased levels of GAL1 expression, it is necessary to
consider the impact of the galactokinase on the entire
metabolic network [33]. In particular, consideration of
the toxicity of the metabolic intermediates is important
and greatly complicates this analysis [34]. Perhaps even
more difficult is that we do not know the relative
importance to the population of the induced or unin-
duced states of the GAL network. Clearly, the amount
of time that S. cerevisiae may spend exposed to galac-
tose depends on the environment and history of the
population. It is unclear if this information will ever be
available to us.

Analysis of evolutionary paths
Our scoring of evolutionary paths in the functional
space indicates that most potential phenotypic diver-
gence takes place in the uninduced state (repression
strength and switch effectiveness, Figure 5b). This is
consistent with experimental findings that report a
greater effect of cis-regulatory variation on gene
repression than on induction [35]. We also found that
no evolutionary path takes optimal steps (steps which
incur no penalty) in every functional dimension at
every network intermediate. In particular, we found
that paths that maximized repression strength and
switch effectiveness were sub-optimal with respect to
induction strength.
Interestingly, we note that GAL networks in other

extant species have specialized their GAL1/3 homolo-
gues, but have retained various duplicates. For example,
S. bayanus and S. castellii have specialized forms of
GAL1 and GAL3, but S. bayanus has kept two GAL80
copies and reacquired a tandem GAL2 duplicate [15],
while S. castellii has kept two GAL4 and GAL80 copies
[36]. According to our evolutionary path assessment, the
specialization of GAL1 and GAL3 before the loss of reg-
ulatory gene duplicates, as well as the close proximity of
these specialization events, improves switch effectiveness
and repression strength. Retention of the GAL80 dupli-
cate in both species is also consistent with better repres-
sion strength scores (Figure 4a, b).
We speculate a possible explanation for these observa-

tions. The GAL network allows for a larger phenotypic
divergence in the uninduced state (consistent with our
observations of larger variance in path scores pertaining
to switch effectiveness and strength of repression). The
network’s capacity to improve and, therefore, the growth

advantage, is greater if networks follow the path of unin-
duced state optimization.

Assumptions of the approach
Our method of exploring the evolution of the GAL net-
work is based on several assumptions. First, in con-
structing the evolutionary paths leading to S. cerevisiae,
we assume that the evolutionary distance between two
GAL network intermediates that are connected by a
regulatory change is always constant - that is, we treat
all evolutionary changes as equally likely to occur at
each step of a path. Second, we make the assumption
that regulatory elements not present in S. cerevisiae
were also not present in the ancestor. While network
features not present in S. cerevisiae, such as a unique
UAS configuration on a gene promoter, could have
existed in the ancestor or intermediate networks, we
have constrained the network’s regulatory space to
include only those evolutionary events required under
the assumption of maximum parsimony - which states
that, when confronted with multiple evolutionary sce-
narios that explain some data, the scenario that requires
the fewest evolutionary events is the most probable to
have been followed [31]. Third, while we attempt to
model parameter perturbations during network evolu-
tion, we cannot exclude the possibility that mutations
can occur that have very large effects on parameter
values. Potentially, experimental characterization of the
GAL network in other species [37] could give an indica-
tion of such events, which could then be modeled as
distinct evolutionary changes in the history of the GAL
network.

Conclusions
A hybrid stochastic-deterministic modeling framework
has been used to explore the effect of regulatory diver-
gence in the GAL network following the whole genome
duplication. We have shown that some evolutionary
paths optimize distinct features of network operation
and that intermediate GAL networks in the lineage to S.
cerevisiae could not have optimized all network features
at the same time.

Methods
Hybrid stochastic-deterministic simulation algorithm
Our model of the GAL regulatory network contains 18
molecular species with extracellular galactose acting as
the input to the system (Table 3). Simulations of the
GAL network were performed using a hybrid stochastic-
deterministic algorithm where each iteration of the algo-
rithm consists of a stochastic part and a deterministic
part (the latter of which may be skipped as an approxi-
mation method).
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1. Deterministic part
The first part of the algorithm begins with an algebraic
step which models galactose transport to the cell inter-
ior:

gal gal a b gal pin out       2 ,

where we used a = 0.001 and b = 0.01 as transport
coefficients for the non-specific hexose transporters and
galactose permeases (Gal2p) respectively. In the above
equation, and in equations that follow, molecular names
in square brackets refer to the concentration of that spe-
cies, whereas names without brackets refer to that spe-
cies’ number of molecules.
Protein-galactose and protein-protein interactions

involved in signal transduction are modeled as a system
of ODEs:


t

Gal M Gal     ,

M is the mass matrix specified by the following equa-
tions:

gal Gal p Gal pin i
k

k

a      




3 3
3

3
 ,

k k3 310 1  ,

gal Gal p Gal p

k k

in i
k

k

a      
 





 

13 13

10 1
13

13

13 13

 ,

,

Gal p Gal p Gal p

k k

a
k

k

a3 80 380

10 1
380

380

380 380

      
 





 

 ,

,

Gal p Gal p Gal p

k k

a
k

k

a13 80 1380

10

1380

1380

1380 1380

      









 ,

,   1

Gal p Gal p Gal p

k k

k

k
80 4 480

1 1

480

480

480 480

      

 





 

 ,

,

Where the k+ and k- are the forward and reverse
kinetic rates respectively for each reaction. Steady-state
concentrations are used to update the components of
the system, but simulation time is not advanced. This
rule permits us to treat protein-protein/galactose inter-
actions as much faster reactions than protein synthesis/
degradation (approximately instantaneous), while still
allowing stochastic fluctuations to influence the determi-
nistic solution trajectory in this multi-stable system
(data not shown).
2. Stochastic part
In the second part of the algorithm, the processes of
protein synthesis and degradation are modeled stochas-
tically. The stoichiometric matrix was constructed from
the following reactions:
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(proteein degradation),

for a total of 17 reaction channels involving 18 mole-
cular species. Stochastic simulations were performed
using the Gillespie algorithm [38]. Transcription and
translation were modeled as a single step, where each
mRNA molecule generates 2.5 protein molecules. The
propensity function, s, for transcribing an mRNA mole-
cule is

Table 3 Molecular species used in the GAL network
models

Name Description

Gal1p Galactokinase

Gal2p Galactose permease

Gal3pi Co-inducer (inactive)

Gal3pa Co-inducer (active)

Gal4p Transcriptional activator

Gal80p Transcriptional repressor

Gal1/3pi Bi-functional galactokinase/inducer (inactive)

Gal1/3pa Bi-functional galactokinase/inducer (active)

Gal3-80p Inducer-repressor complex

Gal1/3-80p Galactokinase/inducer-inhibitor complex

Gal4-80p Activator-repressor complex

GAL1 Encodes for Gal1p

GAL2 Encodes for Gal2p

GAL3 Encodes for Gal3p

GAL4 Encodes for Gal4p

GAL80 Encodes for Gal80p

GAL1/3 Ancestral gene. Encodes for Gal1/3p

Galin Intracellular galactose

Josephides and Moses BMC Systems Biology 2011, 5:24
http://www.biomedcentral.com/1752-0509/5/24

Page 10 of 14



s GAL f Gal Gal

i

i i pi
   

 
( , ),

, , , , , ,

4 480

1 2 3 4 80 13

where fPi
is the promoter model assigned to gene

GALi (see Promoter models section). Our model
accounts for changes in gene copy-number because the
probability of transcript production is proportional to
the number of gene copies for that molecular species in
the network. This is a result of the stochastic simulation
algorithm, where multiplying the promoter function by
gene number is equivalent to introducing additional
identical reaction channels. The propensity function for
protein degradation, d, is
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where g is the degradation rate.
The Gillespie algorithm samples the joint probability

distribution of reaction events and times at each itera-
tion of the stochastic part, selects a reaction, and gener-
ates a time interval containing no reactions, τ, which is
used to advance the simulation time.

Promoter models
The propensity function of protein synthesis in the sto-
chastic part of the simulation algorithm is driven by a
physicochemical promoter model. An upstream activa-
tion sequence (UAS) on a promoter may be empty,
occupied by a Gal4p molecule, or occupied by a Gal4-
80p molecule. Sites occupied by Gal4p interact with and
recruit RNA polymerase and the transcriptional machin-
ery with an affinity that is intrinsic to the particular pro-
moter (Table 4). Empty sites and sites occupied by
Gal4-80p may also allow some basal transcription to
occur. The promoter function, fPI, for transcription is
the sum of the contribution of all sites to transcription
initiation in each occupancy configuration, weighted by
the configuration’s probability:
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Where c index the occupancy configurations for the
promoter driving gene GALi. Kc is the sum of contribu-
tions to transcription initiation by all sites in configura-
tion c. n4c and n480c are the numbers of Gal4p- and
Gal480p- bound sites in configuration c respectively.
b (1.68 kcal/mol) is the product of the gas constant and
the system’s temperature (300 K). ΔGc is the sum of the

Gibbs’ free energy changes from all DNA-protein bind-
ing events in configuration c, as well as any cooperative
interactions between adjacently bound activator and/or
repressor proteins which stabilize the DNA-protein
complex. Taking the configuration where all sites are
empty as the reference state of each promoter, we used
-13.86 kcal/mol as the energy change for the binding of
either a Gal4p or Gal4-80p to a UAS [39]. We chose
-2.00 kcal/mol and -3.00 kcal/mol for energy changes
due to a single cooperative interaction between appro-
priately positioned Gal4p and Gal480p respectively
because they led to proper quantitative promoter func-
tion in S. cerevisiae, and we could not identify these
parameters in the literature. In the absence of any UAS
on a promoter, as in the case for the GAL4 promoter,
the propensity function evaluates to a constant, Kc, giv-
ing constitutive expression.

Algorithm execution
The model was implemented and simulated in
MATLAB® (The MathWorks). Simulations were run for
8,000 seconds, which was found to be much longer than
the typical time for equilibrium (data not shown). To
decrease computation time - particularly in systems
with high protein concentrations - the deterministic
step was executed only every n iterations, where n
scaled linearly with the total number of molecules parti-
cipating in the deterministic step. The rationale behind
this approximation is that stochastic synthesis or degra-
dation of a few molecules will not significantly change
the equilibrium of interacting proteins when large con-
centrations of proteins are already reacting. Trial simu-
lations run with and without this approximation
procedure followed similar induction dynamics, attained

Table 4 GAL promoter models

Promoter #
UAS

Cooperative
UAS pairs

Contribution to transcript
production per site

GAL1 3 2 [-0.05,21.00, -0.05]

GAL2 2 1 [-0.01,16.00, -0.01]

GAL3 1 0 [0.14,9.00,0.14]

GAL4 0 0 Constitutive expression: 0.06

GAL80 1 0 [0.01,2.00,0.01]

GAL1/3 3 0 [0.40,17.70,0.40]

# UAS indicates the number of binding sites that may be empty, bound by
Gal4p, or bound by Gal4-80p. UAS pairs that are appropriately spaced to
permit cooperative interactions between adjacently bound proteins are listed
for each promoter. For each promoter, the strength of transcription initiation
for each site that is either: [empty, bound by Gal4p, bound by Gal4-80p] is
given in square brackets. A negative number indicates that transcript initiation
is repressed by the occupancy state of the UAS. Note that in spite of the
approximately 50 base pair separation between the two UAS in GAL2 we have
allowed cooperative protein binding (see [5]). We also do not consider the 4th

UAS on GAL1 (and GAL1/3) after indications that it may not be as important
for gene expression as the other UAS [42].
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equilibrium at the same times, and had similar equili-
brium behavior (data not shown).
Conversions between number of molecules and con-

centrations are performed at each step as required using
1.66 × 10-15 and 23 × 10-15 L as nuclear and cellular
volumes respectively [40,41].
The mean and variance for the number of molecules

for each species was obtained from the equilibrium dis-
tributions of 100 independent simulations at 8 extracel-
lular galactose concentrations (10-8, 10-7, 10-6, 10-5, 10-4,
10-3, 10-2, and 10-1 M). This was done for each of the
33 GAL networks to construct their response curves to
increasing galactose concentrations.

Scoring scheme for evolutionary paths
Each evolutionary event is scored according to its effect
on some feature - for example, the number of molecules
with galactokinase activity at a certain extracellular
galactose concentration. We begin scoring evolutionary
events after the genome duplication and consider the
120 unique combinations of the five events required for
the post-genome duplication ancestor to evolve to
S. cerevisiae. For each feature to be scored, we defined
either the largest fold-increase or fold-decrease to be the
optimal change (see Results section). Events are scored
relative to the possible alternative events at each inter-
mediate network along the path. An observed event is
penalized if it does not result in the best possible change
in the feature from amongst the possible events. To
keep the scoring scheme consistent, if the feature is to
be maximized, we used:
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where xa,i, is the fold-change in the network feature
resulting from the i-th evolutionary step after the gen-
ome duplication, for the a-th alternative network. We
indicate the observed evolutionary choice in the path at
step i, as a = o. See Figure 4a for an illustration of the
scoring scheme.
The scoring scheme provides an objective means of

ranking evolutionary paths in regulatory space that opti-
mize some network feature. The path with the highest
possible score (which is 0) consists of the order of

events which results in the best possible sequence of
changes in the scored feature. Conversely, the worst-
scoring path follows none of the best alternatives
(except for the last evolutionary event).

Parameter selection
The number of protein molecules for each molecular
species were inferred or taken directly from various
sources as indicated in Table 1. In addition to fold-
induction data, the following gene expression relation-
ships from promoter replacement studies in S. cerevisiae
[21] were used:
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PGALi®GAL1 indicates a network where GAL1 is dri-
ven by GALi’s wild-type promoter, in a gal1 - Δ back-
ground. PScGALi is the S. cerevisiae wild type promoter
for GALi and PKlacGAL1/3 is the K. lactis wild type
promoter for GAL1/3, which is thought to be similar to
the ancestral bifunctional gene promoter.
The relationship [Gal3p] ≈ 5[Gal80p] in both unin-

duced and induced conditions was also implemented
[6]. These parameters were used to simulate all net-
works in the regulatory space that we have investigated
- under the assumption that, while regulatory features
might evolve, their mode of operation remains
unchanged (see Discussion).

Parameter set perturbations
To investigate the robustness of our results to perturba-
tions in the parameter set we executed 50 further simu-
lations of each of the 120 possible evolutionary paths
while enforcing a random, non-persistent, parameter
change at each network intermediate, not including
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S. cerevisiae. Specifically, we allowed random perturba-
tions in the following parameters and ranges:

1. Kinetic parameters: Multiplicative factor in [0.1,
10] from 10U(-1,1).
2. Degradation rates, burst factor: Multiplicative fac-
tor in [0.5, 2] from 2U(-1,1).
3. Contributions to transcript production (promoter
models): Multiplicative factor in [0.5, 2] from 2U(-1,1).
4. Binding energies (promoter models): Additive fac-
tor in [-1, 1] from U(-1,1).

where U is the uniform distribution.
These random parameter perturbations can be

thought of as minor mutations in the network compo-
nents which do not form part of the parsimonious set of
evolutionary changes along the lineage to S. cerevisiae,
but which may nevertheless have occurred and subse-
quently been lost.
Under parameter perturbations, evolutionary path

score distributions had larger variance, often skewed
toward worse scores, with occasional perturbations com-
pletely abolishing the switch- like behavior of the system
(Additional File 1, Figures S1-S3). Most perturbations,
however, did not have a large impact on perturbed path
scores.
Specifically, we find that the number of evolutionary

events separating the specialization of ScGAL1 and
ScGAL3 again correlates negatively with repression
strength scores (R2 = 0.85, Additional File 1, Figure
S4a). The number of events preceding the specialization
of ScGAL1 correlates negatively with induction strength
scores (R2 = 0.64, Additional File 1, Figure S4b). A sig-
nificant difference in repression strength scores was
again found between evolutionary paths were GAL80
duplicate loss is the last event and all other paths (-0.40
+/- 0.23 versus -2.08 +/- 1.03, P < 0.01, Additional File
1, Figure S4c). Perturbed evolutionary paths tend to
maximize switch effectiveness scores and repression
strength scores together (R2 = 0.73, data not shown).
Finally, we report that, even with a perturbed parameter
set, there exists no single path which optimizes all three
aspects of quantitative network behavior (Additional File
1, Figure S4d).

Additional material

Additional file 1: Path score distribution comparisons and
assessment of evolutionary paths under parameter perturbations.
Box plot comparisons of the three evolutionary path score distributions
between unperturbed and perturbed paths (Figures S1-3). Correlations
between evolutionary path scores and classes of paths under parameter
perturbations (Figure S4).
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