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Abstract 

Cells receive diverse stimuli from their surroundings and process them into distinct physiological 

responses through signal transduction pathways. Mitogen-activated protein kinase pathways are 

responsible for many cellular functions. The overarching goal of this thesis was to study the 

effects of mutations on MAPK signaling function using complementary systems biology and 

genetic engineering methods. 

First, I asked how mutations could rescue a decrease in signaling caused by overexpression. I 

identified several variants of the yeast MAPK, Fus3, that rescued mating function in an 

overexpression background. In addition to finding Fus3 variants that rescued pathway function 

by improving kinase activity, I found variants containing premature stop codons (PSC), which 

are naturally readthrough, that rescued pathway function. The location of the mutated residue in 

the protein structure and the identity of the residue play a role in determining the impact of the 

PSC on pathway function. These results suggest that one way in which selection can compensate 

for protein overexpression is by introducing PSCs at permitted positions. 

Next, I quantified the effects of mutations on yeast mating and HOG signaling. I used the 

information theory measure of mutual information to measure signaling and introduced change 
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in mutual information as the measure of the effects of mutations on signaling. I showed that 

information transmission in HOG signaling is more robust to spontaneous mutations than mating 

signaling.  I controlled for some of the possible reasons for this difference, redundancy and 

mutational target size, and found that although HOG signaling mutational robustness is 

compromised without the redundancy, it is still more robust than the mating signaling suggesting 

that other mechanisms play a role in maintaining this mutational robustness. Finally, I did a 

direct comparison of the effects of the mutations in a shared component on information 

transmission in the pathways and found that large effect mutations in this protein have large 

effects on amount of mutual information in both signaling pathways and that some of these 

effects are opposite.  

Overall, in this thesis work, I used various mutagenesis methods to test the effects of mutations 

on signaling in living cells. In the first part, I used an engineered random mutant library of a 

protein kinase to assess the functional significance of mutations on a yeast MAPK pathway. In 

the second part, along with genetic engineering, I used experimental evolution to quantify the 

mutational robustness of two yeast MAPK pathways. We found both non-intuitive and intuitive 

results and ways to quantify both. Applying the tools of systems biology and genetic engineering 

is a comprehensive and complementary approach to answering evolutionary questions. 
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 Chapter 1: General Introduction 

1.1 Abstract 
Cells receive diverse stimuli from their surroundings and process them into distinct physiological 

responses through signal transduction pathways. These pathways, and biological systems in 

general, exhibit robustness to perturbations such as mutations. The effect of mutations on 

signaling networks is area of current research interest as mutations in signaling genes such as 

mitogen-activated protein kinases, are implicated in many diseases. Mitogen-activated protein 

kinase pathways are responsible for many cellular functions and are conserved across 

eukaryotes. Saccharomyces cerevisiae, a single-cell eukaryote, is an excellent model system to 

study these signaling networks.  

 

1.2 Robustness 

1.2.1 Origins of Robustness 

Biological organisms have survived and propagated themselves for billions of years despite 

genetic and environmental changes suggesting that they are incredibly robust to such 

perturbations. Why aren’t complex living things more fragile? There is some debate regarding 

the origins of mutational robustness - if it is an intrinsic property of the genetic and physiological 

constraints of the system, evolved independently due to selection against the deleterious effects 

of mutation (“direct selection” hypothesis) or as a by-product of selection for environmental 

robustness, the “congruence” hypothesis (Masel and Trotter 2010). Evidence exists both for 

direction selection and congruence hypotheses and it is as yet unknown whether mutational 

robustness is a by-product of environmental robustness (Proulx et al., 2007). Regardless of the 

origin, the consequence of mutational robustness is the accumulation of neutral genetic variants, 

that is mutations that do not affect the fitness of an organism (Wagner 2005).  This cryptic 

genetic variation allows potential evolutionary innovations - solutions to challenges such as a 

mutation that is neutral in the current environment being adaptive in a new environment - to be 

present in a population. In this way, robustness promotes evolvability, the capacity to generate 

heritable variation.  
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1.2.2 Evolutionary Consequences of Robustness 

Robustness, resisting change, and evolvability, allowing change, might seem contradictory, but 

we can resolve this contradiction with some clarification. Genotypic robustness and genotypic 

evolvability share an antagonistic relationship but phenotypic robustness and phenotypic 

evolvability do not (Wagner 2008). Mechanisms of robustness that block genetic changes from 

occurring, such as proofreading and repair, hinder evolvability whereas, robustness of a 

phenotype to genetic change (“mutational robustness”) promotes evolvability (Kirschner and 

Gerhart 1998; Lenski et al., 2006; Masel and Trotter 2010; Wagner 2008). In fact, although the 

distribution of fitness effects of new mutations is strongly bimodal with one mode representing 

lethal mutations and the other mode representing small effect mutations that are slightly 

deleterious, cryptic genetic variation is enriched for potentially adaptive alleles (Eyre-Walker 

and Keightley 2007). This is because when the effects of mutations is partially masked, small 

effect mutations would be effectively neutral but lethal mutations would still exhibit enough 

lethality that selection would remove them (Masel and Siegal 2009). This type of pre-adaptation 

can occur at different levels - for example, Bloom et al. showed that mutations that increase 

protein stability but are neutral with respect to protein function can allow the protein to take on 

subsequent, functionally beneficial but destabilizing mutations (Bloom et al., 2006). This idea of 

partial robustness is also supported by findings by Draghi et al. that populations with 

intermediate levels of robustness adapt faster than those with little or no robustness (Draghi et 

al., 2010). They show that the relationship between mutational robustness and evolvability is 

dependent on the population size, mutation rate and the structure of the fitness landscape. 

 

1.2.3 Mechanisms of Robustness 

Robust systems are not ones that do not change regardless of perturbations, but are instead ones 

that maintain specific function(s) in the face of perturbations (Kitano 2004). In order for a system 

to be robust, it may have to change its mode of operation in a flexible way. Proposed 

mechanisms for mutational robustness include feedback loops, redundancy, buffering, and 

modularity (Masel and Siegal 2009). Robust responses are achieved by both positive and 
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negative feedback loops with the former amplifying the stimuli to allow the system to distinguish 

the stimulated state from the unstimulated one and the latter allowing to system to adapt (Kitano 

2004). Redundancy is achieved either by having multiple identical components or more 

commonly, by having distinct components with overlapping functions. It aids robustness as in 

the case of one component failing to perform its function, the other can substitute and rescue the 

function. However, Wagner argues that distributing robustness throughout the network is more 

important to the organism than having spare parts (Wagner 2007).  The evidence for buffering as 

a mechanism of mutational robustness is circumstantial - while the deletion of a molecular 

chaperone reveals cryptic genetic variation, since these variants are not new mutations, it is 

premature to say that this molecular chaperone aids in mutational robustness (Masel and Siegal 

2009). Nevertheless, the requirement of only about 20% of the ~6000 Saccaharomyces 

cerevisiae genes for cell viability suggests the evolution of extensive buffering against genetic 

perturbations (Dixon et al., 2009).  A key design principle of signaling networks that may 

contribute to their robustness is modularity – the ability to separate the function of an entity (for 

example, a motif responsible for docking interaction) from other entities and allows a complex 

system to be broken down into simpler parts (Hartwell et al., 1999; Moses and Landry 2010; 

Pawson 1988; Pereira-Leal et al., 2006). A specific example of a module contributing to 

robustness is the three-tiered mitogen-activated protein kinase (MAPK) cascade evolutionarily 

conserved across eukaryotes to be both robust and adaptable (Tian and Harding 2014). Sato et 

al., showed that a yeast MAPK pathway is robust to domain rearrangements that change protein 

interactions as long as catalytic activity is not impaired (Sato et al., 2014). Previous work also 

shows that domain rearrangements in this MAPK pathway can generate novel phenotypes 

(Peisajovich et al., 2010). 

Another mechanism that aids robustness is the complexity of a network defined by the number of 

components in a pathway, the connections among these components and the spatial relationship 

between the components (Weng et al., 1999). Costanzo and colleagues mapped the genetic 

interactions of ~75% of S. cerevisiae genes and found that most genes had very few interactions 

and that deletions of the few genes that are highly connected, network hubs, resulted in severe 

fitness defects (Costanzo et al., 2010). This design principle of minimizing the number of 

connections between genes seems to decrease negative fitness effects of deleting any individual 

gene. The robustness of a network is closely tied to its complexity with higher complexity 
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leading to higher robustness (Soyer and Bonhoeffer 2006). Knowing the number of genes 

affecting a trait is not enough to determine robustness as the other feature to keep in mind is the 

effect size of each gene on that trait. It is known for example, that the mean effect size of all 

genes on all traits is reduced as a way to gain mutational robustness and the more important a 

trait is to the fitness of an organism, the smaller the mean effect size of the genes involved in that 

trait (Ho and Zhang 2014). Although complexity optimizes the system for specific perturbations, 

one of its downsides is making the system hypersensitive to design flaws or unexpected 

perturbations resulting in what Carlson and Doyle call, the “robust, yet fragile” system (Carlson 

and Doyle 2002). They suggest that this inherent and unavoidable fragility is the trade-off for 

robustness exemplified in the highly optimized tolerance (HOT) structures of biological systems. 

A study by Kim et al., showed this design characteristic in human signaling networks (Kim et 

al., 2014). They decomposed the networks into an evolvable core and a robust core, finding that 

there exists a subgroup of interactions that promote mutational robustness and another distinct 

subgroup of interactions that promote evolvability.  

  

 

1.3 Effects of mutations on signaling pathway  
Many cellular processes from cell division to cell death require cells to receive diverse 

extracellular and intracellular cues and process them into distinct and appropriate physiological 

responses through signal transduction pathways (Berggard et al., 2007). Through versatile, well-

regulated and redundant signaling components, cells ensure that these important functions are 

performed with fidelity (Azeloglu and Iyengar 2015). Understanding how signaling pathways 

respond to mutations can reveal how cells process information (Laub 2016).  For example, if 

information processing is very robust to mutations, this suggests that cells have mechanisms that 

adapt or compensate when signaling input is not producing the expected output, or that cellular 

information processing has many parallel redundant processes, so that even if some of these may 

be perturbed, signaling function is retained. In any case, robustness to mutations is expected 

under more complex signaling networks, while classical linear cascades are expected to be more 

affected by mutations (Soyer and Bonhoeffer 2006; Weng et al., 1999). 
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Studying how mutations affect the function of signaling networks is also important for 

understanding the mechanisms by which signaling pathways evolve. Little is known in general 

about the evolutionary mechanisms underlying signaling pathway evolution, but diversification 

of signaling molecules is correlated with evolutionary increases in organismal complexity (Mody 

et al., 2009). Pathways capable of tolerating mutations can allow the accumulation of large 

neutral variation in populations. Since diverse neutral pools of mutations are reservoirs for 

potentially adaptive variation, robust pathways may facilitate adaptation (Draghi et al., 2010; 

Wagner 2008). 

Finally, improper function of signaling pathways is implicated in various human diseases 

including Alzheimer’s disease, Parkinson’s disease and many cancers (Kim and Choi 2010). In 

many of these disorders, disease causing mutations produce quantitative effects on signaling 

pathways (Creixell et al., 2015). Of interest also are the pleiotropic effects of mutations since 

mutations in many disease-associated genes affect multiple traits (Solovieff et al., 2013). 

 

1.4 Saccharomyces cerevisiae 

Yeast is an ideal model in which to study eukaryotic cellular processes and the genome 

sequences of many yeast species are publicly available (Dujon 2010). Yeast-based model 

systems have been used to study human pathologies indicating their relevance to human disease 

(Khurana and Lindquist 2010; McGary et al., 2010; Treusch et al., 2011). In recent years, 

various studies have also used yeast to study evolutionary processes such as adaptive evolution 

(Gresham et al., 2008; Venkataram et al., 2016), speciation (Leducq et al., 2017), effects of rare 

mutations (Zhu et al., 2017), evolutionary dynamics of mutations (Levy et al., 2015), regulatory 

dynamics of gene expression (Metzger et al., 2017), hybrid genome stability (Gibson et al., 

2017), genetic suppression interactions (van Leeuwen et al., 2016), selection on quantitative 

traits (Zarin et al., 2017), and effects of domain rearrangements on signaling (Sato et al., 2014).  

The model organism, Saccharomyces cerevisiae, commonly known as baker’s or brewer’s yeast, 

is a microscopic, single cell, and genetically tractable eukaryote. It is relatively easy to 

manipulate the S. cerevisiae genome, introducing genes either on plasmids or through genomic 

integration, or deleting genes from yeast chromosomes through homologous recombination 
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(Duina et al., 2014). S. cerevisiae is easy to propagate and divides rapidly (once every ~90 

minutes) through a process of budding whereby the smaller daughter cell buds off the mother 

cell. This budding yeast is also the first eukaryote to have its genome sequenced over twenty 

years ago (Goffeau et al., 1996). The 12.1 Mb genome is divided into 16 chromosomes carrying 

5138 verified open reading frames (as of July 22, 2018 on the Saccharomyces Genome Database, 

http://www.yeastgenome.org) in the S288C reference strain. Studies in yeast have expanded our 

understanding of many basic cellular processes such as regulated cell division, cell 

differentiation, vesicle trafficking, allowed identification of the structure of the components 

necessary for transcription, and the mechanism of chaperones (Duina et al., 2014). Furthermore, 

the core eukaryotic cellular processes were established long before the last common ancestor of 

yeast and human, making work in budding yeast relevant to the study of human disorders 

(Hoffman et al., 2015).   

 

 

1.5 Mitogen-Activated Protein Kinase Signaling Pathways 

1.5.1 The three-tiered Mitogen Activated Protein Kinase Cascade  

A frequently used protein kinase cascade in eliciting various types of cellular responses such as 

cell-cycle progression, stress responses and cell differentiation is the mitogen-activated protein 

kinase (MAPK) cascades. MAPK pathways are highly conserved across all eukaryotes 

(Bardwell, 2005). Many of the components of these pathways were first identified in S. 

cerevisiae (Chen and Thorner 2007). The canonical MAPK cascade contains three sequentially 

acting protein kinases – a MAPK kinase kinase (MAPKKK) activates a MAPK kinase 

(MAPKK) which activates a MAPK (Chen and Thorner 2007). MAPKKKs are serine/threonine-

specific kinases that contain an N-terminal regulatory domain and a C-terminal serine/threonine 

protein kinase domain. They phosphorylate MAPKKs at two conserved serine or threonine 

residues in the activation loop. MAPKKs are dual-specificity serine/threonine or tyrosine kinase 

that phosphorylate the conserved Thr-X-Tyr motif in the activation loop of MAPKs. MAPKs are 

serine/threonine kinases that phosphorylate their targets at Ser/Thr-Pro motifs. 
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In S. cerevisiae, there are at least five mitogen-activated protein kinase (MAPK) pathways that 

allow cells to respond to various extracellular stimuli (Chen and Thorner 2007). In my thesis 

work, I have studied the mating and high osmolarity glycerol (HOG) MAPK pathways (Figure 1-

1).  

 

 

Figure 1-1: Schematic of Mating and HOG MAPK pathways. The yeast mating pathway 

(left) responds to pheromone and turns on mating related genes including FUS1 and the HOG 

pathway (right) responds to hyperosmotic stress and turns on osmoregulation related genes, 

including STL1. Negative regulatory interactions are indicated with red lines and positive 

regulatory interactions are indicated with black arrows. 
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1.5.2 Mating Pathway 

During mating, S. cerevisiae haploid cells of opposite mating types, MATa (a-cell) and MATα 

(α-cell), communicate with each other through the secretion of peptide mating pheromones 

(Chen and Thorner 2007). These cells mate by cellular and nuclear fusion generating a third, 

diploid, cell type, MATa/MATα. The mating pheromones, a/α-factor, bind to the pheromone 

receptor, Ste2/3, a G-protein coupled receptor (GPCR). The α-factor that α-cells secrete bind to 

Ste2 on a-cells and the a-factor that a-cells secrete bind to Ste3 on α-cells. The GPCR couples to 

a heterotrimeric G-protein with Gα and Gβγ subunits. The Gα subunit is known as Gpa1, Gβ as 

Ste4 and Gγ as Ste18. The binding of the mating pheromone allows the receptor to serve as a 

guanine nucleotide exchange factor (GEF), facilitating the release of GDP and the binding of 

GTP by the Gα subunit. This frees up the Gβγ complex to recruit the scaffold protein, Ste5, to 

the membrane. Gα and Gβγ remain tethered to the membrane allowing the recruitment of 

downstream MAPKs to the membrane site with the highest ligand-occupied pheromone 

receptors. Another membrane-tethered protein, Bem1, brings Ste20, a p21-activated protein 

kinase, close to Cdc42, a small monomeric Ras-related GTPase. GTP loading activates Cdc42, 

which in turn allows Cdc42 to bind to the autoinhibitory CRIB motif on Ste20, relieving 

autoinhibition and activating Ste20. Ste20 also binds to the Gβγ complex. Ste11, the mating 

MAPKKK, is recruited to the membrane by Ste50, a small adapter protein that also plays a role 

in sustaining the mating pheromone-induced signal (Xu et al., 1996). Activated Ste20 

phosphorylates Ste11 and triggers the phosphorylation cascade. Ste11 phosphorylates the 

MAPKK, Ste7 which phosphorylates the MAPK, Fus3. This phosphorylation is dependent on the 

catalytic unlocking of Fus3 by the VWA domain of the scaffold protein, Ste5, to which all three 

MAPKs are bound (Good et al., 2009). Activated Fus3 localizes to the nucleus and turns on 

mating related transcription factor, Ste12, resulting in the activation of about 200 genes 

responsible for cell cycle arrest (Far1), the formation of mating projections, called “shmoos”, 

toward the mating partner, and ultimate result in cellular and nuclear fusion (Fus1) (Aymoz et 

al., 2018; Roberts et al., 2000).  

Exposure to pheromone results in sustained Fus3 activation and prolonged cell cycle arrest as the 

cells undergo the morphological changes involved in the mating response (Baltanas et al., 2013). 

Negative regulators of Ste12, Dig1/2, prevent aberrant activation of Ste12 target genes (Bardwell 

2005). To promote desensitization and recovery, post pheromone exposure, other mechanisms of 
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negative feedback include degradation of the pheromone by Bar1/Sst1, phosphorylation (by 

Fus3) and endocytosis of the pheromone-bound receptor, Sst2 phosphorylation by Fus3 

enhancing its stability, Fus3 autoregulation limiting the magnitude and duration of its own 

phosphorylation, dephosphorylation of the various pathway kinases by phosphatases and their 

degradation (Bardwell 2005). 

Expression of key mating proteins such as the Ste2/3 receptor, important for sensing the mating 

pheromone, is ensured by the basal pathway activity (Thomson et al., 2011).  Since mating 

triggers cell cycle arrest, the basal mating activity must not be high enough to trigger 

inappropriate growth arrest. Similarly, upon exposure to pheromone, the pathway output must be 

high enough to trigger the cell cycle arrest and other physiological changes necessary for the 

mating response. This difference between the basal and induced system output, known as the 

dynamic range, is large enough that the system can respond distinguishably to different 

concentrations of pheromone (Yu et al., 2008). The stoichiometric balance of the components of 

the mating pathway is important for optimal pathway response. Specifically, the absolute system 

output and the dynamic range of the mating pathway is sensitive to the amounts of Fus3, the 

MAPK and Ste5, the scaffold, respectively (Thomson et al., 2011).  This sensitivity may also be 

thought of as a point of fragility in the mating pathway as mutations that increase the 

concentrations of these proteins would not be tolerated. Hence, the cellular concentrations of 

these proteins are tightly regulated to avoid negative effects on signaling function. In addition to 

triggering cell cycle arrest, once activated, Fus3 limits activation of Kss1, the MAPK responsible 

for triggering the filamentous growth response under conditions of nutrient limitation (Winters 

and Pryciak 2018). Therefore, improper activation of Fus3 would both trigger cell cycle arrest, 

and restrict cell growth under starvation.      

 

1.5.3 High Osmolarity Glycerol Pathway 

When the external osmolarity range is higher than physiological levels, yeast cells trigger a 

complex adaptation response that includes cell cycle arrest and synthesis and retention of the 

osmolyte glycerol (Saito and Posas 2012). These responses are mainly governed by the HOG 

pathway. There are two functionally partially redundant but mechanistically distinct HOG 

pathway branches, the Sln1 branch and the Sho1 branch. Although both branches respond to high 
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osmolarity, the Sln1 branch has a much more prominent role in responding to moderate increases 

in osmolarity than the Sho1 branch (O'Rourke and Herskowitz 2004). The two branches also 

respond more robustly and faster than one branch alone (Schaber et al., 2012). Granados and 

colleagues also show that mutants lacking either branch of the HOG pathway pay a cost either in 

terms of the speed of the response or the accuracy of the response (Granados et al., 2017). 

The Sln1 branch is an example of a complex two-component system characterized by the 

autophosphorylation of Sln1 at a Histidine residue, and the following conserved phosphotransfer 

to an Aspartate residue also on Sln1. This phosphate is then transferred to a Histidine residue on 

Ypd1 and then to an Aspartate on Ssk1 (Ssk1-P). Under normal osmotic conditions, Ssk1 is 

constitutively phosphorylated by Ypd1 which in turn is constitutively phosphorylated by Sln1. 

When external osmolarity increases and cells shrink, the resulting decrease in turgor pressure 

inactivates Sln1. This leads to Ypd1 inactivation and unphosphorylated Ssk1 (Ssk1-OH) 

accumulates. This Ssk1-OH activates two functionally redundant, homologous MAPKKKs, Ssk2 

and Ssk22 which turn on the phosphorylation cascade. Since Ssk1-OH triggers pathway 

activation, there are several ways in which the pathway minimizes aberrant activation, including 

degrading Ssk1-OH under normal osmotic conditions. Active Ssk2/22 phosphorylates Pbs2, the 

MAPKK, which goes on to phosphorylate Hog1, the MAPK. 

The Sho1 branch responds to high osmolarity through interaction between various osmosensors 

including Sho1 which activates Ste20 and Cla4, brought to the membrane by Cdc42. These 

PAK-like proteins then phosphorylate the MAPKKK Ste11 (recruited to the membrane by Ste50 

through association with the membrane anchor Opy2). Ste11 phosphorylates Pbs2. Sho1 and 

Pbs2 act as co-scaffolds in this pathway.  The two branches converge on Pbs2 so downstream 

signal transduction proceed similarly for the two pathways.  

Following activation Hog1 translocates to the nucleus and regulates several transcription factors 

responsible for osmoresponsive genes, including GPD1 and GPP2, which are involved in 

glycerol biosynthesis and STL1, encoding a glycerol/proton symporter. Genomic expression 

profiling studies revealed that about 300-600 genes are regulated in response to stress (Gasch et 

al., 2000). Hog1 is activated transiently ensuring that once the osmostress is relieved, addition 

glycerol is not produced. This adaptation response is managed by several negative feedback 

mechanisms in the HOG pathway including accumulation of glycerol removing the osmostress 
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signal, dephosphorylation of Hog1 by protein phosphatases (resulting in the return to cytoplasm), 

Hog1 phosphorylation of Sho1 (perhaps causing a disruption on Sho1 oligomerization) and 

Ste50 (decreasing its affinity to the membrane anchor, Opy2). 

 

1.5.4 Signal specificity 

Despite the MAPK pathways sharing many components, the pathways are well insulated from 

another and there are several mechanisms by which leakage of signal or crosstalk between the 

various MAPK pathways is prevented (Bardwell 2006). One is the presence of scaffold proteins. 

For example, activation of the mating pathway requires the scaffold protein Ste5 and activation 

of the HOG pathway requires the scaffold Sho1. There are also specific docking interactions that 

determine pathway specificity (Mody et al., 2009). MAPK pathways show examples of 

insulation to limit crosstalk. As evidence for the role of Hog1 in limiting a mating response to 

osmostress, in hog1Δ cells, the mating MAPK Fus3 is inappropriately activated by osmostress 

(O'Rourke and Herskowitz 1998). In addition to activating Fus3, Ste7 also activates the 

filamentation/invasive growth MAPK, Kss1. However, signal fidelity is ensured by Fus3 and 

Ste5 - Fus3 limits the magnitude and duration of Kss1 activation, and unlike its activation of 

Fus3, Ste7 activation of Kss1 does not require Ste5 (Good et al., 2009; Sabbagh et al., 2001). 

Kss1 (but not Fus3) is activated by osmotic stress however Hog1 phosphorylation of Ste50 is 

known to limit the duration of Kss1 activation thus preventing an inappropriate filamentation 

response under high osmolarity conditions (Hao et al., 2008).   

In addition to Fus3 and Hog1, another protein kinase, a casein kinase I, phosphorylates Ste50 at a 

specific threonine residue in the SAM domain (Chen and Thorner 2007). This phosphorylation is 

required for the mating response but not HOG response indicating the importance of Ste50 

interactions in ensuring Ste11 activates the appropriate MAPK. Mutations in the SAM domain of 

Ste50 decrease osmoresistance and increase crosstalk with the mating and filamentation 

pathways under hyperosmotic conditions (Jansen et al., 2001). Ste50 interacts with Ste11 via its 

Sterile Alpha Motif (SAM) domain and with membrane proteins Opy2, Sho1 and Cdc42 via its 

Ras-associating (RA) domain (Hao et al., 2008; Yamamoto et al., 2010). There is also a cluster 

of MAPK consensus phosphorylation sites in the intrinsically disordered region (IDR) that are 

known to modulate MAPK signaling (Zarin et al., 2017).    
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While there is no HOG response to pheromone under normal conditions, cells that are pre-

adapted to an osmolyte increase HOG related transcription in response to pheromone although 

this is not due to a failure to insulate the response, but due to a mating related glycerol release 

triggering the response to decreased osmolarity (Baltanas et al., 2013).  

MAPK pathways have grown and changed topology during evolution and although the MAPK 

cascade is highly conserved, these proteins play an important role in allowing their pathways to 

acquire new specificities and interaction partners (Mody et al., 2009). By exploiting the modular 

nature of MAPK interactions and changing a few residues in the mating and HOG pathway 

MAPKs, Fus3 and Hog1, the specificity of these pathways can change whereby the mating 

pathway can be induced by osmotic stress and the HOG pathway by pheromone (Mody et al., 

2009). Since signaling specificity is maintained in part by docking interactions, changes to these 

can rewire the pathways to create new stimulus-output relationships. Systematically studying the 

effects of mutations in shared components on signaling specificity can help reveal the 

mechanisms controlling this important feature. 

 

1.6 Flow Cytometry 
Flow cytometry is an invaluable tool routinely used in the high-throughput analysis of gene 

expression (Duveau et al., 2017; Kompella et al., 2017; Metzger et al., 2017; Peisajovich et al., 

2010; Sato et al., 2014; Strome et al., 2018; Zarin et al., 2017). Gene expression can be 

monitored using a fluorescent protein expressed from the promoter of the gene of interest and 

using the fluorescence intensity as a readout for the promoter activity (Taher 2017). 

Three main systems, fluidics, optics and electronics, make up a flow cytometer (Givan 1992). 

The fluidics system is responsible for transporting particles in a single stream to the laser beam 

whereby the optical system consisting of the excitation sources (lasers) illuminate the particles 

and direct the resulting light and fluorescence scatter signals to the appropriate detectors through 

the use of optical mirrors, and filters. These light signals are converted electronic signals, 

voltages, by the detectors in the electronics system. Here, the electronic pulses are converted to 

channel numbers corresponding to the various parameters analyzed, such as fluorescence. 



13 

 

One of the major strengths of flow cytometry analysis of reporter gene expression is the 

throughput whereby, hundreds of thousands to millions of cells can be analyzed within second to 

minutes (Ducrest et al., 2002). These measurements generate a distribution of reporter 

expression levels representative of the variability in gene expression that isogenic populations 

display (Flores 2013). In flow cytometry, numerous fluorescent reporters can be detected 

simultaneously, allowing the quantification of multiple gene expression profiles (Ragan et al., 

2004). By using a flow cytometer equipped with Fluorescence Assisted Cell Sorting capabilities, 

live cell populations can be separated (“sorted”) based on quantitative differences in many 

parameters such as expression level of multiple fluorescent proteins and cultured for further 

experimentation. Some of the disadvantages of flow cytometry include not being able to monitor 

individual cells over time and lack of spatial resolution preventing the analysis of sub-cellular 

features both of which can be overcome by the complementary use of the relatively lower-

throughput technique of fluorescence microscopy (O’Connor 1996).  

 

 

1.7 Research Objectives and thesis overview  
This thesis presents a study of the effects of mutations on yeast signaling pathways. The specific 

aims of this thesis are: 

1) Characterize variants of the yeast mating MAPK that are able to rescue over-expression driven 

decrease in pathway response. 

2) Quantify the relative robustness of yeast mating and HOG pathways by experimental 

evolution and targeted mutagenesis.  

In Chapter 2, we identify the variants of the yeast mating MAPK, Fus3, that rescue an over-

expression driven decrease in pathway response (Kompella et al., 2017). Specifically, we find 

that variants carrying premature stop codons are able to compensate for the over-expression. 

Through western blot analysis of protein levels, we show that the premature stop codons are 

readthrough at low levels resulting in a decrease in Fus3 levels. In Chapter 3 we quantify the 

robustness of the mating and HOG pathways to whole genome mutations introduced by mutation 
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accumulation and to mutations in a shared component introduced by error-prone PCR. We find 

that mutations have a stronger effect on the mating pathway. 

In Chapter 4, I present a discussion of future directions.  
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 Chapter 2: Introduction of Premature Stop Codons as 
an Evolutionary Strategy to Rescue Signaling 
Network Function 

 

 

Previously published as: Purnima S. Kompella, Alan M. Moses, and Sergio G. 

Peisajovich. (2017). Introduction of Premature Stop Codons as an Evolutionary Strategy 

to Rescue Signaling Network Function. ACS Synthetic Biology. 6(3):446-454. 
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2.1 Abstract 
The cellular concentrations of key components of signaling networks are tightly regulated, as 

deviations from their optimal ranges can have negative effects on signaling function. For 

example, overexpression of the yeast mating pathway mitogen-activated protein kinase (MAPK) 

Fus3 decreases pathway output, in part by sequestering individual components away from 

functional multiprotein complexes. Using a synthetic biology approach, we investigated potential 

mechanisms by which selection could compensate for a decrease in signaling activity caused by 

overexpression of Fus3. We overexpressed a library of random mutants of Fus3 and used cell 

sorting to select variants that rescued mating pathway activity. Our results uncovered that one 

remarkable way in which selection can compensate for protein overexpression is by introducing 

premature stop codons at permitted positions. Because of the low efficiency with which 

premature stop codons are read through, the resulting cellular concentration of active Fus3 

returns to values within the range required for proper signaling. Our results underscore the 

importance of interpreting genotypic variation at the systems rather than at the individual gene 

level, as mutations can have opposite effects on protein and network function. 

 

 

2.2 Introduction 
Cells receive stimuli from their surroundings and process them into physiological responses 

through signal transduction pathways (Berggard et al., 2007). As protein–protein interactions are 

crucial for the proper function of signaling pathways, it is not surprising that expression levels of 

individual components within signaling complexes are tightly regulated (Bekaert and Conant 

2011). In fact, synthetic attempts at rewiring signaling networks need to consider how changes in 

the level of individual components might disrupt the precise interactions needed for function 

(Bashor et al., 2008). Deleterious consequences of changes in the expression levels of one 

component of a complex were first observed in studies of transcriptional regulators (Gill and 

Ptashne 1988). An increase in the cellular concentration of a transcription regulator can result in 

transcriptional inhibition, due to the sequestration of limiting components, a phenomenon known 

as squelching (Cahill et al., 1994; Gill and Ptashne 1988). Though one could draw easy parallels 
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between the effects of changes in the concentration of individual components in gene regulatory 

complexes and signaling complexes, still little is known about how overexpression of signaling 

pathway components may affect signaling interactions and consequently function. Furthermore, 

as mutations could affect steady state levels of signaling components, it is also interesting to 

explore how natural selection might compensate for such a perturbation. 

Saccharomyces cerevisiae, the budding yeast, is an excellent model system to study signaling 

networks. Budding yeast has five pathways mediated by the canonical mitogen activated protein 

kinase (MAPK) cascade (Bardwell 2005). The three sequentially activated kinases in these 

pathways are conserved across diverse species. In S. cerevisiae, the mating specific MAPK, 

Fus3, acts in a complex with the scaffold protein, Ste5, the MAPK Kinase (MAPKK) Ste7, and 

MAPK Kinase Kinase (MAPKKK), Ste11. In addition, Fus3 interacts with several other proteins 

to propagate the signal, as well as to regulate it (Figure 2-1A). 
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Figure 2-1: Yeast mating pathway activity depends on Fus3 levels. (A) Yeast mating pathway 

activity can be measured by flow cytometry using a pathway responsive promoter fused to a 

fluorescent reporter. Fus3 interacts with many proteins. (B) Optimal amount of Fus3 is required 

for mating pathway activity. Deviations from optimal Fus3 expression decrease mating pathway 

activity. (C) Fus3 overexpression-driven decrease in mating pathway activity can be triggered by 

expressing Fus3 from the strong TEF1 promoter. 
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Fus3 overexpression has been shown to result in signal dampening by displacing the 

stoichiometric balance of the complex (Levchenko et al., 2000; Suderman and Deeds 2013; 

Thomson et al., 2011) (Figure 2-1B). Excess Fus3 can bind to its partners individually, 

sequestering them away and therefore decreasing the levels of the fully functional signaling 

complex. Overexpression of Fus3 could lead to the accumulation of both inactive Fus3 and 

monophosphorylated Fus3 (Fus3-P), both of which dampen mating pathway signal transduction. 

Inactive Fus3 inhibits mating pathway activity by binding to Gpa1, the α subunit of the 

heterotrimeric G-protein (Errede et al., 2015). Unlike dually phosphorylated Fus3 (Fus3-PP), 

Fus3-P dampens mating pathway activity (Nagiec et al., 2015). 

Here, using the yeast mating pathway as a model system, we use a synthetic biology approach to 

explore potential evolutionary mechanisms that could overcome the negative effects that 

overexpression of one component of a protein complex has on signaling pathway function. We 

find that mutations that create stop codons and are subsequently read through in vivo restore 

wild-type-like expression levels of the MAPK leading to normal signaling function. We 

therefore propose that stop-codon readthrough is an unexpected compensatory mechanism to 

correct for overexpression of signaling components. 

 

 

2.3 Results 

2.3.1 Overexpression of Fus3 Reduces Pathway Output 

To confirm the deleterious effect of Fus3 overexpression on mating pathway activity, we 

expressed Fus3 from promoters of varying strengths, in a strain where a fluorescent reporter is 

fused to a mating pathway responsive promoter (pFUS1-GFP) (Peisajovich et al., 2010). As 

shown in Figure 2-1C, pathway output, as represented by GFP fluorescence, is strongly affected 

by Fus3 expression levels: GFP levels are higher when Fus3 is expressed from a weak promoter 

(pCYC1) than when Fus3 is expressed from a strong promoter (pTEF1), confirming that 

overexpression of Fus3 decreases mating pathway activity. 
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While a trivial way to restore pathway activity would be to lower the strength of the promoter, 

we are interested in identifying mutations in the coding region that increase pathway activity. 

These mutations would represent potential mechanisms that evolution could employ to overcome 

squelching. Thus, we focus our attention in mutational changes exclusively affecting the Fus3 

coding sequence. To identify Fus3 variants that rescue pathway activity, we overexpressed a 

library of random mutants of Fus3 in a pFUS1-GFP reporter strain, in which wild type (WT) 

Fus3 and its homologue Kss1 (which can also activate the mating pathway) had been deleted 

(Figure 2-2A). We then used fluorescence activated cell sorting (FACS) to isolate yeast cells 

expressing GFP levels higher than the WT strain (i.e., capable of rescuing mating pathway 

activity). We recovered the plasmids from the sorted cells and retransformed them into the 

Fus3ΔKss1Δ strain to confirm activity. Next, we sequenced these variants to determine the 

mutations responsible for the mating pathway rescue phenotype. 
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Figure 2-2: Identification of pathway activating Fus3 variants. (A) Fus3 is overexpressed 

from a strong promoter in a Fus3ΔKss1Δ pFus1-GFP background. Pathway activating variants 

are isolated by FACS. (B) Fus3 variants with higher than WT mating pathway induction ratio 

(fold change in pFus1-GFP fluorescence over WT). 

  



22 

 

2.3.2 Overexpressed Fus3 Mutants Can Rescue Pathway Activity in 
Different Ways 

We grouped the sorted mutants into two categories based on the type of mutations they carried: 

variants encoding substitutions of one or more amino acids, and, to our surprise, variants 

encoding premature stop codons (Figure 2-2B). Among the variants encoding amino acid 

substitutions, three carried the previously characterized Fus3 activating mutations L63P, D227, 

and C28Y (Brill et al., 1994), indicating that our selection is capable of isolating variants with 

pathway activating mutations. These mutants demonstrate that increasing activity of the kinase is 

a potential mechanism to overcome the effects of squelching. 

Strikingly, eight of the selected Fus3 variants able to rescue mating pathway activity contain 

premature stop codons (PSCs). If translated correctly, many of these variants would result in 

significant truncations eliminating large protein fragments that often include many conserved 

residues vital for function (e.g., all of the active site). An extreme example would be the Fus3 

variant truncated at residue G36, as a stop codon at that position would eliminate ∼90% of the 

protein, including the ATP binding site (K42) (Brill et al., 1994), the activation loop (135–138 

HRD) (Endicott et al., 2012), the active site (155–158 DFGL) (Endicott et al., 2012), and the 

common docking site into which upstream activators and downstream substrates bind (D314, 

D317) (Remenyi et al., 2005) (Figure 2-3A). Given the intriguing role that PSC may play in 

restoring pathway function, we focused our attention exclusively on the PSC-containing Fus3 

variants. The rest of the sorted variants will be analyzed in an independent study. 
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Figure 2-3: Genetic analysis of Fus3 variants carrying PSCs. (A) Functionally important, 

conserved residues are shown on Fus3 structure (PDB: 2B9F) (B) Fus3 carrying PSC at residue 

119 is able to activate the mating pathway. Fus3 with a loss-of-function mutation (K42R) 

upstream of the PSC cannot activate the mating pathway. Fus3 truncated at residue 119 cannot 

activate the mating pathway. (C) Western blot analysis of Fus3 mutants with PSCs. All Fus3 

mutants with PSC express full-length, active Fus3. (D) Fus3 variants with PSCs express less 

Fus3 than WT, even when expressed from the same strong promoter, as indicated by the 

normalized signal intensity. 
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2.3.3 Further Analysis of PSC Containing Variants Suggests Readthrough 

To ensure that the PSC containing variants were active and that the assignment of the PSC was 

not an error in sequencing analysis, we introduced a PSC in Fus3, by site-directed mutagenesis, 

at one of the residues found to have a PSC among the sorted variants, Y119. Analysis of this 

mutant by flow cytometry confirmed that this PSC containing variant is capable of rescuing 

mating pathway activity (Figure 2-3B), suggesting the PSC might be being read through. To 

further explore this hypothesis, we introduced a mutation, K42R, known to abolish Fus3 activity 

upstream of the PSC. As shown in Figure 2-3B, this mutant, Fus3 K42R Y119*, is unable to 

rescue mating pathway activity in a Fus3ΔKss1Δ strain, confirming that the Y119* mutation is 

necessary and sufficient for rescue of mating pathway activity. To further determine that the 

selected PSC containing Fus3 variants were effectively being readthrough, we deleted the region 

of Fus3 downstream of the PSC at position 119, therefore mimicking the protein product that 

would result from the accurate translation of the stop codon at that position. As before, we 

overexpressed this mutant, truncated Fus3, in the Fus3ΔKss1Δ pFus1-GFP strain and measured 

mating pathway activity by flow cytometry. As shown in Figure 2-3B, Fus3 truncated at residue 

119 cannot activate the mating pathway. Our integrated results so far suggest that translation is 

not stopping at the PSC, but rather may be reading through the PSC, resulting in the correct 

mRNA transcript and ultimately in an active kinase. 

 

2.3.4 Readthrough of PSC Leads to Full-Length Active Kinases 

To confirm that the PSCs are being readthrough, resulting in full-length active kinases, we 

measured Fus3 protein levels for all eight variants containing PSC in the Fus3Δ Kss1Δ strain by 

Western blots. As shown in Figure 2-3C, all PSC containing variants express full length Fus3, 

thus demonstrating that the PSCs are read through leading to full-length kinases. Moreover, to 

determine if the expressed kinases are properly folded substrates of their upstream MAPKK 

activator Ste7 and also able to interact with the mating scaffold Ste5, as Ste7-mediated activation 

occurs only when Fus3 is bound to Ste5, we measured the levels of phosphorylated Fus3 using 

an antiphospho-Fus3 specific antibody. As shown in Figure 2-3C (and Figure 2-4, showing the 

full picture of the Western blot), all eight PSC-containing variants are phosphorylated by Ste7 in 

vivo, indicating that they are properly folded and capable of interacting with Ste7 and Ste5. 



25 

 

Together with the flow cytometry experiments that demonstrate pFus1-GFP expression mediated 

by the PSC-containing Fus3 variants, our results confirm that readthrough of PSC leads to Fus3 

variants fully capable of mediating the activation of the mating pathway. 

Readthrough of PSCs has been shown to occur naturally in yeast, though at a low rate, (Baudin-

Baillieu et al., 2014) as readthrough occurs as a result of a decrease in the efficiency of 

translation termination (Namy et al., 2003). In agreement, our results show that, while different 

PSC-containing Fus3 variants are present in the cell at different levels, all of them are present at 

levels lower than that of WT Fus3 (Figure 2-3D). Indeed, our results suggest that the intrinsically 

low efficiency of readthrough compensates for the high levels of expression of the pTEF1 

promoter, and, as a result, restores pathway activity. As shown in Figure 2-5 and Figure 2-6, 

similar PSC readthrough is observed when Fus3 variants are expressed in different S. 

cerevisiae strains, indicating that the observed effects are not an anomaly of a peculiar strain. 

2.3.5 PSC Containing Variants Can Mediate a Full Mating Response 

To determine if a PSC containing variant is capable of mediating a full mating response, we 

assessed the ability of an “a” mating type strain carrying Fus3 Y119* to mate with an “α” mating 

strain encoding WT Fus3. In our experiment, each of the two mating strains was auxotrophic for 

a distinct marker, so that only the diploids resulting from the mating of the two strains can grow 

on minimal media. As shown in Figure 2-7A, the Fus3 Y119* mutant is able to mediate a full 

mating response in a Fus3ΔKss1Δ strain. Furthermore, as mating can occur because of cell-to-

cell proximity even in the absence of pheromone-induced polarized growth (also called 

“shmooing”), we also measured the ability of the PSC containing mutant to shmoo. As shown in 

Figure 2-8B, cells expressing Fus3-Y119* in a Fus3ΔKss1Δ strain can develop shmoos that are 

indistinguishable from those seen in WT cells. Together, these results confirm that the PSC-

containing variants can mediate a full mating response. 

2.3.6 PSCs are Preferentially Tolerated at Surface Residues 

In yeast, readthrough of PSCs results in amino acid replacements that depend on the specific 

identity of the premature stop codon (Blanchet et al., 2014; Roy et al., 2015). Blanchet et al., and 

Roy et al., show that, in yeast, the UAA and UAG premature stop codons are most often 

replaced by glutamine, tyrosine, or lysine, while the premature stop codon UGA is most often 
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replaced by tryptophan, cysteine, and arginine, all with distinct frequencies. Roy et al. also 

showed that the specific causes of readthrough (e.g., genetic background or pharmacological 

agents) can affect these frequencies. Since we are not using pharmacological agents to induce 

readthrough, and we see strain-independent results confirming readthrough (Figure 2-5 and 

Figurer 2-6), we assume that our results are due to unprogrammed readthrough inherent to wild-

type cells. On the basis of these measured replacement frequencies, it is possible to hypothesize 

what the most likely amino acid replacements would be for the PSC present in the sorted Fus3 

variants. For instance, for the variant with a PSC at residue 119, the most likely replacement 

would be a Tyr/Gln, which makes it possible for the substitution to result in the original Tyr 

present at position 119 in WT Fus3 (Table 2-1). In contrast, for the mutant with a PSC at residue 

36, the wild-type Glycine is not one of the possible replacement amino acids–the most likely 

replacement would be a tryptophan. Thus, while it is expected that multiple proteins with 

different substitutions at the same PSC might coexist within an individual cell, it is likely that, 

given the narrow range of possible replacements available, PSC should be tolerated only at 

defined locations. In particular, we hypothesize that the tolerated locations would be those in 

which the most likely replacement reverts back to the wild-type amino acid, as in position 119 in 

Fus3, or those in which the mutated residue would not have detrimental consequences in protein 

function. 

To investigate this hypothesis, we visualized the location of all PSC on the 3D structure of Fus3. 

Not surprisingly, we found that all the PSC containing mutants occurred at surface exposed 

residues (Figure 2-8A), supporting the idea that the resulting amino acid replacements (which 

most likely lead to Gln, Tyr, Lys, Trp, Cys, or Arg substitutions) may be more easily tolerated at 

locations that do not seriously affect folding and function. 
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Figure 2-4: Genetic analysis of Fus3 variants carrying PSCs. Western blot analysis of Fus3 

mutants with PSCs. All Fus3 mutants with PSC express full-length (A), and active Fus3 (B). 
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Figure 2-5: Genetic analysis of Fus3 variants carrying PSCs in an S288c strain. Western 

blot analysis of Fus3 expressing PSC at residue 119 expressed from pCYC1 (Weak, W, 

overexpression) and pTEF1 (Strong, S, overexpression) in Fus3 and Kss1 deletion strain with the 

following genotypes: S288C MATa his3, met15, leu2, ura3.  
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Figure 2-6: Genetic analysis of Fus3 variants carrying PSCs in another W303 strain. 

Western blot analysis of Fus3 expressing PSC at residue 119 expressed from pCYC1 (Weak, W, 

overexpression) and pTEF1 (Strong, S, overexpression) in Fus3 and Kss1 deletion strain with the 

following genotypes: W303 MATa, his3, trp1, leu2, ura3.  
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Figure 2-7: Functional analysis of Fus3 variants carrying PSCs. (A) Fus3ΔKss1Δ yeast cells 

expressing Fus3 WT or Y119* mutant from pTEF1 have normal mating responses, as indicated 

by growth on minimum media after mating with a tester strain. (B) Yeast cells expressing Fus3 

Y119* from pTEF1 have mating-induced morphological responses similar to WT. 
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Table 2-1: Premature Stop Codon Containing Mutants and Their Likely Amino Acid 

Substitutions a. 

Premature 
Stop Codon 

Mutants 
Location 

Wild 
Type 

Codon 

Premature 
Stop 

Codon 

Wild 
Type 

Amino 
Acid 

Possible 
Replacements 

Possible 
Change 
to WT 

F13L N146D 
E252*   GAG TAG E Q, Y, K no 

K67E K281* 
P323H   AAA TAA K Q, Y, K yes 

Y119*   TAC TAG Y Q, Y, K yes 

Q231* R249W   CAA TAA Q Q, Y, K yes 

G36*   GGA TGA G W, C, R no 

M179L C250* 
D314E   TGT TGA C W, C, R yes 

R219*   CGG TGA R W, C, R yes 

R277*   CGA TGA R W, C, R yes 

A30* buried GCA TAA A Y, Q, K no 

C209* buried TGC TGA C W, C, R yes 

G237* surface exposed GGT TGA G W, C, R no 

Y228* surface exposed TAT TAG Y Y, Q, K yes 

 
a The table contains the list of Fus3 variants with premature stop codons tested in this study. 
Possible replacements based on premature stop codon are identified through sequencing and 
likely substitutions based on previous works (Blanchet et al., 2014; Roy et al., 2015). 
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Figure 2-8: Structural analysis of residues that tolerate PSC. (A) All PSCs map to surface 

residues. On the basis of Blanchet et al., we predict the possibility of each of the residues, when 

mutated to a stop codon to be substituted by the WT residue during readthrough (Blanchet et al., 

2014). Residues that cannot revert to WT (red) and residues that could possibly revert to WT 

(black) are shown. (B) Buried residues, A30 (red) and C209 (blue); and exposed residues Y228 

(magenta) and G237 (orange) are shown on the Fus3 3D structure (2B9F). (C) Fus3 with a PSCs 

at buried residues cannot mediate mating response. 
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To further understand readthrough tolerance, we introduced PSCs at two residues buried in the 

Fus3 protein core (A30 and C209) or at two residues exposed on the Fus3 surface (Y228 and 

G237) (Figure 2-8B). Moreover, we introduced specific PSCs into these positions, so that they 

could either be replaced by the wild-type amino acid during readthrough (C209 and Y228) or by 

nonsynonymous substitutions (A30 and G237) (Table 2-1). As before, we overexpressed these 

mutants from a TEF1 promoter in a Fus3ΔKss1Δ pFus1-GFP strain, and measured mating 

pathway activity by flow cytometry. Yeast cells overexpressing PSCs at the surface-exposed 

residues Y228 and G237 are able to mediate mating pathway response better than cells 

overexpressing Fus3 WT, regardless of whether or not the wild-type amino acid is likely 

substituted for the PSC during readthrough (Figure 2-8C). PSCs at these residues restore mating 

pathway activation to levels that are close to that mediated by WT Fus3 expressed from a weak 

promoter. In contrast, cells overexpressing PSCs at buried residues (A30 and C209) are unable to 

even mediate a response similar to that of overexpressed WT Fus3, confirming that amino acid 

substitutions are less tolerated at buried positions. Interestingly, overexpression of Fus3-C209* 

results in significantly higher pathway activity than overexpression of Fus3-A30* (P = 0.016, 

Student’s t test). This could be explained by the fact that, while the PSC at C209 can be 

substituted by the wild-type amino acid (albeit at a much lower level than Y228*), the PSC at 

A30 cannot be substituted by an alanine during readthrough. Thus, we conclude that PSCs are 

most likely to be tolerated when the resulting amino acid replacements occur at exposed 

locations with lax structural or functional constraints, while at buried residues PSCs are more 

likely to be tolerated when they restore, even if at a low frequency, the wild-type residue. 

Furthermore, our Western blot analysis found that these Fus3 with PSCs express full-length, 

active kinases (Figure 2-9). In addition, we found that coexpressing Fus3 carrying PSCs with 

wild-type Fus3 does not affect mating pathway response, indicating that if any truncated species 

are being expressed, they do not interfere with the function of full-length species (Figure 2-10). 
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Figure 2-9: Genetic analysis of Fus3 variants carrying PSCs at buried and surface-exposed 

residues. Western blot analysis of Fus3 expressing PSCs at residues A30, G237, C209, or Y228 

expressed from the strong promoter pTEF1 assaying expression full-length (A), and active Fus3 

(B).  
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Figure 2-10: Co-expression of Fus3 carrying PSCs with wild-type Fus3 does not affect 

mating pathway response. When co-expressed in a strain with wild-type Fus3, Fus3 carrying 

PSCs at residue Y119, A30, G237, C209, or Y228 do not affect mating pathway activity in 

comparison to empty plasmid.  
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2.4 Discussion 
In this work, we used a synthetic biology approach to investigate potential mechanisms by which 

selection could compensate for the decrease in signaling activity caused by overexpression of a 

tightly regulated signaling protein—the yeast mating pathway MAPK Fus3. Specifically, we 

used cell sorting to select a library of random mutants of Fus3 overexpressed from the strong 

promoter, pTEF1, in a strain where the WT Fus3 (and its paralog Kss1) had been deleted. In this 

manner, we isolated several Fus3 variants that rescued mating pathway activity. Our selection 

revealed that, in addition to the predictable way of improving kinase activity, as previously 

reported for the selected Fus3 variants L63P, D227, and C28Y (Brill et al., 1994), one 

unexpected way by which selection could rescue pathway function was through the introduction 

of PSCs, which are then naturally readthrough. 

Readthrough has been shown to occur not just as an error in translation termination, but also as a 

regulated mechanism of stop codon bypass (von der Haar and Tuite 2007). Several studies have 

revealed that readthrough can result in protein extensions. For example, using baker’s yeast as a 

model organism, Namy et al. found eight adjacent open reading frames separated only by a 

unique stop codon to have higher than average stop codon bypass levels (Namy et al., 

2003). Also, in yeast, Artieri and Fraser reported 19 proteins with conserved C-terminal peptide 

extensions originating from stop codon read-throughs (Artieri and Fraser 2014). Similarly, 

functionally important protein extensions through readthrough of stop codons were also 

identified in viral genes (Brown et al., 1996; Cimino et al., 2011; Firth et al., 2011; Napthine et 

al., 2012; Pelham 1978), human genes (Jungreis et al., 2011; Loughran et al., 2014; Schueren et 

al., 2014), and several other species (Dunn et al., 2013; Ivanova et al., 2014; Jungreis et al., 

2011; Robinson and Cooley 1997). In addition, programmed readthrough of stop codons is used 

to change cellular localization of some enzymes, from yeast to humans (Stiebler et al., 2014; 

Yanagida et al., 2015). In yeast, stop codon readthrough has been linked to the unveiling of 

otherwise cryptic genetic variation (True and Lindquist 2000). Taken together, these results 

suggest that stop codon readthrough is a mechanism by which evolution can regulate gene 

expression. 

Our results indicate that the location of the mutated residue in the protein structure, its effect on 

function, as well as the specific identity of the PSC are all factors that affect the impact that 
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PSCs have on protein (and pathway) function. Furthermore, our work demonstrates that, in 

addition to C-terminal extensions, readthrough can occur at internal PSCs, resulting in proteins 

with WT length, though with possible amino acid replacements. Thus, readthrough can exert its 

effects not only by changing the length of a protein, but also by lowering protein levels due to 

the intrinsically low efficiency of the readthrough process. In other words, our results 

demonstrate that, at least in the laboratory, selection can compensate for protein overexpression 

not only by changes in promoter strength, as it would have been easily expected, but also by 

introducing PSCs at permitted positions. 

Interestingly, our results suggest that mutations that one would predict to have a detrimental 

effect on protein function (e.g., introduction of a PSC) could actually have the opposite effect on 

network function. This apparent contradiction highlights the importance of understanding 

genotypic variation at the systems level, rather than at the individual gene level. Studies 

attempting to predict phenotype from genotype computationally frequently categorize both 

frameshifting indels and premature stop codons as loss-of-function (Bergstrom et al., 2014; 

MacArthur et al., 2012). However, recent work by Tawfik and co-workers showed that the 

effects of frameshifting insertion and deletions (indels) on the function of a bacterial enzyme can 

be phenotypically rescued by subsequent slippage of the ribosome (Rockah-Shmuel et al., 2013). 

Similarly, our work indicates that PSCs cannot be always considered to detrimentally affect 

cellular functions. 

 

 

2.5 Methods 

2.5.1 Yeast Strains 

Fus3 and Kss1 were targeted for deletion by homologous recombination using Trp and Leu as 

selectable markers, respectively, in strains with the following genotypes: 

W303 MATa, bar1::NatR, far1Δ, mfa2::pFUS1- GFP, his3, trp1, leu2, ura3. 

W303 MATa, his3, trp1, leu2, ura3 
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Deletions were confirmed by PCR, flow cytometry, and Western blots. 

 

2.5.2 Library Construction 

Random mutagenesis was carried out PCR-based methods by using Fus3 as a template and the 

Agilent GeneMorph II Random Mutagenesis Kit. The random mutants were constructed using 

previously described cloning strategy (Bardwell 2005) and expressed from centromeric plasmids 

with His selection, under the control of a constitutive high expression promoter, Tef1 (pTEF1), 

and an AdhI transcription terminator. Mutation rate was confirmed by sequencing 18 

independent clones from the unselected library. 

 

2.5.3 Site Directed Mutagenesis 

Point mutations were introduced into Fus3 by PCR using either Agilent QuikChange II Site-

Directed Mutagenesis Kit or by using Pfu Ultra, following the manufacturer’s protocols. The 

PCR products were cloned using the method described under Library Construction under the 

control of pTEF1 or a constitutive low expression promoter, Cyc1 (pCYC1). Mutations were 

confirmed by sequencing. 

 

2.5.4 Transformation 

Yeast strains were transformed by standard lithium–acetate method except libraries which were 

transformed by the specific lithium–acetate-based high efficiency, large scale transformation 

method described by Gietz et al. with minor modifications (Gietz and Schiestl 2007). 

 

2.5.5 Fluorescence-Activated Cell Sorting 

The Fus3 overexpression random mutant library was sorted by fluorescence-activated cell 

sorting (FACS) to isolate variants able to elicit a mating pathway response in Fus3 and Kss1 

double deletion strains. Specifically, to ensure high library diversity, about 68 000 colonies were 
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harvested after transformation into Escherichia coli. PK001 was transformed with a library of 

Fus3 mutants replacing the deleted Fus3 with a random variant. To maintain diversity, about 

4000 transformants were harvested in selective medium and grown overnight at 30 °C. 

Overnight cultures were diluted to OD600 between 0.1 and 0.2 and grown to log phase. Samples 

were then induced with 1 µM α-factor and incubated at 30 °C for 2 h. After sonication, cells 

were gated by side and forward scatter and sorted by GFP expression using a BD FACSAria I 

cell sorter into selective medium. Sorted cells were plated on selective media and cultured. 

 

2.5.6 Flow Cytometry 

Double deletion yeast strains were transformed with plasmids expressing Fus3 variants and 

grown on selective media. Transformants were grown in triplicate selective medium overnight at 

30 °C. Wild-type strain without the double deletion was grown in complete synthetic dropout 

medium as positive control and either an empty double deletion strain (grown in complete 

synthetic dropout medium) or one expressing an empty plasmid (grown in selective medium) 

was used as negative controls. Overnight cultures were diluted to OD600 between 0.1 and 0.2 and 

grown to early log phase. Samples were then induced with 1 µM α-factor and incubated at 30 °C 

for 2 h. Cells were then treated with the protein synthesis inhibitor cycloheximide for 

approximately 30 min. The GFP signal of 10 000 cells was measured for each sample with a 

Miltenyi Biotec MACSQuant VYB. The mean GFP fluorescence and standard deviation of 

triplicates were calculated using FlowJo. 

 

2.5.7 Western Blots 

Western blots were performed as described previously (Zalatan et al., 2012) with minor 

modifications. Overnight cultures were diluted to OD600 between 0.1 and 0.2 and grown to mid-

log phase. Samples were then induced with 2 µM α-factor and incubated at 30 °C for 15 min. 

After the pellet was frozen in liquid nitrogen, the cells were then lysed and run in 10% Tris-Gly, 

SDS polyacrylamide gels at 200 V for 50 min with the Odyssey Protein Molecular Weight 

Marker (928-40000) using the Mini-PROTEAN Tetra Cell. The Bio-Rad Trans-Blot Turbo 

Transfer System was used to transfer the proteins to Bio-Rad low fluorescence PVDF 
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membranes. Membranes were blocked in Odyssey Blocking Buffer and TBS overnight at +4 °C. 

The membranes were then incubated with primary antibodies (Fus3: (yC-19) #sc6773, goat 

polyclonal IgG, Santa Cruz Biotechnology, dilution 1:5000; Fus3-PP, rabbit monoclonal 

phospho-p44/42 MAPK antibody, Cell Signaling Technology, #4370, dilution, 1:2000; PGK 

(loading control), Invitrogen 459250 mouse monoclonal, dilution, 1:5000) for 2 h. After washing 

the primary antibodies with TBS + 0.05% Tween20, membranes were incubated with secondary 

antibodies (Fus3, donkey antigoat Licor IRDYE 800 antibody, 926-32214; Fus3-PP, goat 

antirabbit Licor IRDYE 800 antibody, 926-32211; PGK, goat antimouse Licor IRDYE 680LT 

antibody, 926-68020; all at dilution of 1:10000) for 1 h. Membranes were then washed and 

visualized on a Licor Odyssey CLx Infrared Imaging System. 

 

2.5.8 Mating Assay 

Mating assays were performed as described previously (Peisajovich et al., 2010) with minor 

modifications. Equal amounts of yeast cells of mating type “a” (W303 MATa, his3, trp1, leu2, 

ura3, Fus3::kanMX4+KIURA3, Kss1::leu) were transformed with either empty vector, Fus3 

expressed from pTEF1, or Fus3 Y119* expressed from pTEF1, and yeast cells of mating type 

“α” were mixed and added to a polycarbonate filter. After incubating at 30 °C for 3 h, cells were 

extracted by vortexing and aliquots were plated on minimum synthetic media. 

 

2.5.9 Microscopy 

Yeast cells expressing WT Fus3 or Fus3 Y119* from pTEF1 were grown to log phase and 

induced with 1 µM α-factor. Cells were imaged using an automated inverted Leica TCS SP8 

confocal microscope. 
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 Chapter 3: Mutational Robustness of Mating and 
HOG Signaling Pathways  

 

3.1 Abstract 
Cells receive stimuli from their surroundings and process them into physiological responses 

through signal transduction pathways. Mutations are an important source of genetic variation and 

understanding how pathways respond to mutations can reveal how cells process information. 

Pathway robustness to mutations is thought to facilitate adaptation to future environmental or 

genetic changes. Here, we quantified the effects of whole genome mutations and pathway 

specific mutations on Saccharomyces cerevisiae mating and high osmolarity glycerol response 

pathways. Based on the dynamics of the pathway responses, we hypothesized that the HOG 

pathway would be more robust to mutations. We used an information theory measure, mutual 

information, to quantify the effects of mutations mating and HOG signaling. First, we find that 

mutations decrease information in mating signaling more than that in HOG signaling. Second, 

mutations lead to more variable effects on information transmission in the mating pathway than 

in the HOG pathway. Third, mutations in a shared pathway component can have opposite effects 

on the amount of information transmitted by a stimulus to the incorrect pathway (“crosstalk”). 

Our analysis quantifies the differences in the mutational robustness of different signaling 

pathways and improves our understanding of the phenotypic significance of mutations in 

evolutionarily conserved signaling pathways. 

 

 

3.2 Introduction 
Cell signaling networks underlie cellular responses to the environment and are critical for cell 

fate specification and patterning during development (Basson 2012). Signaling networks allow 

cells to ‘make decisions’ and thus provide the information processing capacity of the cell 

(Azeloglu and Iyengar 2015). Mutations in signaling genes are critical in many human diseases 

(Li 2012) and changes in these genes are thought to underlie key evolutionary changes (Martin 
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and Courtier-Orgogozo 2017). Thus, understanding how mutations affect signaling networks is 

an area of current research interest.  

Signaling networks are expected to vary in their tolerance to mutations (robustness). Complex 

network structures with feedback loops and redundant branches are expected to be more robust 

to mutations than simple linear cascades (Soyer and Bonhoeffer 2006). Here we set out to test 

this hypothesis by comparing the robustness of two MAPK signaling pathways in budding yeast, 

the mating pathway (a largely linear pathway) and the HOG pathway (a branched pathway with 

many feedback loops) (Chen and Thorner 2007).   

Because the information processing properties of signaling networks depend on the interactions 

of many proteins, it is difficult to understand the effects on information processing by studying 

the effects on the biochemical activities of individual network components (Chen and Wu 2012) 

or through statistical analysis of genetic variation in natural populations (Lage 2014). Here we 

take a direct experimental approach to test the effects of mutations on signaling pathways in 

cells.  

Experimental evolution methods such as mutation accumulation (MA) allow us to study the 

effects of the entire spectrum of mutations (except strongly deleterious ones). Mutations 

identified in extant populations are only the ones that are retained after natural selection has 

acted to remove deleterious mutations and increase the frequency of beneficial mutations (Desai 

and Fisher 2007). We can limit the effects of selection, and therefore obtain a nearly unbiased 

view of the effects of mutations, by repeated introductions of population bottlenecks (Landry et 

al., 2007). While single nucleotide mutations are the most common mutations found in MA 

studies, we are able to interrogate the effects of all types of spontaneous mutations including 

indels, larger scale mutations such as duplications and translocations, as well as gene expression 

changes (Landry et al., 2007; Lynch et al., 2008; Wittkopp et al., 2004; Zhu et al., 2017). 

We use well-characterized MAPK pathways in Saccharomyces cerevisiae, as a model to 

compare the effects of mutations on signaling pathway robustness. In S. cerevisiae, there are at 

least five mitogen-activated protein kinase (MAPK) pathways that allow cells to respond to 

various extracellular stimuli (Chen and Thorner 2007). The mating and high-osmolarity glycerol 

(HOG) pathways respond to pheromone and salt, respectively (Figure 3-1A). The mating 

pathway is required for cells to sense pheromone, transmit information about this stimulus, and 
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under sufficient concentrations, activate the MAPK cascade and downstream effectors leading to 

cell cycle arrest, polarized growth in the direction of the pheromone and other cellular processes 

(Shao et al., 2006). The HOG pathway is required for re-establishing optimal cellular osmolarity 

upon introduction to hyperosmotic shock by triggering the MAPK cascades and initiating 

glycerol production (Patterson et al., 2010). Unlike the mating pathway, which may be compared 

to a cell-fate decision system leading to sustained activation of the mating MAPK, the HOG 

pathway is an adaptation response where the HOG MAPK is activated only transiently, and such 

adaptation responses may be more tightly regulated (Gasch et al., 2000; Pelet et al., 2011). These 

differences in dynamics pose a challenge for comparing pathway output directly and motivate 

our use of mutual information (MI) to assess the effects of mutations on pathways (see 

Discussion). To study the effects of spontaneous mutations on mating and HOG signaling, we 

employed a mutation accumulation approach to evolve two S. cerevisiae strains, one with a 

mating pathway reporter and the other with a HOG pathway reporter for ~2000 generations. 

 

Although MA studies can reveal how spontaneous mutations across the whole genome affect a 

trait of interest, we cannot control the so-called ‘mutational target size’ or easily map the 

genotype to phenotype relationship. The probability that a mutation affects a gene depends on 

the cis- and trans-mutational target sizes and the mutation effect size (Houle 1998; Landry et al., 

2007).  Furthermore, one pathway may simply have more critical genes and therefore be more 

sensitive to mutations. Therefore, differences in the effects of mutations in the two pathways 

could be because of different mutational target sizes. To overcome this limitation, we can 

introduce mutations through random mutagenesis by error-prone PCR in a specific gene. While 

the mutations may not reflect those that are naturally occurring, targeting a specific region in the 

genome will also allow us to quickly map the genotype-phenotype relationship. By taking 

advantage of signaling pathways with shared components and introducing mutations into these 

components, we can interrogate how different pathways respond to the same mutations.  
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Figure 3-1: Schematic of yeast MAPK pathways and experimental setup. A) The yeast 

mating pathway (left) responds to pheromone and turns on mating related genes and the HOG 

pathway (right) responds to salt and turns on osmoregulation related genes. The HOG pathway 

consists of two, partially redundant, osmosensing branches. Both pathways consist of the three-

tiered MAPK cascade - Ste11-Ste7-Fus3 in mating and Ste11/Ssk2/22-Pbs2-Hog1 in HOG 

pathway. The pathways consist of various feedback mechanisms (negative interactions are 

indicated with red lines) and shared components (orange lined circles). B) The two strains used 

in the mutation accumulation study contain GFP expressed from a mating responsive promoter, 

pFUS1, (left) or a HOG responsive promoter, pSTL1, (right) reporting mating and HOG pathway 

responses, respectively. C) Distributions of mating and HOG reporter expression after 240 

minutes of 1uM mating pheromone induction and 30 minutes of 0.4M KCl induction. Evolved 

and ancestral lines for two mutation accumulation lines are shown, one with no effect on reporter 

distribution (top) and one where reporter distributions change in shape (bottom). 
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Similar to other MAPK and signaling pathways (Seaton and Krishnan 2011), mating and HOG 

pathways use some of the same components to regulate different processes (Figure 3-1A, orange 

circles). Despite these shared components, the HOG and mating pathways maintain signaling 

fidelity as cells respond only to the appropriate stimulus (Patterson et al., 2010). Mechanisms 

such as scaffold proteins (Albert and Oltvai 2007), docking interactions (Saito 2010), negative-

feedback loops (Hao et al., 2008; Nagiec and Dohlman 2012; O'Rourke and Herskowitz 1998; 

Yamamoto et al., 2010) maintain the signaling specificities of the two pathways. At 

physiological levels of stimulus, the two pathways are insulated in their response (McClean et 

al., 2007; Patterson et al., 2010). Mutations that disrupt this insulation may be identified by 

measuring the pathway responses to the inappropriate stimulus.      

To control for mutational target size, we introduce mutations into a shared component of mating 

and HOG pathways, Ste50, an adapter protein responsible for recruiting the MAPKKK Ste11 to 

the membrane for activation by Ste20. Ste50 interacts with Ste11 via its Sterile Alpha Motif 

(SAM) domain and with membrane proteins Opy2, Sho1 and Cdc42 via its Ras-associating (RA) 

domain (Hao et al., 2008; Yamamoto et al., 2010). There is also a cluster of MAPK consensus 

phosphorylation sites in the intrinsically disordered region (IDR) that are known to modulate 

MAPK signaling (Zarin et al., 2017). Mutations in the SAM domain of Ste50 decrease 

osmoresistance and increase crosstalk with the mating and filamentation pathways under 

hyperosmotic conditions (Jansen et al., 2001). While Ste50 is required for both mating pathway 

activation and activation of the Sho1 branch of the HOG pathway, there are some differences in 

the role of Ste50 in the two pathways. For example, in addition to Fus3 and Hog1, another 

protein kinase, a casein kinase I, phosphorylates Ste50 at a specific threonine residue in the SAM 

domain (Chen and Thorner 2007). This phosphorylation is required for the mating response but 

not HOG response indicating the importance of Ste50 interactions in ensuring Ste11 activates the 

appropriate MAPK. To ensure the effects of mutations in Ste50 are not masked by redundancy of 

the HOG pathway, we inactivated the Sln1 branch by deleting the MAPKKKs SSK2 and SSK22. 

While the partially redundant branch contributes the HOG pathway robustness, the tight 

regulation required for the transient activation (adaptation) of the HOG pathway MAPK even in 

the absence of the redundant branch, suggests that HOG pathway may be more robust to 

mutations in Ste50 than the mating pathway. To monitor the effects of the same mutations on 

both pathways, we engineered a strain with two fluorescent reporters, each under the control of a 
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pathway-specific promoter. This strain also allows us to simultaneously study the effects of 

mutations on pathway insulation.  

Point mutations are an important source of genetic variation and many systems-level studies on 

robustness assess the effects of deleting genes or altering expression levels (Bauer et al., 2015). 

Here, in addition to studying the effects of whole genome spontaneous mutations by 

experimental evolution, we explore the effects of random point mutations in a shared component 

on the robustness of different signaling pathway responses and measure the responses by flow 

cytometry. The two approaches complement one another allowing both a higher-level 

understanding of the effects of mutations and a targeted, more comparable and mappable study 

of the effects of mutations. With both approaches, we investigate how random mutations affect 

the system at the level of the pathway as our previous work (Kompella et al., 2017) and the work 

of others (Furukawa and Hohmann 2013; Levchenko et al., 2000; Suderman and Deeds 2013; 

Thomson et al., 2011) have shown that mutations in signaling pathways must be interpreted in 

the context of the whole pathway, rather than the effects on the protein. For example, in previous 

work, we showed that stop codons in the yeast mating MAPK can lead to wild-type signaling in 

the context of an over-expression mutant.  

Our results show that both spontaneous whole genome mutations and random mutations in the 

shared adapter protein, Ste50, have a stronger effect on the mating pathway than on the HOG 

pathway signaling. We show that spontaneous mutations decrease the information capacity of the 

mating pathway without affecting the HOG response. We also find that these mutations increase 

the variance in mating signaling. After controlling for mutational target size and redundancy, we 

find that the HOG pathway shows decreased, but higher than mating signaling, robustness. 

Finally, we show that mutations in Ste50 can have opposite effects on the amount of information 

in mating and HOG signaling crosstalk. 

3.3 Results 

3.3.1 Whole-genome spontaneous mutations affect mating reporter activity 
more than HOG reporter activity  

To test the phenotypic effects of spontaneous whole genome mutations on MAPK pathways in S. 

cerevisiae, we performed a MA experiment whereby we propagated 15 replicate lines of wild-
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type strains with a pathway reporter either for mating or HOG signaling response, pFUS1-GFP 

and pSTL1-GFP respectively (Figure 3-1B). Since we are limiting the influence of selection, we 

expect deleterious mutations to accumulate and result in an eventual loss of signaling response. 

We measure the effects of MA on signaling responses for each pathway by measuring pathway 

reporter activities of the replicate lines at the end of the evolution experiment to the isogenic, 

ancestral lines from the beginning, before and after induction with mating pheromone or salt 

(Figure 3-1C). 

To analyze the effects of spontaneous mutations on the two pathway activities, we first looked at 

the median fluorescent reporter (GFP) activities, as is common for flow cytometry data. Across 

all of the lines, we find that mutations have a stronger effect on the variance in the mating 

reporter expression than that of the HOG reporter (Figure 3-2A, Student’s F-test p-values < 0.05 

comparing all time points of ancestral and evolved mating reporter lines with and without 

induction; Student’s F-test p-values < 0.05 for only the first four time points with induction for 

HOG reporter lines, rest are not significant differences). For the evolved lines with large effects, 

some of the distributions of reporter expression are no longer unimodal and therefore, the median 

does not represent the distribution well. To better compare the differences in the distributions 

without using population metrics such as median, we turned to information theory. 

One way to directly compare the entire distributions is by calculating Kullback-Leibler (KL) 

Divergence (Perez-Cruz 2008). The larger the difference between the two distributions, the 

larger the KL Divergence value. We quantified the KL divergence value of the mating and HOG 

responses between the evolved and ancestral lines. We find that the basal mating signaling and 

the mating response to pheromone are more affected by whole genome mutations than the basal 

HOG signaling or the HOG response to salt (data not shown). While this value is better at 

summarizing the effects of the mutations on the distributions, i.e., we can see the effects on basal 

signaling response, it is still not a comprehensive way of describing the signaling output as it 

requires separate quantification of the basal reporter expression levels and the induced reporter 

expression levels. We therefore sought a measure of signaling that considers the changes to the 

basal level as well as to the induced level. 
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Figure 3-2: Effects of whole genome mutations on reporter expression and a clustered heat 

map of change in mutual information due to spontaneous mutations. A) Each point 
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represents the log median GFP expression value at the indicated time of signaling pathway 

response for one line of the mating (left) and HOG (right) reporter strains with induction (green 

circle) and without induction (black diamond). Mating pathway was induced with 1uM mating 

pheromone and HOG pathway was induced with 0.4M KCl. Top panels represent the isogenic, 

ancestral lines and bottom panels are the evolved lines. B) This heat map represents the effect of 

mutations on mutual information as represented by the change in mutual information (evolved-

ancestral). Each row shows the change in mutual information for one line of the mating (left) or 

HOG (right) reporter lines. The last row is the average change in mutual information in the 

ancestral lines (“Avg WT”) The columns represent the change in mutual information over four 

hours of signaling response. Positive values are yellow and negative values are blue. The 

intensity of the color corresponds to the magnitude of the change in mutual information, as 

shown in the color bar. 
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Measuring signaling fidelity by mutual information (MI) is a more holistic way of comparing the 

responses of signaling pathways (Filippi et al., 2016; Mc Mahon et al., 2015). To calculate an 

overall measure of information transmission of a communication channel, we can ask how much 

knowing the input determines the output (or vice versa) and MI is a measure of this reduction in 

uncertainty. For cell signaling responses, if there is a large overlap in the distributions of 

responses with and without a stimulus (or multiple doses of a stimulus or multiple stimuli), then 

knowing the response distribution does not aid in discerning the state of the stimulus (Granados 

et al., 2018). Specifically, cells with responses in the overlap fail in determining the state of the 

stimulus causing the loss of information. Quantifying the signaling responses in terms of 

information transmission not only allows us to observe all kinds of effects of mutations on the 

distributions but also takes into account the correlation of the signal and output including the 

intrinsic differences in the noise in the two pathway reporter expressions such as the higher 

levels of noise in the mating pathway reporter expression than the HOG pathway reporter 

expression (Waltermann and Klipp 2011). To measure the efficiency of a signaling pathway in 

transducing the signal to a given pathway, we need to consider the biological noise in the 

response to the signal (as measured by the distribution of responses of isogenic cells to the same 

stimulus). MI captures the relationship of both the mean and shape of the distribution of the 

output with the input, is increasingly being adopted as a measure of signaling phenotypes 

(Granados et al., 2018). 

Here, we wish to quantify the effect of mutations on signaling phenotypes. We therefore 

introduce the change in MI, (i.e., the amount of transmitted information gained/lost due to 

mutations,) as the measure of the effects of the mutations on the signaling fidelity of the mating 

and HOG pathways. 

To calculate the change in MI due to mutations, we subtracted the amount of MI (see Methods 

for details), in the ancestral lines from evolved lines. If mutations do not have an effect, the 

change in MI would be zero. If mutations decreased the information capacity of the pathway 

response, the change in MI would be less than zero. Across 12 MA lines for each pathway 

reporter, we found that mutations knockout mating signaling more than HOG signaling (5/12 

mating reporter lines showed a decrease in MI at all time points tested, compared to 0/12 HOG 

reporter lines, Fisher’s Exact test p-value = 0.03727, Figure 3-2B). We also found that mutations 

decrease the amount of information transmitted through the mating pathway more than that of 
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the HOG pathway (10/12 mating reporter lines showed a decrease in MI at one or more of the 

time points tested compared to only 3/12 HOG reporter lines, Fisher’s Exact test p-value = 

0.01228). 

We quantified the variance in MI across the 12 MA lines for each strain and compared the 

variance in the ancestral lines and evolved lines. We found a significant increase in the variance 

of the mating signaling at 3 of the 4 time points (60 min, 180 min, and 240 min) and a significant 

decrease in the variance of the HOG response at one of the 5 time points (180 min) (F-test p-

value < 0.05, Figure 3-3). This leads us to conclude that mutations had a stronger effect on the 

mating signaling variance than on that of the HOG signaling. In general, variance in MA lines 

increases with time in mutation accumulation studies, likely due to the accumulation of 

deleterious mutations (Eyre-Walker and Keightley 2007).  To our knowledge, our study is the 

first to suggest that signaling phenotypes follow the same general pattern as other phenotypes. 

Since the HOG pathway has a second, partially redundant branch, it is possible the effects of 

mutations are being masked due to the redundancy. The HOG pathway is also known to show 

adaptation (Saito and Posas 2012), and it is possible that the pathway is simply adapting to 

aberrant signaling levels caused by mutations in each MA line. In either case the differences 

between the pathways would be due to the differences in pathway structure and dynamics. On 

the other hand, it is possible that the differences we observed are simply due to a difference in 

mutational target size: protein components of the mating pathway may be more sensitive to 

mutations and there may simply be more proteins, such that mutations are more likely to fall 

within the mating pathway. 
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Figure 3-3: Effects of spontaneous mutations on amount of information transmitted to the 

HOG and mating pathways. Each symbol represents the change in mutual information (see 

Methods for details) for one mutation accumulation line at the indicated time after signaling 

pathway induction. HOG pathway reporter lines (black diamonds) were induced with 0.4M KCl 

and mating reporter lines (red circles) were induced with 1uM mating pheromone. Data shown 

are for twelve lines for each strain.   
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3.3.2 Mutational target size and redundancy explain most but not all of 
HOG signaling mutational robustness 

To control for mutational target size, we next sought to quantify the robustness of mating and 

HOG pathways to the same mutations. Here, we took advantage of the promiscuity of the yeast 

MAPK pathways and introduced random mutations by error-prone PCR into Ste50, a shared 

component that is involved in both the mating and osmostress responses in a strain where the 

second branch of the HOG pathway is knocked out (Figure 3-4A). Ste50 recruits the mating and 

HOG MAPK kinase kinase Ste11 to the plasma membrane for activation by the p21-activated 

protein kinase Ste20 and is required for the proper function of both of HOG and mating MAPK 

pathways (Saito and Posas 2012; Truckses et al., 2006). The MAPKs from both pathways 

phosphorylate Ste50 to downregulate the responses (Yamamoto et al., 2010). Mutations in Ste50 

have been known to change HOG and mating pathway signaling dynamics and basal signaling 

responses (Hao et al., 2008; Yamamoto et al., 2010)  

To test the effects of same mutations in Ste50 on both mating and HOG pathway responses, we 

engineered a dual reporter S. cerevisiae strain with fluorescent mating and HOG pathway 

responsive reporters (Figure 3-4B). We expressed either wild-type (WT) Ste50 or a library of 

random mutants from pSte50 on a plasmid and measured the reporter expression of both 

pathways in parallel (Figure 3-4B). This strain design allows us to also measure both the 

signaling response (“signal”) (using the reporter expression with the appropriate stimulus) and 

(“crosstalk”) (using the reporter expression of the opposite stimulus) (Figure 3-4C). 
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Figure 3-4: Experimental design to study effects of mutations in a shared component. A) 

Schematic diagram of the yeast mating and HOG response pathways highlighting the shared 

component Ste50 (orange circle) and the deletion of the Ssk2/Ssk22 (red cross) resulting in 

inactivation of the Sln1 branch of the HOG pathway. B) The yeast strain used in this experiment 

contains GFP expressed from a mating pathway responsive promoter, pFUS1, and BFP 

expressed from a HOG pathway responsive promoter, pSTL1. Wildtype Ste50 or a library of 

random variants generated by error-prone PCR (see Methods for details) is expressed on a 

plasmid from its endogenous promoter. C) Distributions of mating (left) and HOG (right) 

reporter expression with the appropriate stimulus (“signal”, top panels) and the incorrect 

stimulus (“crosstalk”, bottom panels) comparing library of Ste50 variants and wildtype Ste50. 

Top left panel shows distributions of mating reporter (GFP) expression after 360 minutes with 

and without 1uM mating pheromone. Top right panel shows distributions of HOG reporter (BFP) 

expression after 90 minutes with and without 0.4M KCl. Bottom left panel shows distributions of 

mating reporter (GFP) expression after 210 minutes with and without 0.4M KCl. Bottom right 

panel shows distributions of HOG reporter (BFP) expression after 270 minutes with and without 

1uM pheromone. 
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First, to ensure that we are not introducing expression level differences when expressing Ste50 

from a plasmid, we compared mating pathway response to pheromone of a strain carrying wild-

type Ste50 and a Ste50 knock out strain (Ste50Δ) expressing Ste50 from its endogenous 

promoter (pSte50) on a plasmid and did not find a significant difference (Figure 3-5A). Protein 

stability and, thereby, function decreases exponentially with the number of substitutions (Bloom 

et al., 2006). Therefore, we sequenced 49 random Ste50 variants from the random mutant library 

generated by error-prone and calculated the mutation rate to be 2.4 mutations per Ste50 (Figure 

3-5B) (see Methods for details). We expect at least 26% of the mutations to have a wild-type like 

response (the fraction of the variants containing no amino acid changes) (Figure 3-5C).  

To quantify the effect of these mutations on signaling response, we calculated the change in MI 

with the Ste50 library compared to wild-type Ste50. Unlike the effect of whole genome 

mutations, we find random mutations in Ste50 decrease information transmission in both HOG 

and mating signaling (38/44 time points taken over four replicate experiments show decreases in 

the HOG response to pheromone and 42/44 time points taken over the four replicate experiments 

show decreases in the mating response to pheromone) (Figure 3-6A). Since the two pathways are 

expected to have different durations in the response (HOG response adapts, and mating response 

shows sustained activity), we compared the maximum change in MI and found that the mating 

response to pheromone (at 360 minutes) is more severely affected by mutations in Ste50 than the 

HOG response to salt (at 120 minutes), (Student’s t-test p-value < 0.05).  

We quantified the effects of mutations on pathway insulation (“crosstalk”) by calculating the 

changes in MI in the HOG response to pheromone and mating response to salt due to the library 

of Ste50 variants (Figure 3-6B). Mutations in Ste50 have opposite effects on the two crosstalk 

responses during the last three hours of response (Student’s t-test p-values <0.01 for all time 

points from 180 minutes to 360 minutes). Mutations decrease HOG crosstalk more than mating 

crosstalk (35/44 time points tested over four replicate experiments showed decreases in HOG 

crosstalk compared to 10/44 for mating crosstalk). Mutations in Ste50 also have a small effect on 

the mating response to salt. Mutations increase mating crosstalk more than HOG crosstalk (34/44 

time points tested over four replicate experiments showed increases in mating crosstalk 

compared to 9/44 for HOG crosstalk). 
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Figure 3-5: Construction of a Ste50 random mutant library. A) Average pFUS1-GFP levels 

obtained from flow cytometry after mating induction with 1uM mating pheromone for Ste50 

expressed on a plasmid from its endogenous promoter in a Ste50 deletion strain (black trace) and 
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wildtype strain (grey trace). Error bars represent standard deviation with three replicates. B) 

Distributions of nucleotide changes in Ste50 random mutant library. Each black bar represents 

the frequency of Ste50 variants (y-axis) carrying the number of mutations listed on the x-axis. 

The dotted trace is the predicted percent variants under a Poisson fit, as determined by the 

method of least squares. C) Distributions of amino acid residue changes in Ste50 random mutant 

library, as in B). 

 

  



60 

 

3.3.3 Random variants carrying mutations in Ste50 SAM and RA domains 
decrease robustness of mating and HOG signaling  

While we could measure the overall effect of mutations in Ste50 on mating and HOG signaling 

and crosstalk using the library of random variants, to more directly compare the Ste50 random 

variants to the lines obtained in the MA experiments, we isolated 49 individual Ste50 variants. 

We identified the mutations by sequencing (Table 3-1). We measured the pathway responses to 

pheromone and salt every hour for six hours and quantified the change in MI due to mutations 

(Figure 3-7). Five of the 49 variants had no changes to the nucleotide sequence (“WT”) and we 

used these to understand the non-genetic sources of variance in MI (Figure 3-7, dashed lines). 

There were also 8 variants with only synonymous mutations (“WT-like”). We did not group 

these with the WT as synonymous mutations may have an effect on protein function (Plotkin and 

Kudla 2011). 

We found that more variants affect HOG signaling (31/44) than mating signaling (16/44) at the 

earliest time point of 60 minutes (Fisher's Exact test p-value = 0.0026, Figure 3-7A). However, 

there are more variants that affect mating signaling than HOG signaling at the last three time 

points (240 minutes: 30/44 for mating compared to 16/44; 300 minutes: 31/44 for mating 

compared to 19/44 for HOG, and 360 minutes: 33/44 for mating compared to 23/44 for HOG; 

Fisher's Exact test p-value < 0.05). 

We quantified the amount of variance in the effect of the mutations on MI. Similar to the MA 

lines, we found that the variance in the mating response increases more than the variance in the 

HOG response for four of the six time points (F test p-value < 0.05).  

Mutations in Ste50 had opposite effects on crosstalk at all time points except the last one (at  60 

minutes, 25/27 variants with effects decreased HOG crosstalk whereas only 5/24 variants with 

effects decreased mating crosstalk, at 120 minutes these numbers were 23/29 compared to 0/22, 

at 180 minutes these numbers were 14/19 compared to 4/21, at 240 minutes, these numbers were 

10/21 compared to 1/22 and at 300 minutes, the number of variants with effects that decreased 

HOG crosstalk were 12/27 compared to 1/21 variants with similar effects on mating crosstalk, 

Fisher’s Exact test p-value <0.05) (Figure 3-7B). 
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We mapped each mutation to one of the known functional domains in Ste50: the N-terminal 

Sterile Alpha Motif (SAM), intrinsically disordered region (IDR) and the C-terminal Ras-

associating (RA) domain (Figure 3-8A, Table 3-1). To better visualize these effects for each 

variant, we clustered the change in MI (Figure 3-8B). 
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Figure 3-6:. Effects of mutations in shared component on amount of information 

transmitted to the HOG and mating pathways. A. Each symbol represents the change in 

mutual information (see Methods for details) in the correct signaling response (“signal”) with the 

library of Ste50 random variants to wildtype Ste50 at the indicated time. HOG pathway response 

(black diamonds) to 0.4M KCl and mating pathway response (red circles) to 1uM mating 

pheromone. B. Each symbol represents the change in mutual information in the incorrect 

signaling response (“crosstalk”) with the library of Ste50 random variants to wildtype Ste50 at 

the indicated time. HOG pathway response (black diamonds) to 1uM mating pheromone and 

mating pathway response (red circles) to 0.4M KCl. Data shown are for four replicate 

experiments. 

 

 

Table 3-1: Sequence data for 49 individual Ste50 random variants.  

Variant 
ID 

AA 
Change 

in 
SAM 
(30-
104) 

AA 
Change 
in IDR 
(151-
251) 

AA 
Change 
in RA 
(246-
326) 

Nonsense 
Mutation 

1 or more 
Provean 
predicted 

Deleterious 

Number of 
Synonymous 

Changes 
Amino Acid Changes 

7 No No Yes No Yes 0 I306F 

8 No Yes Yes No Yes 0 R200S, S215P, L218S, D279Y 

26a No No No No No 1 WT 

46 No Yes No No Yes 0 D20V, D38V, S196T, H214R 

12 No Yes Yes No Yes 0 N121D, H192R, A258T 

16a No No No No No 2 WT 

10b No No No No No 0 none 

11 No Yes No No No 2 S12P, N243Y 

15c No No No No No 2 N339Y 

44a No No No No No 1 WT 

49b No No No No No 0 none 

14 Yes Yes No No No 1 L19Q, R59T, P156Q,  

41 No Yes No No No 1 D221H 

28a No No No No No 2 WT 

4 Yes Yes No No No 2 E49V, R199G 

31b No No No No No 0 none 

19b No No No No No 0 none 

24b No Yes No No No 0 H214N 

22 No No Yes No Yes 0 I306N 
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29c No No No No No 2 G23D 

17 Yes Yes Yes No Yes 0 V50A, P249H, Q294H, E299V 

1 No No Yes No Yes 2 E302G 

23 No Yes Yes No Yes 0 Q195R, A258V, R324G 

21 Yes Yes No No Yes 1 D77G, T125A, N243S 

13 Yes No No Yes Yes 1 F92I, R100* 

18 No No Yes No Yes 2 P304H 

3 Yes No Yes No Yes 0 L69P, M321T 

6 No No Yes No Yes 2 L268S 

25 Yes No Yes No Yes 0 D54E, G315V 

27 No No Yes No Yes 0 R296G, V305E 

43 No No No Yes Yes 0 M1* 

45 No No Yes Yes Yes 0 L316* 

33 No No No No Yes 0 ...V21* 

40 No Yes Yes Yes Yes 1 Q228-A252, L253* 

50 Yes No No No No 1 N13D, V50M, G84S 

30 Yes No No No No 0 L95P 

36 No Yes Yes Yes No 3 Q233L, K269E 

51 No Yes Yes No Yes 0 
R141G, G179S, L218M, 

R283G 

20b No No No No No 0 none 

2a No No No No No 1 WT 

9 No No No Yes Yes 0 G336R, S337K, D338* 

34 No Yes No No No 1 S217F, S222R 

32 No Yes No No No 0 V191I, V206A 

37a No No No No No 1 WT 

38a No No No No No 2 WT 

39 Yes No Yes No Yes 0 E51D, I320F 

48a No No No No No 1 WT 

42 No Yes Yes No Yes 0 T165A, A278V, N310I, S337G 

47 No Yes No No No 0 Y187C 

a No mutations lead to non-synonymous amino acid substitutions 
b No mutations found 
c No Mutations occurred in the domains listed 
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Figure 3-7: Direct comparison of the effects of mutations in shared component on amount 

of information transmitted to both the HOG and mating pathways. Each symbol represents 

the change in mutual information with a random Ste50 variant to wildtype Ste50 in the pathway 

responses after induction with 1uM mating pheromone or 0.4M KCl for the given times. A. The 

change in mutual information in the correct signaling responses (“signal”, HOG pathway 

response to salt, black squares, and mating pathway response to pheromone, red circles). B. The 

change in mutual information in the incorrect signaling responses (“crosstalk”, HOG pathway 

response to pheromone, black squares, and mating pathway response to salt red circles).  
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Figure 3-8: Schematic of Ste50 domains and interactions and clustered heat map of change 

in mutual information due to mutations in Ste50. A. Ste50 recruits Ste11, MAPKKK, to the 

cell membrane (dark grey bar) via its N-terminal Sterile Alpha Motif (SAM) domain (light red 

rectangle). Ste50 interacts with membrane proteins, Opy2, Sho1 and Cdc42, via the C-terminal 

Ras-associating (RA) domain (green rectangle). The intrinsically disordered region (IDR, purple 

line) between the SAM and RA domains contains MAPK consensus phosphorylation sites (filled 

black circles). The mating and HOG pathway MAPKs, Fus3 and Hog1, phosphorylate Ste50 at 

these sites resulting in down regulation of the pathways. B. This heat map represents the effect of 

mutations on mutual information as represented by the change in mutual information (Ste50 

variant - wildtype). Each row represents one Ste50 variant. The columns represent the change in 

mutual information over four hours of mating (teal triangle) and HOG (fuchsia triangle) 

signaling induction with the appropriate stimulus (“Signal”, left) and the opposite stimulus 

(“Crosstalk”, right). Positive values are yellow and negative values are blue. The intensity of the 

color corresponds to the magnitude of the change in mutual information, as shown in the color 

bar. The numbers to the right of the heatmap represent the variant identification number. The 

filled circles show the location and the type of the amino acid change in Ste50 protein sequence. 

Mutations in the SAM domain are indicated by light red circles, in the IDR by purple circles, and 

in the RA domain by green circles. Blue circles represent nonsense mutations. Orange circles 

represent mutations that PROVEAN, software used to predict the impact of amino acid 

substitutions, insertions and deletions on protein function, predicts to be deleterious for Ste50 

function. The numbers to the right represent the number of synonymous substitutions in the 

Ste50 variant. Solid black lines indicate the variants with only synonymous substitutions (“WT-

like”) and dashed black lines indicate variants with no substitutions (“WT”). Blue lines indicate 

variants carrying missense mutations outside of the three domains. 
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We found a cluster of variants (ID#s: 17,1,23,21,13,18,6,25,27,43,45,33,40) that decreased 

mating and HOG signal, increased mating crosstalk and decreased HOG crosstalk (13/14 

variants in this cluster displayed this phenotype across at least four out of the six time points 

tested compared to 3/35 outside this cluster, Fisher's Exact test p-value= 2.76x10-8; 290/336 time 

points in the cluster, and 402/840 outside the cluster show this phenotype). 

We find that this cluster is deprived of WT/WT-like variants (0/14 variants in this cluster are 

WT/WT-like compared to 13/22 outside the cluster, Fisher's Exact test p-value = 0.009759). The 

cluster is not enriched mutations in the SAM (5/14 variants in the cluster have mutations in the 

SAM domain compared to 5/35 outside the cluster. Fisher's Exact test p-value = 0.1235). The 

cluster is not enriched for mutations in the IDR (4/41 variants in the cluster have mutations in the 

IDR compared to 14/35 outside the cluster, Fisher's Exact test p-value = 0.5273). We do not 

expect mutations in IDR that do not change the charge of the phosphosites to have a strong effect 

on HOG or mating signaling (Zarin et al., 2017). 

The cluster is enriched for mutations in the RA domain (10/14 of these variants in this cluster 

had mutations in the RA domain compared to 7/35 outside the cluster, Fisher's Exact test p-value 

= 0.0001829). We used PROVEAN, a tool that predicts the effects of amino acid substitutions, 

insertions and deletions based on sequence and evolutionary conservation to predict the effects 

of the mutations in Ste50 on protein function (Choi et al., 2012). We found that the cluster is 

enriched for mutations that PROVEAN predicts to be deleterious (14/14 of these variants in this 

cluster are predicted to be compared to 8/35 outside the cluster, Fisher's Exact test p-value = 

4.736x10-7). Variants in this cluster have a similar pattern of effects in MI in mating and HOG 

signaling as a truncated Ste50 variant (Ste50D51-347) suggesting that mutations in these variants 

are expected to have large impacts on Ste50 function and that the differences we are observing 

between the change in information between the mating and HOG signaling pathways are largely 

due to their different overall dependence on Ste50 function.  

Although 4 out of 14 of these variants in this cluster carried non-sense mutations, the cluster was 

not enriched for them, as they were two additional variants carrying nonsense mutations outside 

of this cluster (Fisher's Exact test p-value = 0.1639). These additional two variants had similar 

effects on mating crosstalk as those in the cluster.  
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If we consider the effects on mating crosstalk alone, we find that in addition to the 14 variants in 

this cluster, there are four additional variants (ID#s: 12, 30, 36,51) that increase mating crosstalk. 

None of these 18 variants are WT or WT-like compared to 13 of the 31 other variants (Fisher's 

exact test p-value = 0.001593). These 18 variants are enriched for nonsense mutations (5/18 of 

these variants carry nonsense mutations compared to 1/35 outside of these variants, Fisher's 

Exact test p-value = 0.02032). They are also carrying mutations predicted to be deleterious by 

PROVEAN (16/18 of these variants have mutations predicted to be deleterious compared to 7/31 

other variants, Fisher’s Exact test p-value = 1.348x10-5). 

There are many ways in which the cluster of 14 or the 18 variants may be affecting signaling.  

Since they are enriched for mutations predicted to be deleterious, they are most likely reducing 

Ste50 function.  Ste50 SAM domain mutations are known to affect mating and HOG signaling in 

opposite ways (Jansen et al., 2001). Specifically, mutations in this domain can increase mating 

response to pheromone and salt and decrease the HOG response to salt or affect mating but not 

HOG signaling. Ste50 interacts with the membrane proteins Sho1 and Opy2 to direct the salt 

signal to the HOG pathway. The interaction between the Ste50 RA domain and the membrane 

protein, Opy2, is vital for osmoresistance (Yamamoto et al., 2010). Mutations in the RA domain 

that affect this interaction can be rescued by tethering Ste50 to the membrane. Improper 

activation of mating signaling can occur if the normal binding partners of Sho1 are mutated such 

that the salt stress is incorrectly routed to the mating pathway (Marles et al., 2004). 

 

3.3.4 Strain background contributes more to differences in the absolute MI 
in the two pathways than growth conditions  

In addition to differences in the strain background between the Ste50 library or individual 

random variant and MA experiments, there were some differences in the growth conditions 

between the library and individual random variant or MA experiments. Briefly, the library 

experiments were large-scale, requiring the pooling of hundreds of thousands of transformants 

compared to the other two experiments where a single colony was used to inoculate cultures (see 

Methods for details.)  
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To test if the different growth conditions affected reporter expression, we compared the amount 

of MI in the mating response to pheromone ("Mating Signal") and the HOG response to salt 

("HOG signal"), absolute MI, in the three experiments (Figure 3-9). For the mating responses, 

where we measured this signal with the same fluorescent protein (GFP) in all experiments, we 

found one time point (240 min, around maximum mating response), where the differences in 

absolute MI between the library and individual random variant experiments were not significant 

(Student's t test p-value = 0.44, Figure 3-9A). In contrast, measurements at all four time points 

(60, 120, 180, 240 minutes) were significantly different between the MA and individual random 

variant experiments (where the growth conditions were the same) (Student's t test p-value < 

1.3x10-7). This suggests that growth conditions did not contribute to the differences observed in 

the absolute mating MI as much as strain background. For the HOG responses, where we 

measured the signal with BFP in the library and random variants experiment and GFP in the MA 

experiments, there were many time points where the growth conditions did not affect signal 

(Student's t test p-value = not significant for 120, 180, 240, 300 and 360 minutes comparing 

library and individual random variant experiments; only time point where the difference was 

significant is 60 minutes, Student's t test p-value = 0.01, Figure 3-9B). In comparison, the 

differences were significant for all the time points compared between the MA and individual 

random variants experiments where the growth conditions were the same (Student's t test p-value 

< 3.78x10-17). This suggests that strain background contributed more to the differences in the 

absolute HOG MI than growth conditions.  
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Figure 3-9: Comparison of the information transmission capacity of the mating and HOG 

pathways with the three experimental methods in this study. A. The amount of information 

transmitted (absolute mutual information) in the mating response to pheromone with the three 

experimental methods employed in this study. Large-scale experiment ("Library") where many 

colonies of transformants expressing wildtype Ste50 were pooled are indicated with green 

circles. Ste50 random variant experiment ("Individual Random Variants") where a single colony 

of transformants expressing wildtype Ste50 were tested are indicated with light red circles. 

Single colonies of the ancestral lines in the mutation accumulation ("Mutation Accumulation”) 

experiment are indicated with blue circles. Mating response to pheromone is reported by pFUS1-

GFP in all experiments. In the library and individual random variant experiments, wildtype Ste50 

is expressed from a centromeric plasmid in a Ste50Δ strain where the second HOG pathway 

branch has been inactivated by Ssk2/22 deletions. The mutation accumulation lines do not have 

deletions in either Ste50 or the second branch of the HOG pathway. Each point represents the 

absolute mutation for one sample after induction with 1uM mating pheromone for the given 

time. Data shown are the four replicates from the "library" experiments, the five wildtype 

controls plus the five Ste50 variants without any nucleotide changes from the "Individual 

Random Variants" experiments and the twelve ancestral lines from the "mutation accumulation" 

experiments. B. The amount of information in the HOG response to salt with the three 

experiments listed in A). The pSTL1-fused HOG reporter in the library and individual random 

variants strain is BFP and in the mutation accumulation lines is GFP. Each point represents the 

absolute mutation for one sample after induction with 0.4M KCl for the given time. 
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There are two confounding differences between the strains used in the MA experiments and the 

library/individual variant experiments – the fluorescent reporters and HOG pathway redundancy. 

To test how differences in the fluorescent reporter affected the measurements, we compared the 

maximum absolute MI for the mating and HOG signals in the MA experiment (where GFP 

reported both pathway activities) and the individual random variants experiment (where the 

growth conditions were the same as the MA and two different fluorescent proteins reported the 

two pathway activities). The absolute MI in HOG and mating signals were more comparable in 

the MA experiments than in the individual variant experiments (maximum mating absolute MI at 

180-240 minutes compared to maximum HOG absolute MI at 30-60 minutes in the MA 

experiment were both around 0.8 bits, Student's t test p-value = 0.15 (not significant.); maximum 

mating absolute MI at 300-360 minutes, ~ 0.6 bits, compared to maximum HOG absolute MI at 

120-180 minutes, ~0.2 bits, in the individual variant experiments, Student's t test p-value = 

2.74x10-27). Although this difference is likely due to the strain background (the strain used in the 

MA experiment has the second, partially redundant branch intact unlike the strain used in the 

individual random variants experiment). When both pathways are near wild-type, like in the MA 

experiments, the maximum amount of MI is comparable, around 0.8 bits, therefore, the change in 

mutual information due to the mutations represents similar effects. For example, with similar 

wildtype MI of 0.8 bits for both pathways, a decrease in mutual information of 0.2 bits represents 

a 25% decrease in MI for both pathways. However, if the wildtype MI for one of the pathways 

was 0.2 bits and the other 0.8 bits, a similar decrease in MI of 0.2 bits would represent 100% 

decrease for the former and 25% for the latter. 

To test the contributions of the second branch to absolute MI of the HOG signal, we compared 

maximum absolute MI of the HOG signal in the strain with the branch to the strain without the 

second branch. We calculated a 3.78x fold reduction in absolute MI due to the missing branch 

(average maximum absolute MI in the MA experiment between, between 30-60 minutes, divided 

by the average maximum absolute MI in the individual random variant experiment between, 

between 120-180 minutes). This is comparable to the previously reporter estimate of 3.79x fold 

reduction (0.51 bits with two branches/0.14 bits with one branch) (Waltermann and Klipp 2011). 

Based on this, we believe that the strain background accounts for more of the differences in the 

MA and individual variants experiments, rather than the differences in the fluorescent reporter. 
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3.4 Discussion 
We measured the effects of mutations on the amount of mutual information in mating and HOG 

signaling using two approaches, mutation accumulation to study effects of spontaneous 

mutations and random mutagenesis of a shared component to limit mutational target size and 

study effects of the same mutations on the two pathways, and with both methods we found that 

mutations had a stronger effect on the amount of mutual information in mating signaling than on 

HOG signaling.  

The STL1 and FUS1 reporters we used in this study have previously been used for detection of 

the HOG and mating pathway activities, respectively (Furukawa and Hohmann 2013; Kompella 

et al., 2017; Metzger et al., 2017; Pelet et al., 2011; Sato et al., 2014; Zarin et al., 2017). Upon 

activation, Hog1 induces the transcription of many stress-response genes including the strong 

expression of STL1, which is widely studied as model for hyperosmotic stress activated gene 

expression (Aymoz et al., 2016; Bai et al., 2015; Zhao et al., 1994). Induction with mating 

pheromone changes the expression profiles of many genes, including a strong increase in FUS1 

expression (McCaffrey et al., 1987). Although these promoters are routinely used for detecting 

these pathway responses, it is likely that some of the differences we observe could be specific to 

these promoters. For a more detailed understanding of these complex cellular responses, other 

pathway-specific promoters should also be studied.   

We observed higher variance in mating reporter activities than in HOG reporter activities. 

Previous work shows that in general, the longer the MA lines are propagated, the greater the 

increase in variance – likely due to the accumulation of deleterious mutations (Eyre-Walker and 

Keightley 2007). Our observed increase in variance could be due to the mating pathway 

components accumulating more deleterious mutations or fewer compensatory mutations than the 

HOG pathway, or not being able to buffer the effects of these mutations as well as the HOG 

pathway. In any case, our results suggest that it is easier for mutations to change mating 

signaling than HOG signaling. 

It was not obvious that the HOG pathway would be affected by fewer mutations as Landry et al., 

show in a MA study that genes with TATA boxes are more sensitive to genetic perturbation and 
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are more likely to accumulate mutations that affect their expression (Landry et al., 2007). While 

one fifth of yeast genes contain a TATA box, stress-response genes are particularly enriched for 

these cis-regulatory elements. Even if the stress response genes in our MA lines had accumulated 

more mutations, our results suggest that the HOG pathway is more robust to the effects of these 

mutations more than the mating pathway. One reason for this is the redundancy in the pathway. 

We controlled for mutational target size and redundancy and found that mutations are able to 

affect HOG signaling (albeit still not as much as mating signaling). We suspect that this loss of 

information is due to the missing branch. In support of our hypothesis, previous work has shown 

that the amount of MI transmitted via a pathway that can detect an input using two channels is 

more than that of the pathway where one of these channels is not used (Waltermann and Klipp 

2011). 

We measure fluorescent reporter expression by flow cytometry as it is a high-throughput method 

that captures single cell data generating a distribution of fluorescent reporter expression levels 

representing the variability in gene expression that even isogenic populations display. Typically, 

the median reporter fluorescence intensity is used as a metric of measurement. While this metric 

is useful in summarizing the population behavior, reducing fluorescence distributions to 

population level values results in loss of information about the complex cellular response 

distribution that comparing the distributions directly can avoid (Handly et al., 2016). One 

method for comparing distributions that makes intuitive sense for signaling response is 

information theory, typically used in communications but also to quantify cell signaling. 

Previous work has shown that presence of feedback loops and other mechanisms that reduce 

signal interference and direct the signal to the appropriate branch, increase the information 

transfer through that branch (Mehta et al., 2009). Specifically, for the mating pathway the 

presence of a negative feedback loop has been shown (albeit not by information theory analysis) 

to increase the information transfer in the pathway (Yu et al., 2008). Furthermore, using MI to 

quantify cellular responses allows us to understand the biological relevance of physiological 

changes such as an increase in basal activity of a pathway (Voliotis et al., 2014).  

Since MI is a correlation metric, if mutations affect the absolute signaling levels but not the 

relative signaling with and without induction, change in MI will not capture those affects. 

Furthermore, as change in MI summarizes the effects of mutations on the signaling response 

with and without induction, to distinguish between effects on basal activation and signaling 
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response after induction, we did a thorough revision of reporter distributions. In the mutation 

accumulation experiment, the decrease in the amount of information due to mutations is largely 

caused by increases in basal signaling. Although mutations in Ste50 are known to affect basal 

signaling of both mating and HOG pathways (Hao et al., 2008; Yamamoto et al., 2010), we did 

not observe these effects in our random mutagenesis experiment. Furthermore, we did not 

observe any increases in basal HOG signaling in any of the experiments. Although basal 

responses of both pathways are tightly regulated as both the mating and HOG response pathways 

trigger cell cycle arrest upon stimulation, albeit transiently in the case of the HOG pathway 

(Chen and Thorner 2007), our observation suggests that basal HOG signaling is more tightly 

regulated. Previous work shows that point mutations and expression level changes of mating 

pathway components can increase basal mating signaling output through the breakdown of 

feedback loops that tightly regulate these pathways (Hao et al., 2008; Thomson et al., 2011).  

Different traits can display a spectrum of responses to mutations - from robustness to fragility - 

therefore the robustness of a trait is more appropriate as a relative measurement (Felix and 

Barkoulas 2015). Quantifying the effects of mutations introduced by mutation accumulation 

which introduce all types of mutations across the whole genome, and the more precisely 

controlled mutation of a shared component of HOG and mating pathway by error-prone PCR, we 

find that information transmission in HOG signaling is more robust to mutations than that in 

mating signaling. My work in studying the effects of mutations on one component of a signaling 

network may be relevant to understanding the mutational robustness of the network as previous 

work has shown that the dynamics of mutations in multiple nodes (such as those that might occur 

in complex human diseases) of a signaling network can be understood by studying mutations in a 

single node (Kwon et al., 2016). 

With this work, we hope to add to our understanding of the differences in the mutational 

robustness of different signaling pathways and the phenotypic significance of genetic variation 

across the whole genome and in promiscuous components of signaling pathways. 
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3.5 Future Work 
To understand the extent to which the Sln1 branch of the HOG pathway contributes to the 

mutational robustness of the HOG response, we proposed to study the effects of mutations in 

Ste50 in a strain where this branch is intact. 

To understand how intrinsic differences in our fluorescent reporters such as maturation rate and 

stability contribute the differences observed in the two pathways, we propose to repeat the 

measurements of the effects of random mutations in Ste50 on mating and HOG responses, with a 

strain with the pathway responsive fluorescent reporters expressed from the reciprocal promoters 

(pFUS1-BFP and pSTL1-GFP). In lieu of this, we propose to express GFP or BFP from the 

mating reporter (pFUS1) or osmolarity reporter (pSTL1) on a plasmid in a wild-type strain and 

quantify any differences in fluorescence levels when expressed from the same promoter. We will 

also use the correlation of the different fluorescent proteins expressed from the same promoter to 

measure the contributions of intracellular (intrinsic) and cell-to-cell (extrinsic) variability to the 

overall variation (Elowitz et al., 2002). 

It would also be interesting to track the impact of the accumulation of mutations across 

evolutionary time for the two strains by analysis of the intermediate lineages. We would be able 

to identify if the observed robustness of the HOG pathway at generation 1520 is due to 

compensatory mutations or if it is able to buffer the effects of the mutations throughout the 

evolutionary time. Similarly, it would also be interesting to analyze the generation at which the 

mating response is affected and to observe if by the latest, 2000th, generation the mating 

pathway signaling response is rescued by compensatory mutations or buffering. 

 

 

3.6 Material and Methods 

3.6.1 Library Construction 

Random mutagenesis was carried out error-prone PCR using Ste50 (SGD: S000000537) as a 

template and the Agilent GeneMorph II Random Mutagenesis Kit. The random mutants were 

constructed using AarI restriction sites and expressed from centromeric plasmids with His 
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selection, under the control of the endogenous Ste50 promoter (pSte50, 434bp upstream of 

STE50 start site, introduced using PspOMI and XhoI restriction sites), and an Adh1 transcription 

terminator. The mutation rate was confirmed by sequencing 51 independent variants from the 

unselected library at The Center for Applied Genomics (TCAG) DNA Sequencing Facility in 

Toronto, Canada. The variants were isolated by purifying plasmids from yeast by treating 

saturated yeast cultures with zymolase (Zymo Research) overnight at 4oC followed by standard 

plasmid miniprep protocol (Qiagen). This was followed by transforming into E. coli for 

amplification and purifying the plasmid by standard miniprep protocol (Qiagen). 

 

3.6.2 Yeast Transformation 

Yeast strain (W303 MATa, bar1::NatR, far1Δ, Ste50::Trp1, Ssk2::Leu2, Ssk22::Ura3, 

mfa2::pFUS1-GFP, ura3::pSTL1-BFP-KanMX, his3) was transformed by specific Lithium-

Acetate based high efficiency, large scale transformation method described by Gietz et al., with 

minor modifications (Gietz and Schiestl 2007). Ssk2 and Ssk22 were deleted (by homologous 

recombination using the markers listed above) to knock out the second, partially redundant, 

branch of the HOG pathway. 

 

3.6.3 Mutation Accumulation 

CB009 was generously provided by Dr. Wendell Lim. We made CW001 by introducing pSTL1-

GFP-KanMX at the HO locus in BY4741 (Strome et al., 2018) using the standard Lithium 

Acetate method. 

While the mating and HOG reporter strains have some differences in their strain background, we 

expect the whole genome mutation rate to be the same. The mating reporter strain is W303 

MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 mfa2::pFUS1-GFP, bar1::NatR, 

far1∆ and the HOG reporter strain is S288C MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

HO::pSTL1-GFP-KanMX. The two parental strains of CB009 and CW001, W303 and S288C, 

respectively, have about 9500 single nucleotide variations resulting in non-synonymous changes 

in ~700 genes (about 10% of the yeast genome) (Matheson et al., 2017). The length and structure 
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of the 16 chromosomes in the two strains is the same. This is important as there is strong linear 

correlation between chromosome size and the number of single nucleotide mutations per 

chromosome (Zhu et al., 2017). Therefore, although the strains used in this experiment have 

some differences in the strain backgrounds, since they were evolved under the same conditions 

(single cell bottleneck, every 2 days for 74 passages), we don’t expect significant differences in 

mutation rates between the two strains. 

Each strain was streaked out on rich media (YPD) to obtain single colonies. Fifteen colonies for 

each strain were stored as the ancestral lines and propagated by plating on YPD plates for 2 days 

at 30oC or room temperature. After two days of growth, single colony bottlenecks were 

implemented by choosing a single colony (closest colony to a previously marked line, to reduce 

bias in colony size or morphology) and streaking it on YPD plates. This process was continued 

for 100 days for CB009 and 82 days for CW001. Intermediate lineages were stored by freezing 

every other passage (even number passages). The colony chosen to propagate was also 

inoculated in YPD liquid media overnight and 500uL of the overnight culture was mixed with 

500uL 50% glycerol and stored at -80oC. One line for each strain dropped out before the end of 

the MA study and two lines for each strain did not grow upon streaking from stocks. 

To calculate the number of generations in our MA study, we assumed the number of generations 

the cells were allowed to grow prior to imposing the single-cell bottleneck to be 20 generations 

(for ~48 hours) (Zhu et al., 2014), leading to our estimate of 1480 generations for 74 passages.  

There are various estimates of the haploid single-nucleotide mutation rate in yeast:  

• 1.67x10-10 per base per generation (Zhu et al., 2014) resulting in 0.002 

mutations/generation (1.67 x 10-10 x number of bases in yeast nuclear genome, 

Saccharomyces Genome Database (SGD), 12,071,326)  

• 4.04x10-10 per base per generation (Sharp et al., 2018) resulting in 0.005 

mutations/generation  

• 0.0041 per generation (Lynch et al., 2008). 

We expect 2.96-7.4 base substitutions (1480 generations x 0.002 or 0.005, using the minimum 

and the maximum estimate from above) to accumulate in each line. In addition, we expect 458 

homopolymer mutations (0.3094 per generation), 2.81 microsatellite mutations (0.0019 per 
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generation), 0.296 small indels (0.0002 per generation), and between 0.7104-1.628 deleterious 

mutations (0.00048-0.0011 per generation) (Lynch et al., 2008). 

 

3.6.4 Flow Cytometry  

3.6.4.1 Ste50 random mutant library  

To ensure the diversity of the library was represented adequately, at least 100,000 transformants 

were harvested from fresh (less than two weeks old) plates by scraping in synthetic dropout 

medium without histidine and mixed by inverting. Similar number of transformants expressing 

wildtype Ste50 were also harvested by the same method. An aliquot of the transformant mixture 

was used to inoculate the selective medium to achieve the desired cell density (OD600=0.002). 

This culture was grown overnight at 30oC.	

3.6.4.2 Ste50 random variants  

Single colonies representing transformants expressing either wildtype Ste50 or a random Ste50 

variant were inoculated synthetic dropout medium without histidine and grown overnight at 

30°C. 

3.6.4.3 MA lines 

CB009 (passage 0 and passage 74) and CW001 (passage 0 and passage 74) were streaked on 

YPD plates from frozen glycerol stocks and single colonies were grown in YPD liquid media 

overnight at 30oC. 

For all experiments, overnight cultures were diluted to OD600 of 0.1 and grown until OD600 of 0.2 

(about 4 hours). An aliquot of cells was spun down (4000 RPM, 1 minute) and resuspended in 

equal amount of fixing buffer, 0.5% Paraformaledhyde (Sigma) in 1X PBS at pH 7.4. Samples 

were then incubated with 1µM α-factor (Zymo Research) or 0.4M Potassium Chloride (KCl, 

Sigma) for 250 minutes or 360 minutes. Samples were taken every 30 minutes to 1 hour and also 

fixed using the above stated method. Samples were stored at -4oC until they were processed by 

flow cytometry (maximum 24 hours later). 
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A BD BioSciences LSRII Fortessa flow cytometer (at the Medical Sciences Flow Cytometry 

Facility in the University of Toronto) was used (with the high throughput sampler attached) to 

count over 100,000 cells in the library experiments or 10,000-50,000 cells in the other 

experiments. During acquisition, we employed a gate based on forward and side scatter to count 

the desired number of cells in the gate of interest.  

Experiments on the Ste50 library were repeated 4 times and replicates are shown. Experiments 

on the MA lines were repeated twice, and the data from one experiment is shown. Results 

obtained from the second experiment were similar. Experiments on the 51 Ste50 variants were 

performed only once because of the complexity and size of this experiment. 

 

3.6.5 Data Analysis 

3.6.5.1 Sequence Analysis  

Ste50 sequence was downloaded from the SGD, 

https://www.yeastgenome.org/locus/S000000537). Random variant sequence data (obtained 

from the TCAG was analysed using CLC Sequence Viewer v7.5 (Mac OSx).  

The mutation rate of the Ste50 random mutant library generated by error-prone PCR was 

calculated by fitting the observed frequency distribution to the closest Poisson Distribution using 

http://vassarstats.net. This website computes the closest Poisson distribution by the method of 

least squares. The expected frequency under the Poisson probability distribution is calculated 

multiplying the probability distribution by the number of sequences (49). 

The SAM and RA domains were delimited using the coordinates from the Pfam database (Finn 

et al., 2016) the IDR using previously published work (Zarin et al., 2017).  

The effects of mutations on protein function were predicted using PROVEAN PROTEIN web 

server (Choi et al., 2012). 

3.6.5.2 Flow Cytometry Data  

Flow cytometry data was analyzed using the flowCore library, ggplot2 and colorspace R 

packages with in-house scripts to calculate the log median GFP and BFP values. We did not 
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employ post-acquisition gating as tests of post-acquisition gating in FlowJo (v10.4.2, MacOSX) 

showed no differences. 

3.6.5.3 Information Theory 

3.6.5.3.1 Entropy 

Information theory provides ways to quantify the uncertainty of a random variable (Rhee et al., 

2012). One popular metric is Shannon’s entropy (“entropy”), which is calculated by multiplying 

the probability of the variable taking on a certain value by the log of that probability (Equation 

1). When the base 2 log is used, the measurement is in bits. 

𝐻(𝑋) = 	−)𝑝(𝑥,)
-

,./

𝑙𝑜𝑔3	𝑝(𝑥,) 

Equation 1 

Entropy is always non-negative, and it is largest when the variable can take on all the values at 

equal probabilities (a wide, uniform distribution) and smallest when the variable can take on only 

one value (a narrow distribution). Therefore, maximum entropy is log2 of number of 

values/states that a variable can take on, and minimum entropy is zero. 

3.6.5.3.2 Kullback-Leibler Divergence  

One way to compare distributions is by measuring the Kullback-Leibler divergence (KL 

divergence), also called relative entropy. KL divergence is a measure of how much one 

probability distribution varies from another and specifically quantifies the amount of information 

lost when one distribution is used to approximate the other. If the distributions are identical, then 

no information is lost, and KL divergence is zero. If the distributions are not identical, then some 

information is lost, and KL divergence is greater than zero and the larger the value, the more the 

distributions diverge from one another.  

KL divergence is defined above on discrete distributions, and our flow cytometry data is 

continuous. We therefore used the method of linear extension (Perez-Cruz 2008) to compute the 

KL divergence without binning. KL divergence was calculated by modifying a script written by 

Ian Hsu for MATLAB to run on Octave v4.0.3. The functions ecdf.m and nansum.m were 
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downloaded from https://searchcode.com/codesearch/raw/9533414/ and https://www.apt-

browse.org/browse/debian/wheezy/main/all/octave-

statistics/1.1.31/file/usr/share/octave/packages/statistics-1.1.3/nansum.m, respectively.  

3.6.5.3.3 Mutual Information 

Mutual Information (MI) is calculated as the entropy of the output plus the entropy of the input 

subtracted by the joint entropy of the output and the input (Equation 2). 

𝐼(𝑋; 𝑌) 	= 	𝐻(𝑋)	+ 	𝐻(𝑌) 	− 	𝐻(𝑋, 𝑌) 

= 	𝐻(𝑋) 	− 𝐻(𝑋|𝑌) 

= 	𝐻(𝑌) 	− 𝐻(𝑌|𝑋) 

=)𝑝(𝑥, 𝑦)
;,<

	𝑙𝑜𝑔3
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦) 

Equation 2 

We can define certain properties of MI with this equation. First, MI is non-negative. This is 

because the entropy of the output given a known input cannot be greater than the entropy of the 

output without knowing the input (i.e., knowing the input cannot result in greater entropy in the 

output) and vice versa making H(X) H(X|Y) or H(Y) H(Y|X) and I(X;Y)³0. 

Next, we can determine the limits of MI. If knowing the input completely determines the output, 

then MI is maximum (no uncertainty about x once y is known, so H(X|Y)=0 and I(X;Y)=H(X). If 

knowing the input partially determines the output, then MI is greater than zero and less than 

maximum (H(X|Y)>0 so some uncertainty remains). If the input and output are independent 

(knowing the input does not determine the output at all) then MI is zero (H(X) =H(X|Y),  

I(X;Y)=0 or the joint probability distribution of the output and the input is equal to the 

probability distribution of the output multiplied by the probability distribution of the input; log21 

= 0) 

MI can be described as the KL divergence between the joint probability distributions and the 

product of marginal probability distributions (Zhao et al., 2016).   
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In our flow cytometry experiments, the signal, say, X, corresponds to the presence or absence of 

either mating factor or salt in the media. Since this is a discrete (yes or no) we represent this as a 

0 or 1 binary variable. Since the response, Y, corresponds to the pathway reporter output as 

measured by flow cytometry, this is actually a continuous measurement and in order to compute 

the formula above we must discretize the data. Discretization of continuous data inevitably leads 

to a loss of information, but we tried to minimize the loss of information due to binning the data 

by binning the data into 1000 bins for the MA and Ste50 variant experiments where we counted 

at least 10,000 cells and 10,000 bins for the Ste50 library experiments where we counted at least 

100,000 cells. To address the choice of the number of bins, we computed the MI as a function of 

the number of bins. We found that as the number of bins increased, MI saturated as long as the 

number of bins was above 100. MI was calculated using an in-house script written in Python (see 

Appendix 1). To ensure bins are not empty, the bin width was set to the minimum and maximum 

values for each experiment. 

The change in MI due to mutations was calculated by subtracting the MI with wildtype (ancestral 

lines in the MA experiments or wildtype Ste50 in the Ste50 library and variants experiments) 

from the MI with yeast strains carrying mutations (evolved lines in MA experiments, Library of 

Ste50 random variants in the Ste50 library experiments and individual, random variants for the 

Ste50 variant experiments). 

The change in MI was clustered using Cluster 3.0 (for Mac OSx) using the following settings: 

Hierarchical clustering of genes with similarity metric of uncentered correlation using clustering 

method of average linkage (de Hoon et al., 2004). The resulting cluster (.cdt file) was visualized 

using Java Treeview v1.1.6r4 (for Mac OSx) (Saldanha 2004).  

3.6.5.3.4 Data Availability 
The flow cytometry data is on Flow Repository (Spidlen et al., 2012), Repository ID: FR-FCM-
ZYRZ. 

The Mutual Information script is included as Appendix 1. This and other scripts used to analyze 

the data are included in this thesis are available on GitHub at 

https://github.com/purnimakompella/MutualInformation.
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 Chapter 4: Discussion and Future Directions  

4.1 Summary 
Signaling networks play a vital role in a cell’s ability to sense and respond to its environment. 

Biological processes exhibit pervasive robustness in the face of many types of perturbations 

including genetic changes (Wagner 2005). Point mutations are the ultimate source of genetic 

variation and those affecting signaling reveal how cells process information and are implicated in 

many human diseases (Kitano 2004).  The goal of my thesis work was to quantitatively assess 

the effects of mutations on signaling function. 

First, I identified variants of the yeast mating MAPK that rescued an overexpression driven 

decrease in mating signaling. I hypothesized that I would find variants that would increase kinase 

activity to rescue signaling. In addition to these, I found that premature stop codons at permissive 

residues in a protein kinase can rescue an over-expression driven decrease in yeast mating 

signaling by reducing the levels of the protein through inefficient readthrough of the premature 

stop codon. This work highlighted the importance of measuring the effects of mutations on 

signaling at the level of pathway function and not on protein function. Motivated by this 

surprising rescue of pathway function, I sought to quantify the robustness of signaling pathways 

to mutations. 

To this end, I quantitatively assessed the effects of mutations on HOG and mating signaling by 

mutation accumulation and random mutagenesis. I hypothesized that the HOG pathway would 

have higher mutational robustness than the mating pathway based on the dynamics of the HOG 

pathway response and the pathway architecture. I used the information theory measure of mutual 

information to more comprehensively describe the effects of mutations on signaling response 

considering changes to the reporter distributions and the signal-to-noise ratio of the pathway. I 

showed that the HOG pathway is more robust to mutations. This may be due to the redundancy 

in the pathway, other mechanisms of buffering the effects of variation or a lower mutational 

target size. I showed that removing the second branch of the pathway and controlling for 

mutational target size can explain most of HOG pathway robustness but not all, suggesting that 

HOG signaling is more robust to mutations than mating signaling. I compared HOG and mating 

robustness more directly by studying the effects of the same mutations on the two signaling 
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responses. I found that the same mutations can have opposite effects on mating and HOG 

signaling crosstalk. The mutations with large effects on Ste50 protein have large effects on 

signaling in both pathways. However, I was not able to explain the opposite effects on mating 

and HOG signaling crosstalk. Thus, even in these well-characterized pathways, the complexity 

of the signaling response makes mapping genotype to phenotype non-trivial. 

Overall, in this thesis work, I used various mutagenesis methods to test the effects of mutations 

on signaling in living cells. In the first part, I used an engineered random mutant library of a 

protein kinase to assess the functional significance of mutations on a yeast MAPK pathway. In 

the second part, along with genetic engineering, I used experimental evolution to quantify the 

mutational robustness of two yeast MAPK pathways. We found both non-intuitive and intuitive 

results and ways to quantify both. Applying the tools of systems biology and genetic engineering 

is a comprehensive and complementary approach to answering evolutionary questions. 

 

4.2 Discussion 
I began this thesis work to address the lack of high-throughput functional assays to understand 

the functional significance of genetic variation.  

Understanding how variations in protein sequence affect function is crucial to our understanding 

of many aspects of biology including pathology and evolution (Baker et al., 2012). A common 

experimental approach to studying the protein sequence-structure relationship is to mutate the 

protein, perform a functional assay and sequence the protein to analyze the mutation. In the past, 

the effectiveness of this method was limited to analyzing only a few mutations at once, due to the 

laborious and expensive Sanger sequencing process. With the advent of next generation 

sequencing (NGS) technologies, sequencing is no longer a bottleneck, thus in principle, one 

could evaluate thousands of mutations simultaneously. In fact, current sequencing studies are 

cataloguing genetic variation at a rate far higher than we are able to assign function to the 

uncovered genetic variation. While enumerating genetic variation is valuable, the real utility 

comes in understanding the functional significance of these mutations – if and how they 

contribute to physiological differences between individuals or the onset and progression of 
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disease (Greenman et al., 2007). Hence, there is a need for functional assays that can match the 

throughput of NGS by interrogating the function of millions of mutations at once. 

High-throughput research efforts aimed at mapping protein sequence-function relationships, also 

known as deep mutational scanning, had also relied on bioinformatics, specifically using either 

pattern recognition or 3D structure prediction algorithms (Torkamani and Schork 2008). The 

most popular programs for predicting the sequence-function relationship were Sorting Intolerant 

From Tolerant (SIFT) (Kumar et al., 2009) and Polymorphism Phenotyping v2 (PolyPhen-2) 

(Adzhubei et al., 2010). Both algorithms predict the impact of protein sequence variants (Baker 

et al., 2012). Polyphen-2 is a Bayesian classifier that uses sequence and structure-based features 

to predict whether a mutation will be neutral or deleterious. SIFT is a sequence homology-based 

tool that uses evolutionary conservation of amino acids to predict whether a mutation will be 

tolerated. This approach is based on the idea that substitutions at conserved residues are expected 

to impact the function of a protein more than those at non-conserved residues. There are several 

other such tools, including Protein Variation Effect Analyzer (PROVEAN), a sequence 

alignment-based approach that can also predict the effects of multiple amino acid substitutions 

and indels (Choi and Chan 2015). Although using these tools in combination can improve 

prediction sensitivity and specificity, there are still drawbacks to these bioinformatics analyses. 

For example, due to the predictive nature of these algorithms, complementary functional 

analyses are required to confirm the effects of the mutations (Torkamani and Schork 2008). In 

addition, to use the structure-based features in PolyPhen-2 requires a solved protein structure, 

and SIFT needs orthologous proteins. Furthermore, these methods do not predict the effect of 

synonymous substitutions, which are known to affect gene expression levels (Zhou et al., 2016). 

Finally, since these predictions are based on our understanding of the relationship between 

genotype and phenotype, novel relationships such as those that can be found through functional 

analyses will be missed.  

High-throughput experimental methods for deep mutational scanning were limited to assessing 

protein function by measuring binding affinity or survival in the presence of a challenge. Fowler 

et al. developed a large-scale functional assay that uses phage display to investigate the effects of 

genetic variation on protein function (Fowler et al., 2010). A protein of interest is mutated, and 

variants are then displayed on the phage surface and presented to a ligand. Function of the 

variants is assessed based on binding affinity. After repeated washes to exclude low affinity 
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variants, the bound fraction is recovered and deep-sequenced. This method, while restricted by 

the intrinsic limitations of phage display, which include proteins incompatible with surface 

display and susceptibility to proteolysis during phage propagation, is promising in terms of 

throughput. However, because it is an affinity-based assay, it is only useful to characterize 

binding functions, rather than catalysis, and even then, it is of limited use with proteins with 

weak binding affinities or mutations that cause functional changes without altering binding 

affinity. Finally, the effect of a mutation on protein function while interesting, only tells part of 

the story. It is also important to understand how these changes affect the function of the network 

of interacting proteins. 

Another high-throughput experimental model uses an evolutionary approach to assessing protein 

function. Protein variants are screened in the presence of an environmental (such as temperature) 

or chemical (such as an antibiotic) challenge with the expectation that mutations will have a 

beneficial, neutral or detrimental effect on protein function and thereby, survival. For example, 

Hietpas et al., combined saturation mutagenesis with growth competitions to assess the effect of 

point mutations on survival (Hietpas et al., 2011). They engineered a yeast strain with a 

temperature sensitive heat shock protein 90 (Hsp90), an essential chaperone protein in 

eukaryotes, to analyze all possible substitutions in a nine-amino acid region of Hsp90. Survival 

was measured, as a function of growth, at a non-permissive temperature for both the mutants and 

wild-type. With this model, they were able to functionally assess over 500 codon variants. Due to 

their interest in generating as close to all amino acid substitutions as possible, they chose 

saturation mutagenesis over random mutagenesis, which required them to restrict their study to 

only a nine-amino acid region. 

Kato et al., used site-directed mutagenesis to generate over 2000 single point mutation 

substitutions in the human tumor suppressor protein, p53 (Kato et al., 2003). p53 is a 

transcriptional transactivator that binds to short genomic sequences to induce specific target 

genes. Kato and coworkers analyzed the function of mutants by measuring their ability to 

transactivate a fluorescent reporter in yeast. They found that most of the variants with mutations 

in the DNA binding domain were inactive. They also tested three novel mutations isolated from 

their yeast screening in human cells, confirming their findings. Their results further validate 

yeast as a suitable model of studying human genes. This assay, while high-throughput, is specific 
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to p53 function. Therefore, it cannot be used to detect mutations in other genes. Furthermore, 

their assay also measures only individual protein function and not overall pathway activity. 

There were experimental methods to assess the impact of mutations on signaling pathway 

functions in human cells, however, they were not high-throughput. For example, Fröhling et al. 

used tissue culture-based methods to find individual driver mutations in receptor tyrosine kinase 

FLT3 (Frohling et al., 2007). While this method is promising, due to the limitations of their cell- 

culture model system, in particular its low throughput, and the relative prevalence of passengers 

to drivers, they identified only nine alleles that affected function. Thus, while large-scale 

sequencing projects are cataloguing vast numbers of single nucleotide polymorphisms (SNPs), 

currently, there is no matching high-throughput functional assay to assign phenotypic 

significance to these SNPs. 

My former PhD advisor developed a high-throughput method for studying the evolution of 

signaling networks, using the yeast mating pathway as a model system (Peisajovich et al., 2010). 

Using a fluorescent reporter expressed under the control of a pathway-responsive promoter, they 

analyzed the role of protein domain recombination in the evolution of signaling pathways. They 

showed that some chimeric proteins that included fusions of domains from conserved MAPK 

proteins lead to constitutive pathway activation, as reflected in an increase in the basal levels of 

reporter expression level. Mutations that activate genes without extracellular stimulation are 

excellent candidates for cancer driver mutations. This system constitutes an excellent starting 

point for high-throughput protein sequence-function analysis.  

I proposed an experimental method, based on the highly conserved, MAPK-mediated signaling 

pathway, to study the effect of mutations at the systems-level, for distinguishing between 

activating, neutral and inactivating mutations, to identify mutations that may promote aberrant 

pathway activation as well as for exploring the robustness of MAPK pathways by which 

resistance to therapy may be gained.  Since the readout of the model system that I planned to use 

was activation of a pathway rather than of a single gene, it was potentially applicable to multiple 

yeast genes homologous to human genes. This is important, as there are disease-related proteins 

such as G protein-coupled receptors, G proteins, and small GTPases, among others, for which the 

functional analysis of mutations was limited and exploration through bioinformatics methods 
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was difficult. Importantly, this method would have the capability of interrogating millions of 

mutations at once, and thus it would match the throughput of NGS.  

In the first part of my thesis work, I expected to find mutations that would rescue pathway 

activity by increasing kinase activity. While I did find some variants with these mutations, I also 

found mutations that rescued pathway function in non-intuitive ways. One of the limitations of 

the proposed system was the inability to distinguish between pathway overactivating mutants and 

those with wildtype levels of pathway activity when the mating MAPK was expressed from a 

weak promoter. This was not due to meeting the detection limit of the flow cytometer, 

concentrations of the pheromone (saturating concentrations were used), measuring the response 

too soon after induction (measurements were made at previously confirmed times of two or four 

hours after induction). Motivated by a desire to identify pathway overactivating mutations, I 

expressed the protein from a strong promoter which allowed me to distinguish variants that 

overactivated the pathway from those with lower levels of pathway activity. Overexpression of 

proteins and protein kinases is not an unusual phenotype for diseases (Cohen 2001). Therefore, I 

continued my efforts to identify ways in which the diminished pathway activity could be rescued 

by coding region mutations. By overexpressing the protein and limiting the mutational target size 

to the coding region, I found variants of the protein kinase such as those with premature stop 

codons, that could rescue pathway function. However, in the absence of overexpression, the 

premature stop codons would be expected to be deleterious and pathway function would be 

rescued by coding region mutations that reverted to the wildtype residue. Similarly, if the 

mutational target size were not limited, one trivial way to decrease or compensate for the 

overexpression would be through mutations in cis- or trans- regulatory regions of the protein. 

Therefore, our experimental setup forced us to find uncommon solutions to the problem of 

overexpression driven decrease in pathway activity. 

In the next part of my thesis, my interest in studying the evolution of signaling pathways led me 

to design the experiment to allow understanding of the natural workings of the system. To 

quantify the extent to which MAPK pathways tolerate point mutations, I ensured that I did not 

introduce other types of variation, such as expression level changes, that severely affected 

pathway function. In my first attempt at introducing mutations into a shared component of the 

mating and HOG pathways, I turned to the MAPKKK Ste11. I tested endogenous promoters of 

different lengths, chose and optimized one by introducing a point mutation, and made random 
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mutant libraries with varying mutation rates. However, numerous strategies for cloning the 

random variants into the plasmid vector were unsuccessful and in the interest of time, I moved 

on to another shared component, Ste50. These trials illustrate that science often involves detours 

and requires creative and timely solutions to overcome experimental roadblocks.  

With the individual engineered random variants of Ste50, I expected to find variants with small 

effects on signaling. However, similar to the first part of my thesis work, I found mostly variants 

that either had no effects or large effects. This suggests that mutations with small effects on 

signaling are not discernible in these laboratory experiments.  In the second part of my thesis 

work, I used the change in mutual information as a test for the effects of mutations. Similar to 

my approach, previously the change in information content of individual genetic sequences due 

to mutations was used in bioinformatic analysis to quantify the effects of mutations (Zia and 

Moses 2011). Although information theory has been applied to biological processes for over 

three decades, using mutual information to understand and quantify cellular signaling is a current 

direction in signaling research (Bluthgen and Legewie 2013; Bowsher and Swain 2014; 

Granados et al., 2018; Schneider et al., 1986; Tabbaa and Jayaprakash 2014; Voliotis et al., 

2014; Waltermann and Klipp 2011). Mutual information captures the effects of biological 

variation in cellular responses and estimating the mutual information between time series and 

responses eliminates the need to make assumptions about which features of the responses - 

duration, magnitude, or some other feature - are biologically relevant (Granados et al., 2018).  

Some technical considerations include the importance of not limiting the number of successive 

genetic manipulations for yeast strains by leaving selective markers during gene deletions and 

appreciating the sources of variation that affect reproducibility of results. To quantify the effects 

of mutations on multiple signaling responses concurrently, I needed to use a strain with two 

different fluorescent proteins. To account for the intrinsic differences in fluorescent proteins, I 

sought to create a strain where the fluorescent proteins are expressed from the opposite 

promoters. I was not able to obtain the strain with the desired genotype despite numerous 

attempts. The difficulty in creating this strain highlights the importance of thoughtful strain 

design. For example, knocking out genes without leaving behind selection markers such as via 

Delitto Perfetto (Storici et al., 2001) or newer, CRISPR-based methods (Generoso et al., 2016) 

ensures future changes to the strain are not limited by exhausted selection markers. The strains 
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used the mutation accumulation experiment have slight differences that could have been avoided 

with some consideration to strain background. 

In order to get reproducible results, there exist many sources of variation that need to be 

minimized. For example, growth conditions such as growing cells in 96-well deep well blocks 

compared to culture tubes or flasks, inoculating transformants directly into liquid culture prior to 

flow cytometry analysis compared to plating on media and scraping the cells, densities of cells 

used to inoculate overnight cultures and cultures prior to induction with various stimuli can each 

affect reproducibility. Especially when measuring the stress response, sources of stress such as 

temperature, need to be kept in mind. Differences in flow cytometers can also affect 

reproducibility and can be mitigated by including appropriate controls in the experiment. 

 

4.3 Future Directions 

4.3.1 Tracking the effects of mutations on robustness through evolutionary 
time 

We can test the robustness of the mating and HOG responses with the mutation accumulation 

lines from various generations, thereby testing different mutation rates. We found that the HOG 

pathway response at generation 1480 is about the same as that of the beginning of the 

experiment. We can test the intermediate lineages to test if the mutational robustness of the 

pathway is constant or if it fluctuates. Similarly, we found that the variance in the mating 

pathway signaling increases due to mutations accumulated over 1480 generations. By 

quantifying the amount of variance in this trait over many generations, we could estimate the 

mutational variance, the amount of phenotypic variance added by mutations each generation 

(Duveau et al., 2017; Landry et al., 2007).  

 

4.3.2 Quantification of the contributions of feedback loops to robustness 

One of the advantages to working with a well-characterized system such as the yeast mating and 

HOG signaling network is the wealth of information available about the regulation of the 

signaling responses. For example, we know that single point mutations, such as Sho1 S166E and 
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Ste5 T287V, can disrupt feedback mechanisms responsible for the signaling fidelity of each 

pathway (Bhattacharyya et al., 2006; Hao et al., 2007). One exciting direction for the 

quantification of mutational robustness would be quantifying the contributions of various 

feedback mechanisms to signaling fidelity. Comparing the mutational robustness of a pathway 

using a strain with and another without a specific feedback loop will help allow the 

quantification of the contribution of that feedback loop. By comparing the effects of removing a 

feedback mechanism in one pathway on the mutational robustness of another pathway, we could 

also test if that mechanism plays a more general role in buffering the effects of mutations or if is 

pathway specific.  

 

4.3.3 Effects of selection on mating and HOG signaling 

Studies in Escherichia coli (Cooper and Lenski 2000) and yeast (Kvitek and Sherlock 2013) 

show that evolution favours gaining a fitness advantage by losing unused functions; for example, 

yeast cells lose the ability to sense and respond to extracellular cues through signaling pathways 

when under glucose-limitation in a constant environment. Therefore, if we want to study the 

effects of selection on signaling pathways, we should ensure that the signaling pathways are not 

lost, by either making the cells use them (by exposing them to the inducer) or selecting for the 

presence of pathway response. We can do the latter by FACS. For example, we can grow a wild-

type strain with pathway responsive fluorescent reporter(s) and select, by gating populations of 

cells with specific fluorescence levels, cells that display the phenotypes of interest. We could 

impose various types of selection including stabilizing selection, directional selection or 

diversifying selection, by gating and sorting populations with a narrower reporter expression 

distribution, those that like at either tail of the distribution, or both tails of the distribution, 

respectively.  This way, we can isolate various types of mutations such as deleterious (lower or 

slower than wild-type pathway response), neutral (wild-type response) and beneficial (higher or 

faster than wild-type pathway response). 
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4.3.4  Quantifying information capacity of signaling pathways  

To more accurately quantify the information capacity of the mating and HOG pathways, it would 

be worthwhile to do a dose-response study assessing the output of the pathway at various levels 

of input.  

Furthermore, previous work has shown that the amount of variance in a trait due to mutations 

can change depending on the environment (Duveau et al., 2017). To tease out the effects of 

environmental on mutational robustness, the change in mutual information due to mutations 

could be quantified for the HOG response under various stresses such as different salts, other 

osmolytes, and temperature, or after exposure to mating pheromone. Complementary analysis of 

the effect of prior exposure to osmotic stress on the mutational robustness of the mating pathway 

would also be interesting. To understand how exposure to multiple signals affects the 

information capacity of the two pathways, cells could be exposed to multiple stimuli 

simultaneously (multiple osmolytes or an osmolyte and mating pheromone), as they are likely to 

encounter in natural environments, and the information capacity of the pathway(s) could be 

quantified.  

While this thesis work has focused on the effects of point mutations on signaling pathways, 

another common type of change is expression level variation. We could study the effects of 

expressing various mating and HOG pathway components at different levels (with a library of 

promoter mutations or by expressing wildtype proteins from promoters of different strengths) on 

the information capacity of the two pathways. 
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Appendix 1: Mutual Information script 

1. #Title: MutualInformation.py    
2. #Author: Purnima Kompella   
3. #This code does:    
4.     #1) discretizes continuous data by binning using linspace   
5.     #2) adds a column of 0's and 1's to uninduced and induced, re

spectively;               
6.         #this allows calculation of the entropy of the input, "in

put"   
7.     #3) combines the data for uninduced, x, and induced, y, into 

"mergeddata"   
8.     #4) calculates entropy using the formula entropyx = -

sum(p(x)*log2 p(x))   
9.     #5) calculates mutual information using the formula entropy m

ergeddata +       
10.         #entropy input - [entropy (x)+entropy(y)]   
11.     #6) This script requires files are named as such:    
12.         #Date_StrainName_LineNumber_PassageNumber_Condition_

x_x_x"    
13.    
14.    
15. import numpy as np   
16. import matplotlib   
17. #import matplotlib.pyplot as plt #can't import this when run

ning on terminal (machine without display)   
18. import csv   
19. import glob   
20. import os   
21. import datetime #to save outfile with today's date   
22.    
23. matplotlib.use('Agg') #calling this to fix an error with ope

ning on machines without display   
24.    
25. import matplotlib.pyplot as plt #calling after previous line

 to fix an error with opening on machines without display   
26. import matplotlib.mlab as mlab   
27. from matplotlib.patches import Rectangle   
28.    
29. #Use FindFewestRowsLowestandHighestGFP.R to find lower and u

pper limits for GFP values   
30. lowerlimit=0   
31. upperlimit=5.5   
32. #Number of bins should be at least ~0.5% of the number of da

ta points. Example: at least 1000 bins for 20,000 cells   
33. numberofbins="1000"   



110 

 

34. path = "" #insert path name here   
35.    
36. now = datetime.datetime.now()   
37. todaysdate = now.strftime("%Y%m%d") #get's today's date in t

he format yyyymmdd   
38.    
39. outfilename = "MutualInformation_"+todaysdate+"_Range" + str

(lowerlimit) + "-
" + str(upperlimit) + "_" + str(numberofbins) + "bins.csv"   

40. outfile = open(outfilename, "w")  # opens and with "w", writ
es, a new file in the same directory as path with the given name 
  

41. # write only takes one parameter so adding all the different
 column names together    

42. # (don't need to here but just doing it for consistency with
 variables later)   

43. # separating with a "," so the file can be csv   
44. # printing a new line at the end so the values can be propag

ated in a new row   
45. outfile.write('Sample1,' + 'Sample2,' + 'MI_GFP,' + 'Date,' 

+ 'Strain,' + 'Line,' + 'Passage,' + 'Time,\n') #add MI_BFP if ne
cessary   

46.    
47. #Calculates entropy of the merged data    
48. def calculate_entropy (data, cells, name, lowerlimit, upperl

imit, numberofbins):   
49.    
50.     bins = np.linspace(lowerlimit, upperlimit, numberofbins)

 #bins values using the limits into the given number of bins   
51.     digitized = np.digitize(data, bins) #Return the indices 

of the bins to which each value in input array belongs   
52.     counts = np.bincount(digitized)[1:].astype(np.float32) #

Count number of occurrences of each value in array of non-
negative ints.   

53.     normalized = counts / cells #calculates p(x)    
54.    
55.     sum = 0   
56.     for i in normalized:   
57.         if i != 0:   
58.             sum += i * np.log2(i)   
59.         elif i == 0:    
60.             sum += i   
61.    
62.     if name != 'none':   
63.         name_split = name.split("_")   
64.         date=name_split[0]   
65.         strain=name_split[1]   
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66.         line=name_split[2]   
67.         passage=name_split[3]   
68.         #condition=name_split[4]   
69.         time=name_split[5]   
70.         time=time+"min"   
71.         reporter=name_split[12]   
72.         figuretitle = date+" "+strain+" "+line+" "+passage+"

 "+reporter+" response \n+&- Induction after "+time+" ("+numberof
bins+" bins)"   

73.    
74.         plt.hist(data, bins=bins, color='red', alpha=0.5, ed

gecolor='red')   
75.         plt.title(figuretitle)   
76.         plt.ylabel("Count")   
77.         plt.xlabel("Fluorescent Reporter Expression (A.U.)")

   
78.    
79.     return -sum   
80.    
81. #Calculates entropy of the input   
82. def calculate_entropy_input (data, cells):   
83.     bins = np.linspace(0, 1, 2)    
84.     digitized = np.digitize(data, bins)   
85.     counts = np.bincount(digitized)[1:].astype(np.float32)   
86.    
87.     normalized = counts / cells   
88.    
89.     sum = 0   
90.     for i in normalized:   
91.         if i != 0:   
92.             sum += i * np.log2(i)   
93.         elif i == 0:    
94.             sum += i   
95.    
96.     return -sum   
97.    
98. #Calculates joint entropy   
99. def calculate_entropy_xy (data_x, data_y, cells, xname, ynam

e, lowerlimit, upperlimit, numberofbins):   
100.    
101.     bins_x = np.linspace(lowerlimit, upperlimit, numberofbin

s)    
102.     digitized_x = np.digitize(data_x, bins_x)    
103.     counts_x = np.bincount(digitized_x)[1:].astype(np.float3

2)    
104.    
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105.     bins_y = np.linspace(lowerlimit, upperlimit, numberofbin
s)    

106.     digitized_y = np.digitize(data_y, bins_y)   
107.     counts_y = np.bincount(digitized_y)[1:].astype(np.float3

2)   
108.    
109.     normalized_x = counts_x / cells   
110.     normalized_y = counts_y / cells   
111.    
112.     sum = 0   
113.     sum_x = 0   
114.     for i in normalized_x:   
115.         if i != 0:   
116.             sum_x += i * np.log2(i)   
117.         elif i == 0:   
118.             sum_x += i   
119.    
120.     sum_y = 0   
121.     for i in normalized_y:   
122.         if i != 0:   
123.             sum_y += i * np.log2(i)   
124.         elif i == 0:   
125.             sum_y += i   
126.    
127.     sum = sum_x+sum_y   
128.    
129.     name = yname   
130.     name_split = name.split("_")   
131.     date = name_split[0]   
132.     strain = name_split[1]   
133.     line = name_split[2]   
134.     passage = name_split[3]   
135.     #condition = name_split[4]   
136.     time = name_split[5]   
137.     time = time + "min"   
138.     reporter = name_split[6]   
139.    
140.     #plt.figure()   
141.     plt.hist(data_x, bins=bins_x, color='grey', alpha=0.8, e

dgecolor='grey')   
142.     #plt.title(figuretitlex)   
143.     #plt.savefig(xname+".png")   
144.     #plt.close()   
145.    
146.     #plt.figure()   
147.     plt.hist(data_y, bins=bins_y, color='black', alpha=0.7) 
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148.     #plt.title(figuretitle)   
149.     handles = [Rectangle((0, 0), 1, 1, color=c, ec="k") for 

c in ['grey', 'black', 'red']]   
150.     labels = ["Uninduced", "Induced", "Combined"]   
151.     plt.legend(handles, labels, loc=0)   
152.     now = datetime.datetime.now()   
153.     todaysdate = now.strftime("%Y%m%d")   
154.     figurename = "Range"+str(lowerlimit)+"-

"+str(upperlimit)+"_"+numberofbins + "bins_"+date + "_" + strain 
+ "_" + line + "_"+ passage + "_" + reporter +"_"+ time+"_"+today
sdate+".png"   

155.     plt.savefig(figurename)   
156.     plt.close()   
157.    
158.     return -sum   
159.    
160. def open_file (path):   
161.     file1 = open(path)   
162.     list1 = csv.reader(file1, delimiter=',')   
163.     matrix = np.array([row for row in list1])   
164.     return matrix   
165.    
166. #copied this function from: https://mail.python.org/pipermai

l/tutor/2004-April/029019.html   
167. #Mac OS X inserts .DS_Store files and this function ignores 

any files that begin with a "."   
168. def mylistdir(directory):   
169.     """A specialized version of os.listdir() that ignores fi

les that  
170.     start with a leading period."""   
171.     filelist = os.listdir(directory)   
172.     return [x for x in filelist   
173.             if not (x.startswith('.'))]   
174.    
175. for filename in mylistdir(path):   
176.     print("Filename: ", filename)   
177.     strainName = None   
178.     splitResult = None   
179.     date = None   
180.     line = None   
181.     passage = None   
182.     strain = None   
183.     condition = None   
184.     time = None   
185.     rest = None   
186.   path1name = None   
187.     path1 = None   



114 

 

188.     path2name = None   
189.     path2 = None   
190.    
191.     if filename.endswith(".csv"):   
192.         strainName = filename   
193.         splitResult = filename.split("_")  # separates the f

ilename whereever there's an underscore   
194.         date = splitResult[0]   
195.         strain = splitResult[1]   
196.         line = splitResult[2]   
197.         passage = splitResult[3]   
198.         condition = splitResult[4]   
199.         time = splitResult[5]   
200.         rest = ' '.join(["_",splitResult[6],"_",splitResult[

7],"_",splitResult[8]])   
201.    
202.         if condition == 'Uninduced':   
203.             path1name = ' '.join([date, "_", strain, "_", li

ne, "_",passage,"_Uninduced", "_", time, rest])   
204.             path1name = path1name.replace(" ", "")  # remove

 spaces   
205.             path1 = path1name   
206.             path2name = ' '.join([date, "_", strain, "_", li

ne, "_",passage,"_Induced", "_", time, rest])  # add the string t
ogether   

207.             path2name = path2name.replace(" ", "")  # remove
 spaces   

208.             path2 = path2name   
209.    
210.         else:   
211.             continue   
212.    
213.         print("Path1: ", path1)   
214.         data1 = open_file(path1)   
215.         print("Path2: ", path2)   
216.         data2 = open_file(path2)   
217.    
218.         # Mutual Information (GFP)   
219.     #Stores GFP values for uninduced cells from column 7 int

o a new array and adds a column of 0s indicating induction status
=uninduced   

220.         data1_GFP = data1[1:, 6]  # gets GFP "B1-
A" column, count starts at 0 so it's column 6   

221.         data1_GFP_noblanks = list(filter(None, data1_GFP))  
# remove blanks   

222.         data1_GFP_noblanks_array = np.asarray(data1_GFP_nobl
anks)  # convert list to array   
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223.         data1_GFP_noblanks_array = data1_GFP_noblanks_array.
astype(np.float32)   

224.         zeros_GFP = np.zeros((len(data1_GFP_noblanks_array),
 1))   

225.         data1_GFP_noblanks_array_reshape = np.reshape(data1_
GFP_noblanks_array, (len(data1_GFP_noblanks_array), 1))  # change
s the shape of the array   

226.         data1_GFP_noblanks_array_condition = np.append(data1
_GFP_noblanks_array_reshape, zeros_GFP, axis=-1)   

227.        
228.     #Stores GFP values for induced cells from column 7 into 

a new array and adds a column of 1s indicating induction status=i
nduced   

229.         data2_GFP = data2[1:, 6]   
230.         data2_GFP_noblanks = list(filter(None, data2_GFP))   
231.         data2_GFP_noblanks_array = np.asarray(data2_GFP_nobl

anks)   
232.         data2_GFP_noblanks_array = data2_GFP_noblanks_array.

astype(np.float32)   
233.         ones_GFP = np.ones((len(data2_GFP_noblanks_array), 1

))   
234.         data2_GFP_noblanks_array_reshape = np.reshape(data2_

GFP_noblanks_array, (len(data2_GFP_noblanks_array), 1))   
235.         data2_GFP_noblanks_array_condition = np.append(data2

_GFP_noblanks_array_reshape, ones_GFP, axis=-1)   
236.        
237.     #Merging uninduced and induced   
238.         mergeddata_GFP = np.concatenate((data1_GFP_noblanks_

array_condition, data2_GFP_noblanks_array_condition))   
239.         mergeddata_GFP = np.array(mergeddata_GFP)   
240.         totalcells_GFP = len(mergeddata_GFP) #gets length of

 merged data array to find total number of cells   
241.        
242.     #Gets file names without full path   
243.         data1name = os.path.basename(path1)   
244.         data1name = data1name.replace(".csv", "")   
245.         data2name = os.path.basename(path2)   
246.         data2name = data2name.replace(".csv", "")   
247.         mergedname = data1name + "_" + data2name   
248.        
249.     #Calculate entropy   
250.         entropy1_GFP = calculate_entropy(mergeddata_GFP[:, 0

], totalcells_GFP, (mergedname + "_GFP"), lowerlimit, upperlimit,
 numberofbins)   

251.         entropy2_GFP = calculate_entropy_input(mergeddata_GF
P[:, 1], totalcells_GFP)   
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252.         joint_entropy_GFP = calculate_entropy_xy(data1_GFP_n
oblanks_array, data2_GFP_noblanks_array, totalcells_GFP, (data1na
me + "_GFP"), (data2name + "_GFP"), lowerlimit, upperlimit, numbe
rofbins)   

253.        
254.     #Calculate MI   
255.         mutual_information_GFP = entropy1_GFP + entropy2_GFP

 - joint_entropy_GFP   
256.         mutual_information_GFP = str(mutual_information_GFP)

  # convert number to string so it can be stored (issue with stor
ing mixed number and string array)   

257.    
258. #       #Mutual Information (BFP)   
259.     #Stores BFP values for uninduced cells from column 8 int

o a new array and adds a column of 0s indicating induction status
=uninduced   

260. #       data1_BFP = data1[1:, 7]    
261. #       data1_BFP_noblanks = list(filter(None, data1_BFP))  

# remove blanks   
262. #       data1_BFP_noblanks_array = np.asarray(data1_BFP_nobl

anks)  # convert list to array   
263. #       data1_BFP_noblanks_array = data1_BFP_noblanks_array.

astype(np.float32)   
264. #       zeros_BFP = np.zeros((len(data1_BFP_noblanks_array),

 1))   
265. #       data1_BFP_noblanks_array_reshape = np.reshape(data1_

BFP_noblanks_array, (len(data1_BFP_noblanks_array), 1))  # change
s the shape of the array   

266. #       data1_BFP_noblanks_array_condition = np.append(data1
_BFP_noblanks_array_reshape, zeros_BFP, axis=-1)   

267. #   
268. #   #Stores BFP values for induced cells from column 8 into 

a new array and adds a column of 1s indicating induction status=i
nduced   

269. #       data2_BFP = data2[1:, 7]   
270. #       data2_BFP_noblanks = list(filter(None, data2_BFP))   
271. #       data2_BFP_noblanks_array = np.asarray(data2_BFP_nobl

anks)   
272. #       data2_BFP_noblanks_array = data2_BFP_noblanks_array.

astype(np.float32)   
273. #       ones_BFP = np.ones((len(data2_BFP_noblanks_array), 1

))   
274. #       data2_BFP_noblanks_array_reshape = np.reshape(data2_

BFP_noblanks_array, (len(data2_BFP_noblanks_array), 1))   
275. #       data2_BFP_noblanks_array_condition = np.append(data2

_BFP_noblanks_array_reshape, ones_BFP, axis=-1)   
276. #      
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277. #   #Merging uninduced and induced   
278. #       mergeddata_BFP = np.concatenate((data1_BFP_noblanks_

array_condition, data2_BFP_noblanks_array_condition))   
279. #       mergeddata_BFP = np.array(mergeddata_BFP)   
280. #       totalcells_BFP = len(mergeddata_BFP)   
281. #    
282. #   #Calculate Entropy     
283. #       entropy1_BFP = calculate_entropy(mergeddata_BFP[:, 0

], totalcells_BFP, (mergedname + "_BFP"), lowerlimit, upperlimit,
 numberofbins)   

284. #       entropy2_BFP = calculate_entropy_input(mergeddata_BF
P[:, 1], totalcells_BFP)   

285. #       joint_entropy_BFP = calculate_entropy_xy(data1_BFP_n
oblanks_array, data2_BFP_noblanks_array, totalcells_BFP, (data1na
me + "_BFP"), (data2name + "_BFP"), lowerlimit, upperlimit, numbe
rofbins)   

286. #   #Calculate Mutual Information   
287. #       mutual_information_BFP = entropy1_BFP + entropy2_BFP

 - joint_entropy_BFP   
288. #       mutual_information_BFP = str(mutual_information_BFP)

  # convert number to string so it can be stored (issue with stor
ing mixed number and string array)   

289.    
290.         # for testing:   
291.         # print ('\tPath1:', os.path.basename(path1))   
292.         # print ('\tPath2:', path2)   
293.         # print ('\t\tmutual_information_GFP:', mutual_infor

mation_GFP)   
294.         # print ('\t\tmutual_information_BFP:', mutual_infor

mation_BFP)   
295.         # print ()   
296.         #conditionname = condition.replace("No", "")   
297.            
298.     outfile.write(os.path.basename(path1) + ',' + path2 + ',

' + mutual_information_GFP +  ',' + date + ',' + strain + ',' + l
ine + ',' + passage +',' + time + ',\n') #add mutual_information_
BFP if necessary   

299.         plt.close('all')   
300.    

301. outfile.close 


