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ABSTRACT 

Motivation: Protein kinases represent critical links in cell signaling. 

A central problem in computational biology is to systematically iden-

tify their substrates.  

Results: This study introduces a new method to predict kinase sub-

strates by extracting evolutionary information from multiple se-

quence alignments in a manner that is tolerant to degenerate motif 

positioning. Given a known consensus, the new method (ConDens) 

compares the observed density of matches to a null model of evolu-

tion and does not require labeled training data. We confirmed that 

ConDens has improved performance compared to several existing 

methods in the field. Further, we show that it is generalizable and 

can predict interesting substrates for several important eukaryotic 

kinases where training data is not available. 

Availability and Implementation: ConDens can be found at 

http://www.moseslab.csb.utoronto.ca/andyl/. 

Contact: alan.moses@utoronto.ca 

Supplementary information: Supplementary data is available at 

bioinformatics online. 

1 INTRODUCTION  

Protein phosphorylation is a well-studied class of post-translational 

modification that has powerful influence over the dynamics of 

biological systems. It is characterized by the addition of a phos-

phate group (PO4) to an amino acid residue by a kinase enzyme 

(Berg, 2007). Proteins that are subjected to these events often un-

dergo a biochemical change that can, in turn, affect biological 

pathways associated with them (Cohen, 1982). 

Kinases often choose phosphorylation targets selectively 

and different kinases may favour residues with different local ar-

rangements of amino acids (which are referred as “consensus se-

quences” or “motifs”) (Collins et al., 2007). However, consensus 

sequences alone are often insufficient for kinase substrate predic-

tion because they tend to be short and degenerate and matches are 

expected to occur frequently by chance in random sequences.  

Computational kinase substrate predictors take ad-

vantage of a myriad of local biological information in generating 

their predictions. This includes amino acid arrangement (Blom et 

al., 1999; Obenauer et al., 2003; F.-F. Zhou et al., 2004; Xue et al., 

2008, 2011; Lam et al., 2010), biochemical/structural property 

(Blom et al., 1999; Lam et al., 2010; Iakoucheva et al., 2004), and 
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quantity/density of consensus matches (Lam et al., 2010; Moses, 

Hériché, et al., 2007; Chang et al., 2007; Gnad et al., 2011). There 

are also some that incorporate interactome information to further 

enhance their predictions (Linding et al., 2008; T. Li et al., 2010). 

The focus of our work is to develop a kinase substrate 

prediction method based on motif conservation over evolution. 

This idea is based on the work in a previous study (Budovskaya et 

al., 2005) which illustrated that consensus sites for protein kinase 

A (or PKA) are more likely to be phosphorylated if preserved over 

longer evolutionary distances.  

A challenge in using this approach is that patterns of mo-

lecular evolution in protein sequences are highly heterogeneous. In 

many cases, a match to a consensus sequence (which we will also 

refer as “match”, “motif match”, or “consensus match”) can be 

considered as functionally conserved if it is well-aligned in a mul-

tiple sequence alignment (or MSA) (Figure 1A). However, in sit-

uations where the entire local sequence neighbourhood is also 

conserved, it will be difficult to tell whether the matches are “spe-

cifically” conserved due to a kinase substrate interaction or “non-

specifically” conserved as part of a larger domain with a different 

function (Figure 1C) (Budovskaya et al., 2005). 

At the same time, functional phosphorylation motif 

matches do not necessarily align in a MSA. Previous studies have 

shown that phosphorylation sites are often not positionally con-

served despite being located in the same local region in ortholo-

gous proteins (Chang et al., 2007; Holt et al., 2009; Moses, Liku, et 

al., 2007; Ba and Moses, 2010). For such examples (Figure 1B), 

one can observe that the quantity of matches in the local sequence 

neighbourhood is consistent among orthologous sequences (Holt et 

al., 2009; Moses, Liku, et al., 2007; Ba and Moses, 2010). Never-

theless, all of these cases contrast with the patterns observed for 

randomly-occurring matches to the consensus site (Figure 1D), 

which typically show no consistent conservation patterns and dis-

appear quickly. 

Current conservation-based prediction methodologies are 

largely focused on the residue conservation of motif matches (Lam 

et al., 2010; Budovskaya et al., 2005; Gnad et al., 2011). Since 

these strategies are dependent on the positional conservation of the 

matches of interest, they may be insensitive towards situations 

where matches are not positionally conserved (Figure 1B). Fur-

thermore, the lack of consideration for the local region’s conserva-

tion can lead to false detection of matches located in highly con-

served neighbourhoods (Figure 1C). 

To address these issues, we designed a new kinase sub-

strate prediction method (ConDens) that (i) considers the conserva-
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tion of the number of motif matches in a local region of the pro-

tein, rather than the alignment of individual phosphorylation sites,  

and (ii) uses an evolutionary model to account for the local se-

quence divergence to avoid detection of spurious matches in con-

served domains.  

Since the method uses a null model of evolution, it does 

not require a labeled set of bona fide phosphorylation sites and 

negative motif matches. Although it does require an input consen-

sus sequence, we consider it to be unsupervised relative to other 

methods (Xue et al., 2006, 2011; Lam et al., 2010) that train their 

classification models based on datasets of previously known phos-

phorylation sites.  

We compared ConDens’ ability to predict Cdc28 phos-

phorylation substrates against that of several methodologically 

different phospho-predictors in the field and showed it had an im-

proved classification performance compared to these other meth-

ods. Finally, we used ConDens to scan the S. cerevisiae genome 

for potential phosphorylation substrates of Mec1/Tel1, Prk1, Ipl1, 

PKA, CKII, and Ime2 kinases. In all but one case, our results indi-

cated a statistically significant enrichment of known kinase sub-

strates among our predictions. 

 
 
Figure 1. Patterns of match conservation. Multiple sequence alignments are shown with S/T-P matches boxed and bona fide phosphorylation sites (Holt et 

al., 2009; Harvey et al., 2005)  labeled with arrows. Each alignment has a match of interest on the S. cerevisiae sequence marked with a circle. 

The ConDens pair-wise p-values for these matches of interest are shown on the right of each ortholog (“-loge(p-value)”) and the overall scores for these 

matches are shown as large numbers (“Score”). (A) Swe1 and orthologs. Marked match starts at Thr 196 where the local rate of evolution is high but the 

consensus site itself is conserved.  (B) Tif4632 and orthologs. Marked match starts at Thr 196 where the local quantity of S/T-P matches is conserved but not 

aligned. (C) Tfp1 and orthologs. Marked match starts at Ser 858 (Ser in first motif match) where local rate of evolution is low. Both matches in the S. cere-

visiae are perfectly aligned but are not thought to be phosphorylated by Cdc28. (D) Gds1 and orthologs. Marked match starts at Thr 363 (Thr in first match) 

where local rate of evolution is high. Both matches in the S. cerevisiae protein are neither conserved nor thought to be phosphorylated by Cdc28. 

2 METHODS 

2.1  ConDens, a New Kinase-substrate Prediction Method 

2.1.1. Overview 

ConDens is designed to assess the conservation of the number of matches 

in local regions of a protein of interest (Z), given the local sequence diver-

gence and without relying on alignment of matches between orthologous 

sequences. ConDens first defines a reference local region around each 

motif match m and counts the number of motif matches located in corre-

sponding regions within Z’s orthologs. Then for each orthologous region, a 

“pair-wise” p-value is computed to test the null hypothesis of observing the 

number of matches in Z’s orthologs in the absence of specific selection to 

retain the motif matches (see Section 2.1.2). The score for a match is then 

derived by combining these pair-wise p-values using Fisher’s method.  

Finally, ConDens assigns protein Z the most significant score of the match-

es in its primary sequence. 

2.1.2. The ConDens Model 

In principle, a motif match can be conserved “specifically” (due 

to the unique properties of the motif) or “non-specifically” (due to being 

part of a conserved domain). In the absence of purifying selection specific 

for a kinase-substrate interaction, the number of associated phosphorylation 

motif matches in the sequence is expected to approach an equilibrium level 

over evolution as dictated by random mutation events and the local evolu-

tionary rate. On the other hand, where there is purifying selection for a 

kinase-substrate interaction, the matches are likely to be conserved in quan-

tity over evolution (Moses, Liku, et al., 2007) and thus deviate from an 

equilibrium level or approach this level more slowly.  

We formulated a statistical model to detect selection on the 

number of matches to a consensus sequence, C, by rejecting the null hy-

pothesis of evolution according to a local evolutionary model with no spe-

cific constraint to retain motif matches. For our purpose, we defined a 
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consensus sequence C of width w as an array of character sets C1, …, Cw, 

where Cj represents the set of allowable amino acid residues in the jth posi-

tion in the consensus. As an example, the S/T-P consensus would be repre-

sented as [{S,T},{P}] and have w = 2. Given peptide sequences � and �′, 
we estimate the evolutionary distance, �, between � and �′ and compute the 

distribution of matches in �′ conditioned on �, an amino acid substitution 

model (��) and �. This evolutionary distance � is estimated based on the 

model chosen. For instance, � would be the Jukes-Cantor distance if �� is 

the Jukes Cantor substitution model. 

To compute the distribution of the number of matches to � un-

der the null hypothesis (or the “null distribution”), we first determine the 

probability pi that a match to C begins at the ith position in S after � evolu-

tionary distance, assuming evolution of amino acids occurs as dictated by 

��.  

 

 

�� �	Pr�����	��	�	��	��������	�|�� , … , ������, ��, ��	
�	�� Pr�

�∈!"
#|���$��, ��, ��

�

$%�
 

(1) 

 

In this equation, �& is the '() residue in sequence S, and A are the allowed 

amino acid residues at the *() position of consensus �.  

At any time in evolution, each position can either match C or 

not.  Therefore, equation (1) can be used to approximate the null distribu-

tion of match counts in sequence �′ as a sum of + � |�| , - . 1 inde-

pendent Bernoulli random variables with success probabilities ��, … , �0 . 

Since these Bernoulli random variables can have different parameters, we 

used a generalized form of the binomial distribution known as the “Poisson 

binomial distribution” (Y. H. Wang, 1993) to approximate the probability 

of observing n matches to the consensus sequence �  after evolutionary 

distance �:  
 

 

 

Pr�#	����2�	��	�′|�, ��, �� 3 45+��|��, … , �0� 
 

45+��|��, … , �0� � � ���67�1 , �����67
0

�%�6|∑ 6"" %9	
	

 

(2) 

 

 

(3) 

 

Where PBN(n|p1,..., pN) is the Poisson binomial probability density function 

(Y. H. Wang, 1993), :� ∈ ;0,1= is an indicator variable that equals 1 if the 

ith position matches the motif and 0 otherwise, and the sum is over all pos-

sible X = [X1, ..., XN] with exactly n matches. We used dynamic program-

ming to compute equation (3) in >�+?� time. Details can be found in the 

Supplementary Materials 

2.1.3. The ConDens Algorithm 

We are given a protein of interest @, a consensus C, a substitution model 

SM, a multiple sequence alignment of @ and orthologs, and a search radius 

parameter A	є	C. We compute a score for each consensus match  in @, as 

follows (see Supplementary Figure 1 for illustration): 

 

Step 1: Find �, a region in @ that encompasses +/- A positions around ’s 

first position.  

 

Step 2: Find the columns D in the multiple sequence alignment that corre-

sponds to �. 

 

Step 3: For each ortholog E in the multiple sequence alignment: 

 

i. Compute an evolutionary distance � based on the local sequence 

divergence between proteins @ and E at columns D  

 

ii. Find the position in E that aligns to the location of  in @ and 

then count the number of motif matches, n, within +/- A residues 

around that position. If this position is a gap, choose the imme-

diately preceding non-gapped position in E’s primary sequence. 

 

iii. Compute the pair-wise p-value, Pr�#����2� F �|�, ��, ��, by 

directly summing terms computed using equation (3) 

 

Step 4: Compute a score for match  by combining the pair-wise p-values 

acquired in ��2�	3 by using Fisher’s method.  

 

Once the scores for all  in the protein @ are calculated, the lowest of them 

is transformed to –loge space and output as @’s score. Higher scores indi-

cate a greater confidence that there is a match in the protein that is specifi-

cally conserved. 

2.1.4. ConDens Parameter and Species Choice  

In this study, the ConDens algorithm was applied to the S. cerevisiae prote-

ome. The window radius A was chosen to be 20 because that would provide 

tolerance to the positional degeneracy of phosphorylated sites. Protein 

disordered region predictors (Linding et al., 2003) use windows of this size, 

suggesting a length scale for the rapidly evolving regions that contain 

phosphorylation sites. The amino acid substitution model �� chosen for 

this study was H�69��, which is a derivative of the H�69 model (Jukes and 

Cantor, 1969) adapted to amino acids instead of nucleotides (i.e. 20 residue 

types instead of 4). 

The protein sequences of the S. cerevisiae proteome were a set 

of 5,885 non-dubious open-reading frames (ORF’s) in the Saccharomyces 

Genome Database (or “SGD”) (Cherry et al. 1998) on September 2010. 

Multiple sequence alignments were computed using MUSCLE (Edgar, 

2004) and based on protein orthologs of S. cerevisiae in S. bayanus, C. 

glabrata, S. castellii, K. polysporus, Z. rouxii, K. lactis, A. gossypii, K. 

waltii, K. thermotolerans, and S. kluyveri. The phylogenetic relationships 

between species were acquired from (Conde e Silva et al., 2009) and the 

homology relationships between their proteins were obtained from the 

Yeast Genome Order Browser (or “YGOB”) (Muffato et al., 2010).  

The choice of species can affect the performance of our method. 

In absence of substantial sequence divergence, the conservation of motif 

matches will almost certainly be expected under the null hypothesis. On the 

other hand, motif matches are less likely to be conserved between very 

distantly-related species because the kinase substrate interaction may have 

diverged. Highly gapped alignments and repetitive sequences can also pose 

problems in some cases (See Supplementary Figure 2) 

The effects of using different sets of budding yeast species in 

the multiple sequence alignments were studied and it was found that the 

AUC and AUC50 of ConDens reached a plateau when 7 or more species 

were included in the sequence alignments (Supplementary Table 1). A 

similar consistency of AUC and AUC50 was observed when different val-

ues for the window radii parameter (A = 10, 15, 20, 25, 30) were used 

(Supplementary Table 2). 

2.1.5. ConDens Implementation and Usage 

Computational implementation of ConDens and details of its use can be 

found at http://www.moseslab.csb.utoronto.ca/andyl. For the purpose of 

substrate prediction, we recommend users to either follow a ConDens cut-

off of 9 (see Section 3.3) or to choose the top ' proteins from the results 

(with ' being the number of proteins the user would like to examine).  

To facilitate manual verification of our predictions, a browser 

was also provided to allow users to view the multiple sequence alignments 

of individual predictions.  

2.2   Performance evaluation 

2.2.1. Cdc28 Dataset 

We assembled a “Cdc28 dataset” consisting of proteins phosphorylated by 

the Cdc28 kinase (“positives”) and proteins not phosphorylated by the 

Cdc28 kinase (“negatives”). This data was drawn from two Cdc28 phos-

phorylation studies – an in vitro kinase assay  by Ubersax et al. (Ubersax et 

al., 2003) and an in vivo genome-wide mass spectrometry experiment by 

Holt et al. (Holt et al., 2009). Proteins with one or more Cdc28 phosphory-

lation site in the in vivo study were considered to be positives and proteins 

not discovered to be Cdc28 targets in both studies were considered to be 

“negatives” (Supplementary Figure 3). We made a special exception to 
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Cln2 despite it being not a hit in both studies, since it was a well-known 

Cdc28 substrate (Deshaies et al., 1995; Lanker et al., 1996) and was the 

only false negative prediction discussed by the in vitro study that was not 

recovered by the in vivo study. 

We explicitly excluded Cdc28 targets found in the in vitro study 

that were not confirmed in the in vivo study, since the conditions used in in 

vitro studies may not reflect the characteristics of in vivo environments.  

To define a subset of the Cdc28 dataset with sparsely distributed 

S/T-P matches, we used the SLR algorithm (Moses, Hériché, et al., 2007) to 

compute a cluster score that measures the “clusteredness” of S/T-P match-

es. For our purposes, we consider proteins that score less than 3 to have a 

sparse spatial distribution of S/T-P matches (or “unclustered”). The com-

mand line operation we used was perl compute_SLR.pl <ORF 

FILE> ‘[ST]P’, where <ORF File> is a FASTA file of all non-dubious 

S. cerevisiae protein sequences from SGD. It is important to note that this 

is different to the SLR score, which uses the strong Cdc28 consensus (S/T-P-

X-R/K) in addition to the S/T-P consensus. 

2.2.2. Phosphorylation Consensus Sequences 

In our experiments, we used an S/T-P consensus to detect Cdc28 targets. 

While the kinase is widely reported to have a more stringent S/T-P-X-R/K 

consensus (Friedman et al., 1996) (which we refer to as a “strong” Cdc28 

consensus), we chose not to use it due to many known target sites not hav-

ing the R/K at the +3 position (Holt et al., 2009).  

Based on published literature, we also derived consensus sequenc-

es for Mec1/Tel1 (Schwartz et al., 2002), Prk1 (B. Huang et al., 2003), Ipl1 

(Cheeseman, S. Anderson, Jwa, Green, Kang, Yates, Chan, Drubin, and 

Barnes, 2002a), Ime2 (Holt et al., 2007), CKII (Meggio and Pinna, 2003; 

Niefind et al., 2007), and PKA (Budovskaya et al., 2005; Townsend et al., 

1996; Kemp and Pearson, 1990). See Table 2. 

2.2.3.   Known Targets of Other Kinases 

There are generally no large datasets for other S. cerevisiae kinases on the 

scale of the Cdc28 dataset. As a result, we obtained known targets of these 

kinases from the PhosphoGRID database (Stark et al., 2010) and Kinase 

Interaction Database (KID) (Sharifpoor et al., 2011). Specifically, we took 

substrates with two or more references in PhosphoGRID and substrates that 

met the high confidence threshold (6.60) in KID. Information from these 

databases was retrieved on Dec 2011.			 
2.2.4.   Collection of Classification Data 

The following are instructions for obtaining Cdc28 prediction data from 

various protein phosphorylation classifiers. For methods that were specific 

to human kinases, data from Cdc2 (human ortholog of Cdc28) was collect-

ed instead.  

Motif Analysis Pipeline (MOTIPS): 

Protein sequences from the whole S. cerevisiae genome were submitted to 

the MOTIPS web interface (http://motips.gersteinlab.org/) (Lam et al., 

2010). Scores for each protein were taken directly from the program output. 

The parameters used for the program are same as default; we used the 

Cdc28 dataset as its training data and provided it with a PWM determined 

from the Cdc28-phosphorylated sites denoted in (Holt et al., 2009).  

Group-based Prediction System 2.1 (GPS): 

Protein sequences from the whole S. cerevisiae genome were submitted to 

the GPS 2.1 program (F.-F. Zhou et al., 2004). The “Threshold” parameter 

was set to “All”. Matches were assigned scores for the human Cdc2 kinase 

from program output. Each protein was then assigned a score equivalent to 

the highest given to any of their constituent matches.  

Scansite 2.0: 

Protein sequences from the whole S. cerevisiae genome were submitted to 

Scansite web interface (http://scansite.mit.edu/) (Obenauer et al., 2003) 

using the low stringency option.  Matches were assigned scores for the 

human Cdc2 kinase from program output. Each protein was then assigned a 

score equivalent to the lowest given to any of their constituent matches.  

SLR: 

The SLR program was run iteratively on every protein sequence in the S. 

cerevisiae genome. As per recommendation by the paper (Moses, Hériché, 

et al., 2007), we used both the S/T-P and S/T-P-X-R/K consensuses for 

predicting Cdc28 targets. The command line operation we used was perl 

compute_SLR.pl <ORF File> ‘[ST]P.[RK]’ ‘[ST]P’, 

where <ORF File> is a FASTA file of all non-dubious S. cerevisiae protein 

sequences from SGD. We then parsed the resulting score for each individu-

al protein from the output. 

2.2.5.   Measures of Classification Performance 

The performance of a classifier was evaluated using the area under receiver 

operator characteristic curve (AUC) (Fawcett, 2004) and AUC50 (Bauer et 

al., 2011; Gribskov and N. L. Robinson, 1996), which is the AUC meas-

ured for the first 50 false positives. In measuring the AUC, proteins for 

which no prediction was made were considered “missing data” and were 

excluded. Data-points with identical scores were ranked lexically by their 

open-reading frame identifiers. For plotting precision and recall and the 

score distribution histogram (shown in Figure 2) “missing data” were in-

cluded in the lowest bin. 

2.2.6.   Biological Analysis using FunSpec 

FunSpec (M. D. Robinson et al., 2002) was used to analyze the biological 

functions of individual proteins. The parameters we used are the same as 

the default settings with Bonferroni correction turned on. Emphasis was 

given to results in “MIPS Functional Classification”, “GO Biological Pro-

cess”, and “GO Molecular Function”. 

3 RESULTS AND DISCUSSION 

3.1   Predicting Targets of Cdc28 

In principle, computational predictors can predict phosphorylation 

sites, phosphorylated proteins, or both. ConDens can serve either 

purpose. We decided to focus on substrate prediction at a protein-

level because we have a comprehensive dataset of Cdc28 sub-

strates in S. cerevisiae as well as a confident set of proteins that are 

unlikely to be substrates of this kinase (see Section 2.2). We also 

studied the method’s utility in Cdc28 phosphorylation site predic-

tion and results are illustrated in Supplementary Table 3. 

To test ConDens’ classification power at a protein-level, 

we computed a ConDens score (see Section 2.1) for every protein 

in the Cdc28 dataset (see Section 2.2). The known targets (or “pos-

itives”) and non-targets (or “negatives”) distributed differently 

over this score spectrum (Figure 2), with the positives being no-

ticeably shifted towards higher scores (due to having lower pair-

wise p-values).  Because both the positives and negative proteins 

contain matches to the Cdc28 consensus, these results indicate that 

ConDens scores will differentiate bona fide kinase targets from 

other motif-containing proteins. This Cdc28 dataset was also used 

to benchmark ConDens against two other unsupervised kinase 

substrate predictors: Scansite (Obenauer et al., 2003) and SLR (Mo-

ses, Hériché, et al., 2007). Scansite is a method that finds good 

matches to a position weight matrix and SLR is a method that uses 

the spatial distribution of motif matches in the primary amino acid 

sequence.  

The performances of these classifiers were compared us-

ing the area under ROC curves (AUC). To assess the classifiers’ 

utility in guiding experimental kinase substrate discovery, we also 

computed the AUC50 (Bauer et al., 2011; Gribskov and N. L. Rob-

inson, 1996), see Section 2.2.5.  

Overall, ConDens’ AUC (0.790) was substantially higher 

than that of SLR (0.555), Scansite (0.648), and the expectation for a 

random classifier (0.500) (Table 1). The same could be said about 

the AUC50 scores, although the difference between AUC50s of 

ConDens (0.039) and SLR (0.021) was not as large. 
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Since SLR was based on the detection of motif match clus-

ters, it is intrinsically unsuited to predict kinase substrates that 

have a sparse spatial distribution of motif matches. To test whether 

or not ConDens suffered from the same shortcoming, we repeated 

the same classification analysis on proteins in the dataset that do 

not possess spatially clustered S/T-P matches (see Section 2.2.1).  

 
Figure 2. Classification power of the ConDens score. Distribution of Con-

Dens scores among Cdc28 targets (“positives”, white bars) and non-targets 

(“negatives”, gray bars). The bin size for the histogram was 2, and the left 

vertical axis shows the frequency. Also plotted is the precision (circles) and 

recall (crosses) of ConDens’ binary classification over a range of score cut-

offs and is indicated on the right vertical axis.  

Under this circumstance, SLR’s AUC was no better than the ran-

dom expectation. On the other hand ConDens’ AUC only de-

creased by 5% (0.753, see Table 1), which indicates that spatial 

clustering of matches had little effect on ConDens’ classification 

performance. Taken together, the results indicated ConDens had a 

superior predictive performance compared to these other unsuper-

vised methods, even when spatial distribution of matches is sparse. 

3.2   Comparison with Supervised Predictors 

Although ConDens is an ‘unsupervised’ method insofar as it does 

not require a labeled set of positive and negative examples for 

training of parameters, we could also compare its performance 

with supervised methods. We repeated the experiments in Sections 

3.1 using GPS 2.1 (F.-F. Zhou et al., 2004), trained on Cdc2 targets 

(the human homolog of Cdc28) and MOTIPS (Lam et al., 2010), 

which we trained on our Cdc28 dataset.  The AUCs of the super-

vised methods were much closer to those achieved by ConDens. 

Remarkably ConDens’ AUC50s were notably higher (Table 1), 

than these supervised methods.  

This is important because ConDens does not require 

training data, but can still obtain strong classification results. We 

therefore suggest that ConDens will be particularly useful to iden-

tify substrates for kinases when training sets of characterized sub-

strates unavailable, thus retaining the portability of unsupervised 

methods. 

 

 

 
Table 1. Performance of Supervised and Unsupervised Classifiers 

Classifier AUCwhole AUC50whole AUCsparse AUC50sparse 

U
n

su
p

er
v

is
ed

 

ConDens 0.790 0.039 0.753 0.034 

Scansite 0.648 0.017 0.624 0.018 

SLR 0.555 0.021 0.498 0.015 

S
u

p
er

v
is

ed
 

GPS 2.1 0.743 0.030 0.710 0.028 

MOTIPS 0.627 0.032 0.582 0.029 

Random 0.500 0.008 0.500 0.009 

Bolded numbers indicate the highest value among the five classifiers. The “whole” 

subscript indicates the AUC or AUC50 scores are derived from the entire validation 

dataset. The “sparse” subscript indicates the AUC or AUC50 scores are derived from 

proteins in the validation dataset that have a sparse spatial distribution of S/T-P 

matches. Associated ROC plots can be found in Supplementary Figure 4. 

Table 2. Proteome-wide detection of kinase substrates 

Kinase(s) Consensus Hits Enrichmentwhole Enrichmentmotif 

Mec1/Tel1 S/T-Q 46 29.9-fold 21.4-fold

Prk1 L/I/V/M-X4-T-G 9 326.9-fold 82.6-old

Ipl1 R/K-X-S/T-L/I/V 40 36.8-fold 22.6-fold

PKA R-R/K-X-S 52 16.6-fold 3.3-fold

CKII S/T-D/E-X-D/E 170 10.1-fold 5.1-fold

Ime2 R-P-X-S/T 6 0-fold 0-fold

Enrichmentwhole denotes the enrichment of known kinase substrates in the 

hits relative to all non-dubious ORF’s in the S. cerevisiae genome. Enrich-

mentmotif denotes the enrichment of known targets in the hits relative to all 

other non-dubious ORF’s in the S. cerevisiae genome that have at least one 

match to the consensus and at least one ortholog annotated by YGOB. 

Bolded enrichment values denote statistically significant (p < 0.05) enrich-

ment based on a one-tailed Fisher’s exact test. 

3.3   Substrate Prediction for Other S. cerevisiae Kinases 

ConDens’ generalizability was tested on several additional kinases 

in S. cerevisiae (Table 2). For validation, experimentally verified 

substrates from PhosphoGRID (Stark et al., 2010) and Kinase In-

teraction Database (KID) (Sharifpoor et al., 2011) were selected as 

“known kinase targets”. While these databases may not be exhaus-

tive sources of information, they presented a quick and tractable 

means of keeping track of the ever-expanding phosphoproteome. 

We performed a binary classification experiment where 

proteins with a ConDens score greater than 9 were considered as 

predicted kinase substrates or “hits”. The threshold was decided 

based on classification performance with the Cdc28 dataset (Figure 

2).  The enrichment of the known kinase targets among the hits 

was assessed.  

Encouragingly, we found statistically significant (p < 

0.05, Fisher’s Exact Test) enrichment of known targets (or true 

positives) among hits (Table 2) for the additional consensus se-

quences tested. In all, 323 predictions were made for the 6 kinases 

with 26 being found in PhosphoGRID and KID as bona fide sub-

strates and the remaining 297 being “novel predictions”. Our hits 

were, on average, 10 times more enriched in known targets than 

what would be expected from a random sample of consensus-

containing S. cerevisiae proteins and 25 times more enriched in 

known targets than what would be expected from a random sample 

 at U
niversity of T

oronto L
ibrary on February 3, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


6 
 

of S. cerevisiae proteins. The biological functions of each set of 

predictions were analyzed using FunSpec (see sections below). 

We also performed a similar test on other unsupervised 

methods (Scansite and SLR) to compare their relative predictive 

power for these kinases with respect to ConDens. Unfortunately, 

the differences in classification power were not statistically signifi-

cant (see Supplementary Figure 5), which we believe to be due to 

the small number of known kinase targets. 

 

  
Figure 3. An illustration of the DNA damage signaling pathway in S. cerevisiae (R. M. Anderson and Sinclair, 2000; Clarke et al., 2000; D’Amours and 

Jackson, 2002; Segurado and Tercero, 2009; Zewail et al., 2003). Shaded bubbles indicate proteins predicted by ConDens to be Mec1/Tel1 targets. Bolded 

bubbles indicate proteins that are among our list of known Mec1/Tel1 targets. Alignments of novel predictions (Lcd1, Sgs1, and Exo1) and top hit (Mrc1) 

are shown on the right. Matches to the S/T-Q consensus are surrounded by gray boxes. 

3.4 Mec1, Tel1, Prk1, and CKII 

The Mec1/Tel1 hits were statistically significantly (p < 0.05) en-

riched in functional categories such as cell-cycle checkpoint, DNA 

damage response, DNA repair, and chromosome organization. 

These functions were all relevant to the roles of the Mec1 and Tel1 

kinases as DNA damage sensors (R. M. Anderson and Sinclair, 

2000; Clarke et al., 2000; D’Amours and Jackson, 2002; Segurado 

and Tercero, 2009; Zewail et al., 2003). 

We further examined the novel predictions by determining whether 

or not they were involved in the DNA damage signaling pathway 

(R. M. Anderson and Sinclair, 2000; Clarke et al., 2000; 

D’Amours and Jackson, 2002; Segurado and Tercero, 2009; Ze-

wail et al., 2003) (Figure 3). Based on this analysis, we identified 3 

predicted substrates (Sgs1, Lcd1, and, Exo1) that function in this 

pathway, but were not found in the databases of known substrates. 

In particular, Sgs1 was found to have a human ortholog phos-

phorylated by the human Mec1/Tel1 (ATM/ATR) (Davies et al., 

2007; Friedel et al., 2009) and therefore we consider it to be a very 

promising prediction. 

Like the Mec1/Tel1 hits, the Prk1 hits appeared to be 

functionally associated with their kinase’s biological role. Prk1 is a 

kinase known for regulating actin organization and endocytosis (G 

Zeng and M Cai, 1999), and the Prk1 hits were statistically signifi-

cantly enriched (p < 0.05) in proteins related to actin, endocytosis, 

and cell polarity. Among the four novel predictions, Prk1 (the ki-

nase itself) and YAP1802 belonged in at least two of the aforemen-

tioned biological processes. YAP1802 is a paralog of a known 

Prk1 target (YAP1801), and Prk1 was previously reported to auto-

phosphorylate (B. Huang et al., 2009).  

Although CKII is involved in a large number of biologi-

cal processes, the CKII hits were remarkably enriched in ribosome-

related functions, especially for rRNA processing and ribosome 

biosynthesis (p < 10-14). The connection between CKII and the 

aforementioned processes were supported by a number of literature 

articles. A study on pre-rRNA processing and ribosome synthesis 

suggested that CKII was biologically related to the novel predic-

tions Ifh1 and Fhl1 with the former also being an in vitro CKII 

target (Rudra et al., 2007). Another study (Meier, 1996) also sug-

gested a role of CKII in ribosome synthesis through Srp40 phos-

phorylation. Interestingly, although Srp40 was noted as being in-

volved in “pre-ribosome assembly” in SGD, it was not actually 

listed under rRNA processing or ribosome biosynthesis in the 

FunSpec results.  

3.5 PKA and Ipl1 

For the remaining kinases (PKA, Ipl1, and Ime2), we were unable 

to find any statistically significant functional enrichment in their 

hits.  However, our top two predictions for PKA, Tod6 and Dot6 

were both previously found to be functionally related to PKA in 
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the ribosome biogenesis pathway. (Lippman and Broach, 2009; 

Deminoff et al., 2006) (see Supplementary Figure                                                                                                                                                                                                                                                           

6). While Dot6 has recently been confirmed as a direct target of 

PKA, Tod6 has not. The fact that Tod6 was predicted to be a target 

of PKA by ConDens strongly suggested that PKA also inhibits the 

activity of this repressor by direct phosphorylation. Another of our 

interesting predictions for PKA is Cyr1 (previously known as 

Cdc35), which is an adenylyl cyclase that regulates PKA (Guarente 

and Kenyon, 2000) (Supplementary Figure 6). 

Our top Ipl1 prediction (Tid3, formerly known as 

Ndc80) was previously reported to be an in vitro and in vivo Ipl1 

substrate (Cheeseman, S. Anderson, Jwa, Green, Kang, Yates, 

Chan, Drubin, and Barnes, 2002b), but this protein has not yet 

been included in the databases of known substrates. The remaining 

predictions appear to be unrelated to Ipl1 functions. A closer in-

spection of these results suggests some of them may in fact be 

detected for other reasons. For example, we found three closely 

related flippases (Dnf1, Dnf2, and Dnf3) among the Ipl1 predic-

tions. One of these (Dnf1) was reported as an in vitro substrate of a 

flippase kinase known as Fpk1. Remarkably, the same study (Roe-

lants et al., 2010) also proposed a consensus for the Fpk1 kinase 

that greatly overlapped with the Ipl1 consensus we used. As a re-

sult, it is possible that the Ipl1 predictions also included substrates 

of Fpk1 or other related kinases.  

This result brings up an important aspect of ConDens’ 

design. Since the method is motif-based, it has no actual concep-

tion of what is a kinase. As a result, it can experience difficulty in 

differentiating substrates of kinases that have substantially similar 

(or identical) consensus sequences (as we suspected to be the case 

for the Fpk1 and Ipl1 kinases). Under these circumstances, other 

information such as sub-cellular localization and physical interac-

tions (Linding et al., 2008)  are required for ambiguity resolution. 

3.6 Ime2 

The Ime2 hits were different to the hits of the other kinases in that 

they were very few (a total of 6) and devoid of known Ime2 tar-

gets. We examined the cause of this negative result by inspecting 

the local alignments of the known Ime2 phosphorylation sites in S. 

cerevisiae. Remarkably, none of the known Ime2 targets showed a 

strong conservation of R-P-X-S/T motif matches among the fungal 

orthologs. The weak conservation patterns observed was also not 

clade-specific and varied from protein to protein.  

A likely explanation of this unexpected observation is 

that the functional regulation of Ime2 had diverged over evolution. 

Indeed, recent comparative studies on S. cerevisiae and other more 

distant fungal species (Hutchison and Glass, 2010; Irniger, 2011) 

suggested that Ime2 may have functionally diversified over evolu-

tion. If this phenomenon also held for the more closely-related 

fungal species considered here, then it could explain our inability 

to detect Ime2 targets through conservation analysis. 

3.7 Biologically Important T-G motifs in Nup? 

Since we were unsatisfied with the small number of novel predic-

tions for Prk1, we ran ConDens on the S. cerevisiae proteome 

again using a relaxed consensus (T-G, as opposed to L/I/V/M-X4-

T-G) to obtain a larger and possibly even more interesting set of 

predictions. In contrast to what we hoped for, the majority of novel 

predictions for this relaxed consensus did not appear to be biologi-

cally related to Prk1. As a result, we suspect they were not actually 

targets of the Prk1 kinase.  

 However, as with our analysis of the Ipl1 results (where 

they contained targets of another kinase), some of these T-G-based 

predictions appeared to be biologically important. As an example, 

we detected an enrichment of conserved T-G motif matches in 

three nuclear pore proteins (Nup57, Nup100, and Nup116). This 

enrichment occurs close to the F-G matches that are characteristic 

of many nuclear pore proteins (Yang, 2011) (Supplementary Fig-

ure 7). While it may seem unlikely for Prk1 to be associated with 

the Nup proteins due to vast differences in their biological func-

tions, these T-G’s might be functionally important and associated 

with the F-G’s. This observation is also an indication of this meth-

od’s general applicability. Even though this study placed a strong 

emphasis on phosphorylation motifs, the ConDens algorithm was 

based on the principle that functionally-important motif matches 

are conserved over evolution and this should be applicable to any 

type of short linear motifs. 

4   CONCLUSION 

In all, we offer a new method to predict kinase substrates based on 

evolutionary conservation of phosphorylation site recognition mo-

tifs. The requirement for accurate phosphorylation site alignment 

was circumvented by using the local retention of motif density as 

the measure of conservation.  Since the new method is based on a 

statistical model of molecular evolution, a labeled training set is 

not required. Furthermore, we demonstrated the method’s utility in 

mining substrates for kinases with some information on substrate 

specificity but few characterized in vivo substrates. ConDens 

should be applicable to a wide variety of model organisms due to 

available databases such as Ensembl (Flicek et al., 2010) and 

INPARANOID (Ostlund et al., 2010) that provide homologous sets 

of proteins. 
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