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Population genomics of domestic and wild yeasts
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Since the completion of the genome sequence of Saccharomyces
cerevisiae in 1996 (refs 1, 2), there has been a large increase in
complete genome sequences, accompanied by great advances in
our understanding of genome evolution. Although little is known
about the natural and life histories of yeasts in the wild, there are
an increasing number of studies looking at ecological and geo-
graphic distributions®*, population structure®® and sexual versus
asexual reproduction®'. Less well understood at the whole gen-
ome level are the evolutionary processes acting within populations
and species that lead to adaptation to different environments,
phenotypic differences and reproductive isolation. Here we pre-
sent one- to fourfold or more coverage of the genome sequences of
over seventy isolates of the baker’s yeast S. cerevisiaeand its closest
relative, Saccharomyces paradoxus. We examine variation in gene
content, single nucleotide polymorphisms, nucleotide insertions
and deletions, copy numbers and transposable elements. We find
that phenotypic variation broadly correlates with global genome-
wide phylogenetic relationships. S. paradoxus populations are well
delineated along geographic boundaries, whereas the variation
among worldwide S. cerevisiae isolates shows less differentiation
and is comparable to a single S. paradoxus population. Rather than
one or two domestication events leading to the extant baker’s
yeasts, the population structure of S. cerevisiae consists of a few
well-defined, geographically isolated lineages and many different
mosaics of these lineages, supporting the idea that human influ-
ence provided the opportunity for cross-breeding and production
of new combinations of pre-existing variations.

The baker’s yeast S. cerevisiae has had a long association with
human activity", leading to the idea that its use in fermentation lead
to its domestication. Two domestication events have been suggested,
one for sake strains and one for wine'?. In contrast, its closest relative,
S. paradoxus, has never been associated with human activity and is
found globally, sometimes in the same locations as S. cerevisiae™*. A
preliminary comparison within the Saccharomyces sensu stricto group
exhibited extensive variation between S. paradoxus populations on
different continents but limited variation among S. cerevisiae isolates
and no correlation with geographic location®.

Here we report nearly complete genome sequences of S. cerevisiae
and S. paradoxus from a large variety of sources and locations
(Supplementary Tables 1 and 2). The S. cerevisiae strains included
the reference strain S288c plus other lab, pathogenic, baking, wine,
food spoilage, natural fermentation, sake, probiotic and plant isolates.

The S. paradoxus isolates were mostly from oak tree bark from the
three recognized populations®®'* as well as Siberia, Hawaii and the
previously designated Saccharomyces cariocanus'. There is overlap
among the general geographic sources of isolates from both species.
The majority of strains were sequenced using Sanger sequencing on
ABI 3730 DNA sequencers (Applied Biosystems). For some strains,
sequence was obtained using an Illumina Genome Analyzer. Most
strains were covered to one- to fourfold depth with a few covered
more extensively (Supplementary Table 3). The sequence reads,
assemblies, alignments, a BLAST tool and a genome browser are all
publicly available®.

We identified 235,127 high-quality single nucleotide polymorphisms
(SNPs) and 14,051 nucleotide insertions or deletions (indels) in the
S. cerevisiae nuclear genome, and 623,287 SNPs and 25,267 indels in
S. paradoxus. Our S288c sequence differs from the reference genome by
498 high-quality, unambiguous SNPs (Supplementary Fig. 1). For 480
SNPs our S288c sequence is supported by other strains whereas the
reference has no support, and for 18 SNPs the reference sequence is
supported by other strains whereas ours is not. Many of the 480 SNPs
are likely to represent errors in the reference sequence (Supplementary
Table 4). The reference sequence for the type strain of S. paradoxus'® was
not complete, so we sequenced the type strain CBS432 to 4.3-fold
coverage with an ABI 3730 sequencer and to 80-fold coverage with
the Illumina Genome Analyzer.

Sequence surveys allow novel sequences not found in the reference
genome to be identified. The proportions of unplaced reads for each
strain are shown in Supplementary Table 2. We found 38 new hypo-
thetical open reading frames (ORFs) in these sequences that are likely
to be real. These ORFs are present in more than one strain
(Supplementary Fig. 2), with some specific to a single lineage, such
asthe hypothetical protein 5 (Supplementary Information) in the West
Africanlineage, which contains a conserved methyltransferase domain.
Much of the unplaced material is subtelomeric. This is in contrast to a
genome-wide analysis of copy number based on the numbers of reads
of each strain aligning to each gene in the reference sequence, which
showed very little significant copy number variation outside the ribo-
somal DNA (rDNA) region (Supplementary Information).

Neighbour-joining phylogenetic trees based on pairwise SNP
differences in the alignments were generated (Fig. 1 and Supple-
mentary Fig. 3). The S. paradoxus strains fall into the three previously
described populations, plus one isolate from Hawaii. Most of the SNPs
in S. paradoxus are private polymorphisms within each population,
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Figure 1| Saccharomyces phylogenomics. a, Neighbour-joining trees based
on SNP differences of S. cerevisiae and S. paradoxus strains sequenced in this
project, using Saccharomyces mikatae, Saccharomyces kudriavzevii and
Saccharomyces bayanus as out-groups. b, Close-up of the European

resulting in a clear separation of the three populations'” (Fig. 2a). The
European population was sampled extensively, which provided a
picture of within-population structure (Fig. 1b).

The S. cerevisiae population structure is more complex. There are
five lineages that exhibit the same phylogenetic relationship across
their entire genomes, which we consider to be ‘clean’ non-mosaic
lineages (Fig. 1¢). These are strains from Malaysia, West Africa, sake
and related fermentations (labelled ‘Sake’ in Fig. 1¢), North America,
and a large cluster of mixed sources containing many European and
wine strains (‘Wine/European’). The remaining strains are on long
branches between the Wine/European cluster and the other four clean
lineages. Although some lineages correspond to geographic origin,
such as those from North America and Malaysia, many closely related
strains are from widely separated locations. This mixed architecture
could be due to human traffic in yeast strains and subsequent recom-
bination between them. Analysis with Structure is consistent with
separate populations for the West African, Malaysian, Sake and
Wine/European lineages (Fig. 2b). The North American isolates share
some polymorphisms with all four separate populations, whereas the
rest of the strains share polymorphisms with the European lineage and
at least one other population. Analysis of SNP distributions
(Supplementary Table 5) is consistent with the neighbour-joining tree
phylogeny (Fig. 1c) and the Structure analysis (Fig. 2b). Each clean
lineage is monomorphic for the majority of segregating sites, whereas
the mosaics are polymorphic for the majority of sites.

Phylogenetic trees constructed for individual chromosomes or
smaller segments (Supplementary Fig. 4) demonstrate the mosaic
nature of these genomes, as do segmental comparisons (Supple-
mentary Fig. 5). For example, the laboratory strains SK1 and Y55
appear to be the result of recent crosses between the West African
lineage and the European lineage (Supplementary Fig. 5b). Similarly,
W303 is a recent cross between the reference S288c¢ lineage and one or
more other lineages. Different segments of the mosaics fall into differ-
ent locations in the neighbour-joining tree (Supplementary Fig. 4). The
recently sequenced clinical derivative YIM789 (ref. 18) is another
example. This complex population structure of S. cerevisiaeis reported
in a similar study' and is consistent with five well-delineated lineages,
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S. paradoxus, with UK isolates highlighted in violet. ¢, S. cerevisiae strains
with clean lineages highlighted in grey; colour indicates source (name) and
geographic origin (dots). Scale bars indicate frequencies of base-pair
differences.

two of which contain isolates used in fermentation industries'?, plus a
number of recombinant strains, many of which are also used for
fermentation. Phenotypic profiling (see below), and analyses of
rDNA repeat unit variation (Supplementary Fig. 6) and Ty element
abundance (Supplementary Fig. 7 and Supplementary Table 6), pro-
duce results consistent with this overall picture of the S. cerevisiae
population structure.

It is unlikely that the entire sequence space of S. cerevisiae has been
sampled. It is clear that segments from many of the mosaic strains are

S. paradoxus

European Far Eastern American Hw

S. cerevisiae

Fraction of markers assigned to each cluster

Malaysian Sake NA WA

Mosaics Wine/European

Figure 2 | Saccharomyces population structure. a, Inference of population
structure using the program Structure (version 2.1) on S. paradoxus
(markers: 7,544 SNPs with >30 strains passing neighbourhood quality
standard), assuming K = 6 subpopulations and correlated allele frequencies,
linkage model based on marker distances in base pairs, 15,000-iteration burn
in, and 5,000 iterations of sampling. Each mark on the x axis represents one
strain, and the blocks of colour represent the fraction of the genetic material
in each strain assigned to each cluster. Hw, Hawaiian isolate. b, As in a, but
for S. cerevisiae (markers: 3,413 SNPs with >30 strains passing
neighbourhood quality standard). NA, North America; WA, West Africa.
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not related to any of the five clean lineages and are probably derived
from lineages that are yet to be determined or no longer exist. One-
quarter (24%) of SNPs are found only in the mosaics (Supplementary
Table 5), which provides a measure of the unsampled S. cerevisiae
species space.

Sequence variability was quantified using the average pairwise diver-
gence within a population (0,) and the proportion of polymorphic
sites (05)'°. We estimated these parameters for various populations
(Supplementary Table 7). Both 0, and 0s are about 0.001 in the UK
population of S. paradoxus. The Wine/European cluster of S. cerevisiae
has approximately the same level of diversity. In both the global and
Wine/European samples of S. cerevisiae, Tajima’s D (ref. 20) is signifi-
cantly negative, indicating an excess of singleton polymorphisms,
which may be a consequence of our sampling strategy. By contrast,
the UK sample of S. paradoxus from a single population has a positive
Tajima’s D, although not significantly, indicating a relative abundance
of mid-frequency polymorphisms. Linkage disequilibrium differs
between samples (Fig. 3a). For S. paradoxus, linkage disequilibrium
declines smoothly with distance, decaying to halfits maximum value at
about 9 kb, as previously reported'®. For both S. cerevisiae samples, the
linkage disequilibrium decays much faster, with a half maximum at
3 kb or less. This implies more recombination in S. cerevisiae, perhaps
due to more opportunities for strains to mate and recombine.

Patterns of variation can reveal evidence of natural selection. As
expected for weakly deleterious mutations, the derived allele frequencies
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Figure 3 | Population genomics: variation and selection. a, Linkage
disequilibrium as a function of distance averaged over one kilobase (kb),
expressed in terms of correlation coefficient, *. Insets show the decline in
linkage disequilibrium over the first 10 kb. Details are shown in
Supplementary Table 7. b, Derived allele frequencies of SNPs in coding
regions. Amino-acid-changing SNPs (labelled ‘a’) show an excess of low
frequencies in comparison with synonymous SNPs (‘s’). Synonymous SNPs
in genes with strong codon bias (‘s*’) are in excess at low and high
frequencies. SNPs that create stop codons (‘create stop’) show skew to low
frequencies. Inset is the number of mutations occurring over the length of
the protein, exceeding three standard deviations (¢) from the mean (y) in the
C terminus. ¢, Distribution of sizes of indel polymorphisms in coding
regions. High-frequency indels (>10%, red) more often occur in multiples
of three than do low-frequency indels (grey). Inset is as for b. d, Frequency
distribution of indels in coding regions. Out-of-frame indels (grey) show
excess at low frequencies relative to in-frame indels (open). The proportion
of out-of-frame indels decreases as frequency increases. Error bars represent
the standard error of the proportion. Numbers of observations for each bin:
0,n=2,910;0.1, n = 184; 0.15, n = 68; 0.2, n = 52; 0.25, n = 29; 0.3, n = 29;
0.35, n = 36; 0.4, n = 29; 0.45, n = 40.
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(DAF; see Supplementary Information) for non-synonymous poly-
morphism are lower than synonymous polymorphism (Fig. 3b). For
polymorphisms with DAF <20%, there were 0.86 amino-acid-
changing polymorphisms for each silent one. In contrast, for those with
DAF >20% this ratio was 0.34, indicating that at least 61% (1 — 0.34/
0.86) of the 24,418 amino-acid-changing polymorphisms with DAF
<20% are deleterious. Similar calculations (Supplementary Infor-
mation) indicate that 27% of non-coding polymorphisms with DAF
<20% are deleterious (Supplementary Fig. 8a). We also performed
McDonald-Kreitman tests* on 1,105 genes for which we had enough
statistical power. No evidence for positive selection after a multiple
testing correction was found (Supplementary Fig. 8b). These analyses
assumed that synonymous polymorphisms are neutral. However, we
found an excess of polymorphism at both low and high frequency
(Fig. 3b) in genes with high codon bias (codon adaptation index
>0.6). Further analysis (Supplementary Information) indicates that
codon bias in S. cerevisiae is maintained by both purifying and positive
selection, as suggested by the mutation-selection-drift model*.

A previous genome-wide study in Arabidopsis® reported a large
number of seemingly highly deleterious alleles. We found 134 muta-
tions that were predicted to introduce stop codons (Fig. 3b), includ-
ing five in genes previously reported to be essential in S288c
(Supplementary Information). These mutations showed a skewed
frequency distribution and were enriched in the C termini (the final
5% of proteins; Fig. 3b inset).

This data set allowed the consideration of insertions and deletions
(Fig. 3c). We identified 3,870 indels in the coding regions of the
S. cerevisiae population. Of these, 731 had minor allele frequency
(MAF) greater than 10%. We also found 657 indels (72 with MAF
>10%) in genes identified as essential (Supplementary Information).
Indels with MAF >10% predicted to cause frame shifts were enriched
in the C-terminal 5% of the protein (Fig. 3C, inset). The proportion
of frame-shift to in-frame indels decreases strongly as a function of
MAF (Fig. 3d). For example, at MAF >15% there are 1.0 out-of-
frame indels for every in-frame indel, in comparison with 15.5 at
MAF <10%. We estimate that 93% (1 — 1.0/15.5) of the 2,949 out-
of-frame indels with MAF <10% are deleterious.

All strains were subjected to high-throughput phenotypic analysis
under multiple conditions (Fig. 4 and Supplementary Fig. 9). Growth
curves were sampled (>250 time points) over three days and the
relevant growth variables—lag (adaptation), rate (slope) and effi-
ciency (maximum density)—were extracted*, providing roughly
200 phenotypic traits. The phenotypic variation allowed clustering
of strains. There is a high qualitative overlap between the phenotypic
clustering and the phylogenies based on SNPs (Figs 1 and 4). Also, the
correlation between genotypic and phenotypic similarity within
S. cerevisiae is surprisingly good (Spearman’s rank test: correlation
coefficient, 0.30; P = 10 >°) given that conventional phenotypic taxo-
nomy generally fails even to resolve the Saccharomyces sensu stricto
species. No individual environment determined the overall correlation
between genotype and phenotype.

The S. paradoxus strains were well separated from the S. cerevisiae
strains (Fig. 4), except for the Hawaiian isolate. The phenotypes sepa-
rating the two species most clearly (P << 10~ °) were strong S. paradoxus
resistance to cycloheximide and sensitivity to paramomycin, heat and
copper (Supplementary Fig. 10a). The S. cerevisiae isolates fell into two
groups (Fig. 4). One contains most of the Wine/European and Sake
lineages and most of the long-branch recombinants, whereas the other
mainly consists of the North American, Malaysian and African
lineages. The main phenotypic characteristic separating these groups
is rapid growth (short lag and steep slope in rate, P<<10*) for the
Wine/European lineages and the mosaics, which could be advantage-
ous for the fermentation processes in which many of these strains are
used (Supplementary Fig. 10b). Despite genomic variation, S. para-
doxus strains (excluding the Hawaiian isolate) show 38% lower pheno-
typic variation than S. cerevisiae strains (P = 0.002). In S. cerevisiae, the
phenotypic variance is as high among the clean lineages as among the
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Figure 4 | Saccharomyces phenotype variation. A selection of growth
phenotypes for S. cerevisiae and S. paradoxus strains in different
environments and drugs. The complete set of lag, rate and density
phenotypes in 67 environments is displayed in Supplementary Fig. 9.
Phenotypes were quantified using high-resolution micro-cultivation
measurements of population density. Strain (n = 2) doubling time (rate)

mosaic lineages (P = 0.78). Hence, the higher phenotypic variance in
S. cerevisiae is not driven by out-breeding or domestication per se, but
rather suggests that S. cerevisiae occupies a wider diversity of ecological
niches than S. paradoxus.

This survey of S. cerevisiae and S. paradoxus population genomics
reveals extensive differences in genomic and phenotypic variation
despite ecological similarities and will allow rapid fine mapping of
the genetic determinants. Domestication of S. cerevisiae has previously
been debated'”. Our results could be interpreted in two ways. One is as
a domestication of one or two groups, the Wine/European and Sake
strains, with selection for improved fermentation properties. These
domesticated groups then gave rise to feral and clinical derivatives
and were involved in the generation of out-crossed derivatives found
in all sources. The alternative interpretation is that human activity
simply may have used existing strains from populations that had
appropriate fermentation properties providing the opportunity to
out-breed through movement of strains and supplying a novel
disturbed environment. Using domestication to imply ‘species bred
in captivity’*, the strains that best fulfil this definition are the baking
isolates, as they have clearly arisen from crosses between lineages.
Lineages that were selected from captively bred strains would be
expected to have lower diversity than other lineages. This is not the
case for the Wine/European or Sake lineages, which have similar or
greater levels of diversity in comparison with the other clean lineages or
to S. paradoxus populations. This view of human activity simply mov-
ing yeast strains around without captive breeding is consistent with
analysis of over 600 strains®®. Recent findings in the Malaysian rain-
forest (from which our three Malaysian S. cerevisiae strains were iso-
lated) of chronic intake of alcoholic nectar from Bertram palms by wild
tree shrews suggest that the association of fermented beverages and
primates is ancient and not exclusive to humans®.

Beyond the analyses we have presented here, the sequence data we
have obtained for these strains have many other applications, and have
already been used both for global®® and gene-specific*® studies. With
the advent of new sequencing technology, it is becoming possible to
undertake similar population genomic studies for species with much
larger genomes, including humans®, enabling a new era of genome
wide evolutionary and functional genetics.
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phenotypes in relation to the S288c derivative BY4741 (n = 20) are
displayed. Green, poor growth; red, good growth. Hierarchical clustering of
phenotypes was performed using a centred Pearson correlation metric and
average linkage mapping. Blue, S. paradoxus; pink, S. cerevisiae; grey,

S. bayanus isolate CBS7001. LSC, logarithmic strain coefficient.

METHODS SUMMARY

Strains to be sequenced were selected to maximise the variety of sources and
locations of isolation. Except for laboratory strains, a single meiotic diploid spore
was isolated from the original strain to remove any heterozygosity®. DNA was
extracted from overnight cultures® for subsequent sequencing on ABI 3730 DNA
sequencers and an Illumina Genome Analyzer'”. Reference-based genome
assemblies were created for each strain in a series of steps'®. Each read was aligned
to the reference genome (S288c or CBS432). As this approach cannot deal with
large indels or with sequences not present in the reference genome, we developed
an iterative parallel-alignment assembling tool, PALAS (Supplementary
Methods), to introduce insertions that were allowed to share material between
related strains. Two versions of each strain sequence were produced, a partial
assembly derived just from data collected from that strain and a more complete
assembly using an imputation process to infer the most likely sequence of the
strain taking into account data from related strains. In both cases, confidence
estimates are given for each base call. The SNPs obtained were used to generate
neighbour-joining phylogenetic trees", infer population structure'’, estimate
sequence divergence' and analyse polymorphisms'®. Non-aligned reads (those
missing in the reference genome) were searched for potential novel genes. Each
strain isolate was subjected to precise phenotyping in 67 experimental conditions
using a high-resolution micro-cultivation Bioscreen C (Oy Growth Curves,
Finland)*". Two consecutive rounds of 48-h pre-cultivation in synthetic com-
plete media were followed by a 72-h cultivation in stress media. Readings of
optical density were taken every 20min. Strains were tested as duplicates
(N=2). Growth variables were normalized to the behaviour of the 20 BY4741
replicates.

Details of the methods mentioned above are provided in Supplementary
Information.
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