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Abstract

Motivation: Mammalian genomes can contain thousands of enhancers but only a subset are

actively driving gene expression in a given cellular context. Integrated genomic datasets can be

harnessed to predict active enhancers. One challenge in integration of large genomic datasets is

the increasing heterogeneity: continuous, binary and discrete features may all be relevant. Coupled

with the typically small numbers of training examples, semi-supervised approaches for heteroge-

neous data are needed; however, current enhancer prediction methods are not designed to handle

heterogeneous data in the semi-supervised paradigm.

Results: We implemented a Dirichlet Process Heterogeneous Mixture model that infers Gaussian,

Bernoulli and Poisson distributions over features. We derived a novel variational inference algo-

rithm to handle semi-supervised learning tasks where certain observations are forced to cluster

together. We applied this model to enhancer candidates in mouse heart tissues based on heteroge-

neous features. We constrained a small number of known active enhancers to appear in the same

cluster, and 47 additional regions clustered with them. Many of these are located near heart-

specific genes. The model also predicted 1176 active promoters, suggesting that it can discover

new enhancers and promoters.

Availability and implementation: We created the ‘dphmix’ Python package: https://pypi.org/pro

ject/dphmix/.

Contact: alan.moses@utoronto.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Enhancers are cis-regulatory elements in DNA that can influence ex-

pression levels of target genes when bound to transcription factors

(TFs). They are thought to exist in at least three states of differing

activity: active, primed and poised enhancers (Calo and Wysocka,

2013), such that only a subset of bound regions (active enhancers)

play a role in gene regulation in a given cellular context. Although

different states are distinguished by differential patterns of histone

modifications and transcriptional regulator recruitment, systematic-

ally classifying the state of an enhancer remains a challenge

(Catarino and Stark, 2018; Zentner et al., 2011). Given an active en-

hancer, it is possible to predict tissues in which it is active (Li et al.,

2018; Pennacchio et al., 2007). However, these methods do not ad-

dress the problem of predicting the states of enhancers in a specific

tissue.

Modern genomic data is highly heterogeneous and may contain

continuous (e.g. histone modification levels), binary (e.g. TF-binding)
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and discrete features (e.g. counts of methylated sites) and, in principle,

supervised machine learning methods can be used to identify active

enhancers with integrated heterogeneous genomics data. Enhancer ac-

tivity, however, is highly tissue-specific (Bulger and Groudine, 2011),

and there are few tissues for which large numbers of active enhancers

have been identified, limiting the application of recent supervised en-

hancer prediction approaches such as DECRES (Li et al., 2018) and

REPTILE (He et al., 2017) to identify active enhancers in tissues of

interest. Furthermore, these supervised methods have not been

designed to predict enhancer states other than active and inactive

enhancers.

Clustering (or unsupervised) techniques could, in principle, iden-

tify clusters of genomic regions that are enriched with different

states of enhancers without large training sets. Unsupervised meth-

ods like ChromHMM (Ernst and Kellis, 2012) and Segway

(Hoffman et al., 2012) can predict enhancers; however, these meth-

ods were designed for genome segmentation rather than enhancer

state prediction over enhancer candidates. Ideally, the small num-

bers of experimentally validated active enhancers should be used if

possible: this motivates the development of semi-supervised

approaches that can integrate heterogeneous data.

To integrate high-dimensional genomic data and predict enhan-

cer states over enhancer candidates, we developed a variational

Dirichlet Process Heterogeneous Mixture (DPHM or an infinite het-

erogeneous mixture) model that infers Gaussian, Bernoulli and

Poisson distributions over continuous, binary and non-negative dis-

crete features, respectively. To take advantage of small labeled train-

ing sets where available, we derive a novel variational inference

algorithm for a semi-supervised DPHM model that forces a subset

of the data (like experimentally validated enhancers) to cluster to-

gether. Our Bayesian model also has the advantages that i) the num-

ber of clusters, or enhancer states, is inferred from the data and ii)

the number of hyperparameters does not grow with the number of

clusters, simplifying inference for heterogeneous data integration.

The DPHM model outperformed Gaussian mixture models in clus-

tering synthetic heterogeneous datasets in unsupervised and semi-

supervised settings. The DPHM model can also outperform k-

means, in certain settings, even when k-means is given the correct

number of clusters.

To illustrate the power of the DPHM model to integrate hetero-

geneous genomic data, we employed it to predict new enhancers

based on heterogeneous features from the Encyclopedia of DNA

Elements (ENCODE) Project (ENCODE Project Consortium,

2012). We applied the semi-supervised DPHM model to a dataset of

6209 genomic regions bound by Nkx2-5, a major regulator in heart

development (Schott et al., 1998; Tanaka et al., 1999), in embryonic

mouse heart with the constraint that a set of known active enhancers

have to cluster together. Through our novel variational inference al-

gorithm, 47 new regions clustered with the experimentally known

active enhancers in this tissue. Furthermore, we discovered 5 large

classes of genomic regions in the data. Some classes, including the

class with the known active enhancers, were significantly (q<0.05)

enriched with various biological processes. Another class, enriched

for house-keeping genes, appears to contain active promoters.

Moreover, each functional class of enhancers was enriched with at

least 60 different TF-binding motifs and some motifs can be

utilized to discriminate the classes from each other. Our analysis

indicates that the semi-supervised DPHM model is a principled

Bayesian method for discovering biologically relevant clusters in

heterogeneous genomic data in the semi-supervised learning

paradigm.

2 Materials and methods

2.1 Data
Dupays et al. (2015) identified genomic regions bound by Nkx2-5

using chromatin immunoprecipitation sequencing (ChIP-seq) data

for embryonic mouse heart tissue. Genomic coordinates for the

binding sites were converted from the GRCm37/mm9 to the

GRCm38/mm10 genome build. To incorporate information about

the functional conservation of the sites, we identified regions of the

human genome (GRCh38/hg38 build) whose DNA sequences are

alignable to the sites using LiftOver (Hinrichs et al., 2006). We

found that 6209/7246 of the binding sites in the mouse genome had

human orthologs. 109 of the regions overlapped with experimental-

ly validated developmental enhancers in mouse heart tissue, identi-

fied by the VISTA Enhancer Browser (Visel et al., 2007). Features

for the regions were generated from ENCODE datasets (ENCODE

Project Consortium, 2012) for mouse and human heart tissues.

Supplementary Table S1 lists all of the datasets that we used to ex-

tract features. We extracted 81 mouse features and 33 human fea-

tures. Details about feature extraction techniques are provided in

the Supplementary Information.

2.2 Dirichlet process heterogeneous mixture models
The DPHM model takes observations with heterogeneous features

and clusters them based on similarities between their features.

Continuous, binary and non-negative discrete features are assumed

to follow Gaussian, Bernoulli and Poisson distributions, respective-

ly, and are assumed to be mutually independent so the conditional

likelihood of an observation is the product of distributions, with

cluster-specific parameters, for each feature. In this section, we as-

sume the data has rg, rb and rp Gaussian, Bernoulli and Poisson fea-

tures, respectively.

Figure 1 shows the latent variables of the semi-supervised

DPHM model. l and s contain the means and precisions of the

Fig. 1. A Bayesian network depicting the dependencies between hyperpara-

meters, latent variables and observations in the DPHM. Each observation, xi,

depends on their cluster assignment (ci for observations that are not in any

must-link constraints and cm for observations in a must-link constraint m) and

distribution parameters (l, s, p and k). Distribution parameters depend on

parameters of the NGBG prior (�, q, a, b, c, d, e and f). Distribution parameters

and hyperparameters related to Gaussian, Bernoulli and Poisson features are

top two rows, left center and right, respectively. Each cluster assignment

depends on the vts that are generated through the stick-breaking construc-

tion. M represents a set of must-link constraints for semi-supervised

clustering
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Gaussian features, respectively, P contains the probability parame-

ters for the Bernoulli features and k contains the average rate param-

eters for the Poisson features. The subscripts on the variables denote

their feature indices and associated clusters. For example, ltj repre-

sents the mean parameter for the jth Gaussian feature and cluster t.

2.2.1 Priors

Distribution parameters (l, s, p and k) are drawn from their conju-

gate priors (Bishop, 2006). The conjugate priors for Gaussian,

Bernoulli and Poisson distributions are NormalGamma (NG), Beta

and Gamma distributions, respectively. Since features are assumed

to be mutually independent, the joint conjugate prior for the distri-

bution parameters can be expressed as:

l; s; p; k �
Yrg

j¼1

NGð�j; qj; aj; bjÞ
Yrb

k¼1

Betaðck; dkÞ
Yrp

l¼1

Gammaðel; flÞ (1)

where hyperparameters �j, qj, aj and bj control the prior mean, preci-

sion, shape and rate parameters, respectively, of the NG distribution

that generates the mean and precision for the jth Gaussian feature.

ck and dk represent the prior shape parameters of the Beta distribu-

tion that creates the probability parameter for the kth Bernoulli fea-

ture. el and fl are the prior shape and rate parameters, respectively,

for the Gamma distribution that generates the average rate param-

eter for the lth Poisson feature. The conjugate prior eases computa-

tions because the cluster-specific posterior distributions of l, s, p

and k will be members of the conjugate prior’s family; we refer to

this family as ’NGBG’.

Cluster assignments (denoted by c) for each observation are

drawn from multinomial distributions, and their prior parameters

are mixing weights for the clusters. Mixing weights are constructed

through the truncated stick-breaking process (Ishwaran and James,

2001) that sets an upper bound, T, on the number of clusters.

Mixing weights are completely determined by stick-breaking varia-

bles fvtgT
t¼1 that depend on a, a hyperparameter that controls cluster

sizes. Although there are T clusters, some of them will be empty if T

is large enough and can be ignored in downstream analyses. Cluster

assignments, stick-breaking variables and distribution parameters

form the latent variable space, while a and parameters of the NGBG

prior form the hyperparameter space of the DPHM model.

2.2.2 Variational inference for semi-supervised DPHMs

We use variational inference (Beal, 2003; Blei and Jordan, 2006) to

fit the DPHM model to a dataset X. Variational inference approxi-

mates the true posterior of the latent variables with a variational dis-

tribution q by maximizing the evidence lower bound (ELBO):

ELBO qð Þ ¼ E ln P X;l; s; p; k; c; vð Þ
� �

� E½ln q l; s; p; k; c; vð Þ� (2)

We optimize over the mean-field variational family so q factor-

izes into the product of variational densities for the latent variables.

The variational density for a cluster assignment is parameterized by

a ’cluster probability vector’ that contains probabilities of the corre-

sponding observation belonging to the different clusters; each obser-

vation is assigned the cluster associated with the maximum

probability in its cluster probability vector. We use ui to denote the

cluster probability vector of the ith observation. The learning task of

variational inference is to find variational densities that maximize

the ELBO; this can be accomplished through coordinate ascent vari-

ational inference (Bishop, 2006). Lim and Wang (2018) derive vari-

ational density updates for latent variables of the Dirichlet Process

Gaussian Mixture (DPGM) as shown in lines 4, 5 and 8 of

Algorithm 1. We use these updates for the variational densities of l,

s, c and v in our DPHM model but we must update Bernoulli and

Poisson parameters as well. We derived the coordinate-optimal

updates for q(ptk) and q(ktl) which represent the variational densities

of the Bernoulli and Poisson parameters, respectively:

q ptkð Þ / Beta ptkjck þ
X

i

uitx
bð Þ

ik ; dk þ
X

i

uitð1� x bð Þ
ik Þ

� �
(3)

q ktlð Þ / Gamma ktljel þ
X

i

uitx
pð Þ

il ; fl þ
X

i

uit

� �
(4)

x
ðbÞ
ik is the kth Bernoulli feature of the ith observation and x

ðpÞ
il is

the lth Poisson feature of the ith observation. uit is the probability of

the ith observation belonging to cluster t. We apply these updates

for all t¼1. . .T, k¼1. . .rb and l¼1. . .rp.

We derived a novel variational inference algorithm to fit DPHM

models with must-link constraints, outlined in Algorithm 1. In the

algorithm, x
ðgÞ
ij is the jth Gaussian feature of the ith observation and

c-i represents a vector of all cluster assignments except ci. We define

a must-link constraint as a set of indices for observations that must

cluster together. In Figure 1 and Algorithm 1, M denotes a set of

must-link constraints because the model can support multiple must-

link constraints. While there are variational inference algorithms for

semi-supervised classification models (Kingma et al., 2014) with

Algorithm 1: Variational Inference for Semi-supervised

DPHMs

1: Input: Data X, hyperparameters a, �, q, a, b, c, d, e, f and

must-link constraints M

2: Output: Variational posterior q(c, v, m, s, p, k)

3: Initialize: for t¼1..T

q ci ¼ tð Þ ¼ /it where /i is a random probability

vector for i¼1 .. n

q cm ¼ tð Þ ¼ /mt where /m is a random probability

vector for m2M

q vtð Þ / Betaðvtj1; aÞ
q ltj; stjð Þ / NG ltj; stjj�j; qj; aj; bj

� �
for j ¼ 1::rg

q ptkð Þ / Beta ptkjck; dk

� �
for k ¼ 1::rb

q ktlð Þ / Gamma ktljel; flð Þ for l ¼ 1::rp

while ELBO not converged

Update variational densities for global latent variables.

For t¼1..T

4: qðvtÞ / Betaðvtj1þ
Pn

i¼1 /it; aþ
Pn

i¼1

PT
s¼tþ1 /isÞ

for j ¼ 1::rg

5: qðltj; stjÞ/ NGðltj; stjj
qj�jþ

Pn

i¼1
/itx

gð Þ
ij

qjþ
Pn

i¼1
/it

;

qj þ
Pn

i¼1 /it; aj þ 1
2

Pn
i¼1 /it;

bj þ 1
2 ½
Pn

i¼1 ½/itðx
gð Þ

ij � EðltjÞÞ2� þ qj½E ltjð Þ � �j�2�Þ
for k ¼ 1::rb

6: q ptkð Þ / Beta ptkjck þ
Pn

i¼1 /itx
bð Þ

ik ; dk þ
Pn

i¼1 /itð1� x bð Þ
ik Þ

� 	
for l ¼ 1::rp

7: q ktlð Þ / Gamma ktljel þ
Pn

i¼1 /itx
pð Þ

il ; fl þ
Pn

i¼1 /it

� 	
for any i not in a must-link constraint

8: qðciÞ / expðE�ci
ln P xi; cijl; s;p; k; c�i; vð Þ
� �

Þ
for each m 2M

9: qðcmÞ / expðE�cm ln P Xm; cmjl; s; p; k; c�m; vð Þ
� �

Þ
10: Calculate ELBO[q(c, v, m, s, p, k)]

11: return q(c, v, m, s, p, k)
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finite numbers of classes, and Gibbs samplers for semi-supervised in-

finite mixture models (Vlachos et al., 2009), our work presents the

first variational inference algorithm designed for semi-supervised in-

finite mixtures. In our algorithm, all observations in a particular

must-link constraint are associated with a single cluster assignment

variable, as shown in Figure 1, so they are all assigned the same clus-

ter. In each iteration of coordinate ascent, our algorithm updates

variational densities of global latent variables (l, s, p, k and v) and

uses their expectations to calculate cluster probability vectors. For

each must-link constraint m, with observations Xm¼fxigi2m and

cluster assignment cm (the single cluster assignment variable for all

observations in m), we derived the coordinate-optimal variational

density of cm:

q cmð Þ / exp½E�cm ½lnP Xm; cmjl; s;p; k; c�m; vð Þ�� (5)

where E�cm is the expectation with respect to all latent variables ex-

cept cm and c�m is a vector of all cluster assignments except cm.

We obtain the cluster probability vector for the observations in m by

evaluating the variational density over different clusters. Derivations

for variational density updates are provided in the Supplementary

Information.

3 Results

3.1 Benchmarking the DPHM against other methods
To test whether the DPHM can outperform clustering models that

assume Gaussian distributions over all features, we compared it to a

finite Gaussian Mixture Model (GMM) and DPGM with the syn-

thetic datasets (Supplementary Section S2.2.1). The DPHM model

achieved significantly (Mann-Whitney U test P<0.05) higher

Adjusted Rand Indices (ARIs) (Hubert and Arabie, 1985) than the

GMM and DPGM on all synthetic datasets in unsupervised and

semi-supervised settings (Supplementary Fig. S1 A, P-values shown

in Supplementary Table S2), which shows the advantage of incorpo-

rating Bernoulli and Poisson distributions into the DPHM model.

To determine if the DPHM can outperform a distance-based cluster-

ing algorithm, we compared it to k-means with the synthetic

datasets and gave k-means the correct numbers of clusters. Against

unsupervised k-means, the unsupervised DPHM achieved signifi-

cantly higher ARIs on the 10 and 25-cluster datasets but there was

no significant difference on the 50-cluster dataset. Against con-

strained k-means (Wagstaff et al., 2001), the semi-supervised

DPHM achieved significantly higher ARIs on the 25-cluster dataset

but there were no significant differences on the 10 and 50-cluster

datasets. The performances of the DPHM and k-means were com-

parable on certain datasets and settings when k-means was given the

correct numbers of clusters.

Since constrained k-means performed well on the synthetic data-

sets when k was given, we applied the DPHM and constrained k-

means to a biological dataset (Nkx2-5 dataset) to evaluate their

power to predict held-out VISTA enhancers (Supplementary Section

S2.2.2). For each training set, we applied constrained k-means with

different values of k and initial parameters and picked the setting

which maximized the average silhouette (Rousseeuw, 1987). Across

all training sets, constrained k-means predicted positive clusters that

were an order of magnitude larger than the DPHM (Fig. 2A) and

achieved higher sensitivity lower bounds (SLBs) than the DPHM

(Fig. 2B). The DPHM achieved higher precision lower bounds

(PLBs) than constrained k-means (Mann-Whitney U test P<0.05

for training set sizes between 10 and 90, inclusive, see

Supplementary Table S3 for P-values) (Fig. 2C). Taken together,

these results show that regions appearing in the DPHM’s positive

cluster are more likely to be experimentally validated enhancers and

that the two methods have qualitatively different predictive

performances.

Fig. 2. (A) Sizes of positive clusters (the cluster with the training set) predicted by the DPHM (dark trace) and constrained k-means (light trace) across training set

sizes. The y-axis is log-scaled. For each training set size, both models were run five times with five different training sets. The plot shows mean positive cluster

sizes and error bars represent one standard deviation across training sets. (B) Sensitivity lower bounds achieved by the DPHM (dark trace) and constrained k-

means (light trace) with different training set sizes. The plots shows the mean and error bars representing one standard deviation across training sets. (C)

Precision lower bounds achieved by the DPHM (dark trace) and constrained k-means (light trace) with different training set sizes. The plot shows the mean and

error bars representing one standard deviation across training sets. (D) A comparison of the numbers of PAEs from the unsupervised DPHM model (with 0

regions in the must-link constraint) and semi-supervised DPHM models with differing training set sizes. For semi-supervised models with 10–100 regions in their

training set, we randomly sampled their training sets, from the VISTA enhancers five times and calculated the average number of PAEs, across the samples, for

each training set size (dark bars). In addition, for each training set size, we calculated the average number of PAEs that were also in the set of SDPHM-PAEs (light

bars). Standard deviations, for the numbers of PAEs and SDPHM-PAEs, across sampled training sets were also calculated (black lines)
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Finally, we tested the DPHM in a fully supervised learning para-

digm. To do so, we considered all VISTA enhancers as the ‘positive

set’ and all other regions as the ‘negative set’ and trained standard

machine learning classifiers (Supplementary Section S2.2.3). To fit

the parameters of the variational distribution of the fully supervised

DPHM model, we created two must-link constraints corresponding

to positives and negatives. We then allow all the VISTA enhancers

to join either the positive or negative class. We evaluate the sensitiv-

ity of the methods in training and held-out VISTA enhancers. In this

context, the DPHM is a generative model that assumes independ-

ence among features, and as expected, we found that the DPHM

achieved similar performance to Naive Bayes (Supplementary Fig.

S1B). Of the methods we tried, AdaBoost showed the best perform-

ance in the fully supervised paradigm, achieving perfect sensitivities

(Supplementary Fig. S1B).

3.2 Sensitivity to the training set
We performed a sensitivity analysis (Supplementary Section S2.3) to

analyze how predicted active enhancers (PAEs) change as we tune

the training set of the DPHM. We applied a semi-supervised DPHM

model to the mouse heart dataset and trained the model on the com-

plete training set. It discovered 47 PAEs [hereafter referred to as the

semi-supervised DPHM’s predicted active enhancers (SDPHM-

PAEs)] and most displayed epigenetic marks (Ernst et al., 2011) of

active enhancers (Supplementary Fig. S2A). Gene ontology (GO) en-

richment analysis (Supplementary Section S2.4) revealed that the

nearest genes of the SDPHM-PAEs were significantly enriched for

expression in heart ventricle during postnatal development in mouse

(q¼3.98�10�2), suggesting that the semi-supervised model may

predict heart-specific active enhancers. One SDPHM-PAE, located

1322 bp upstream from the transcription start site (TSS) of Actc1

(a gene that transcribes cardiac alpha-actin), was previously func-

tionally validated and confirmed to drive Actc1 expression

(Fleischmann et al., 1998). Sensitivity analysis showed that the

DPHM model can predict over half of the SDPHM-PAEs with 70 or

more VISTA enhancers in the must-link constraint (Fig. 2D).

Furthermore, the SDPHM-PAE near Actc1 was predicted to be an

active enhancer for at least 3/5 training set samples with 70 or more

VISTA enhancers in the must-link constraint.

For comparison, we applied an unsupervised DPHM to the

mouse heart dataset and found that the cluster with the most VISTA

enhancers had 17 VISTA enhancers and 104 PAEs. These PAEs had

some marks of active enhancers (Supplementary Fig. S2B) although

their average H3K27 acetylation (K27ac) signal (minmax-scaled

K27ac features averaged across time points and PAEs) was signifi-

cantly (one-sided t-test P¼8.81�10�4) lower than the average

K27ac signal of SDPHM-PAEs. The nearest genes of the PAEs from

the unsupervised model were not significantly (q<0.05) enriched

with any GO terms, suggesting that the unsupervised model could

not predict enhancers near heart-specific genes. The results for the

semi-supervised and unsupervised DPHM models indicate that the

training data may allow the DPHM model to predict heart-specific

enhancers with stronger activity.

3.3 Clustering the clusters
The semi-supervised DPHM model that was trained on the complete

training set found 47 clusters in the Nkx2-5 dataset. In addition to

the 47 SDPHM-PAEs, other clusters also contained regions with

characteristics of active enhancers. Furthermore, groups of clusters

shared characteristics of different enhancer states. We wanted to

group similar clusters together using another clustering model.

To this end, we represented each cluster (from the semi-supervised

DPHM model that was trained on the complete training set) with a

feature vector of expected values over its cluster-specific distribution

parameters; all the values are continuous. We applied a DPGM

(‘dphmix’ runs a DPGM when all features are continuous) with

a¼1 to group the clusters and found 14 classes (clusters of the ori-

ginal 47 clusters). Since the VISTA enhancers were forced to cluster

together, they appeared in the same class. There are five large (over

500 regions) classes that we number from 1 to 5 as shown in

Figure 3A. We performed GO enrichment analysis (Supplementary

Section S2.4) on each class to identify possible functions of their

regions. Here, we analyze an interesting large class (class 2).

Analyses for the other four large classes are provided in the

Supplementary Information. In particular, class 3 contains regions

with characteristics of active promoters (Ernst et al., 2011) and class

4 contains regions appearing to be inactive regions or decommis-

sioned enhancers (Pradeepa, 2017).

We associated class 2 with active enhancers as it contains the

cluster with all of the VISTA enhancers. We refer to this class as the

DPHM’s active enhancer class (DPHM-AEC). It also contains 4

other clusters for a total of 741 regions. It has the highest average

H3K4 mono-methylation (K4me1) signal (minmax-scaled mouse

K4me1 features averaged across time points and regions in the class)

and second highest average K27ac signal in embryonic mouse tissue

among all classes. Consistent with typical active enhancers, P300

and POL2 were bound to the vast majority of the regions in adult

tissue (Spicuglia and Vanhille, 2012). GO annotation analysis on

genes near (within 1 Mb) regions from the DPHM-AEC revealed

100 significantly enriched biological processes. To ensure that the

observed enrichments were not biased by VISTA enhancers, we con-

ducted GO enrichment analysis on the regions in the class that

are not in VISTA. The regions were still significantly enriched with

6/100 of the aforementioned processes, suggesting that they may be

novel active enhancers with similar functions as VISTA enhancers.

3.3.1 Comparison to classes discovered by constrained k-means

To determine if constrained k-means can discover classes of

enhancers, we applied constrained k-means on the Nkx2-5 dataset

with a must-link constraint on all 109 VISTA enhancers. Maximizing

the average silhouette yielded k¼2 classes (Supplementary Fig. S3A).

One class contains regions that appear to be active promoters while

the other class contains all other regions, including the VISTA

enhancers (Supplementary Fig. S3B). Neither class was significantly

(q<0.05) enriched with any biological processes. Hence, if k is

chosen to maximize the average silhouette, constrained k-means may

separate enhancers from promoters but it could not discover different

states of enhancers. This illustrates the advantage of the DPHM,

which appears to identify multiple biologically relevant classes with

characteristics of different enhancer states.

Next, we applied constrained k-means with k¼14 (to match the

number of classes found by the DPHM). Constrained k-means found

three large classes. Two of these contain a mixture of regions with

characteristics of poised, primed, weak, inactive and decommis-

sioned enhancers (Supplementary Fig. S3C, red and cyan bars). The

other large class had the VISTA enhancers so we refer to this class as

the constrained k-means’ active enhancer class (CKM-AEC).

Regions in the CKM-AEC had characteristics of active enhancers

(Supplementary Fig. S3C). The genes near regions from the CKM-

AEC were not significantly (q<0.05) enriched with any processes

that were enriched in VISTA enhancers whereas 2 heart-specific

processes enriched in the DPHM-AEC were enriched in VISTA
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enhancers (Supplementary Files: class2_noVISTA_SigProcesses and

ckm_aec_noVISTA_SigProcesses), supporting the idea that the

DPHM has more power to predict heart-specific active enhancers

even when k was given. Most of the regions that appeared to be ac-

tive promoters (class 3 found by the DPHM) are now dispersed over

five other classes found by constrained k-means. The analysis reveals

that constrained k-means can identify different classes of enhancers,

given the right k, but the classes appear less specific than those

found by the DPHM.

3.3.2 Motif enrichment analysis of classes

We next sought to identify transcription factors (TFs) whose motif

matches were differentially enriched (conserved across 6 mammals)

between class 4 (predicted inactive regions) and each other class iden-

tified by the DPHM (Supplementary Section S2.5). To our surprise,

each class was enriched with at least 60 TF motifs. The 86 TFs whose

motif matches were enriched in the DPHM-AEC were significantly

(q<0.05) enriched for 17 biological processes, including regulation

of muscle system process (q¼6.59�10�3). The TFs for other classes

were not significantly enriched with any processes, suggesting that the

TFs uniquely enriched in the DPHM-AEC may preferentially bind to

active enhancers and facilitate biological processes in the developing

mouse heart. While 80 motifs are enriched in multiple classes (shared

motifs), each class is uniquely enriched with at least 7 motifs (Fig. 3B)

suggesting that many different TFs may be required to determine en-

hancer states. We repeated this analysis using multinomial regression

and found similar results (Supplementary Fig. S4).

4 Discussion

We derived the semi-supervised variational DPHM model to cluster

heterogeneous data with must-link constraints using a Bayesian

framework. We showed that the DPHM and constrained k-means

have qualitatively different predictive performances on biological

data and that the DPHM achieves higher precision lower bounds,

which is important in enhancer prediction because false positives are

costly in experimental validation. We used the DPHM to cluster

genomic regions bound by a master regulator in embryonic mouse

heart based on heterogeneous ENCODE features and predicted the

most similar regions to a set of known active enhancers. Further

studies will determine whether other epigenomics datasets

(Roadmap Epigenomics Consortium et al., 2015; Noguchi et al.,

2017) and positive enhancers identified through self-transcribing ac-

tive regulatory region sequencing (STARR-seq) (Liu et al., 2017)

can potentially be utilized to train DPHMs and predict states of new

enhancer candidates.

Clustering the clusters revealed multiple functional classes of

enhancers in the Nkx2-5 ChIP-seq dataset, and motif enrichment

analysis suggested that many different motifs may be required to dis-

criminate the classes from each other. Experimental validation is

required to determine if the motifs uniquely enriched in specific

classes control different enhancer states and whether multiple bind-

ing events are required for enhancers to transition from an inactive

state to a functional state. However, there are examples of multiple

TF binding events driving expression of the Hbb gene to facilitate

cell fate transitions (Capellera-Garcia et al., 2016; Mitchell et al.,

2012).

Our semi-supervised DPHM approach solves a different problem

than other enhancer prediction methods (Ernst and Kellis, 2012;

Hoffman et al., 2012; He et al., 2017; Li et al., 2018) as it predicts en-

hancer states from a set of bound regions. In the fully supervised para-

digm, we found AdaBoost was better at predicting held-out VISTA

enhancers, but this is not the recommended use case for our model:

the DPHM was designed to predict an unbounded number of enhan-

cer states. Supervised enhancer classifiers can only predict classes that

are present in the training set. To separate active enhancers from in-

active enhancers, they require labelled training examples of active and

inactive enhancers. While training regions can be labelled based on

the presence of certain histone marks, TF binding or enhancer RNA

expression, these are neither necessary nor sufficient for enhancer

activity (Catarino and Stark, 2018). The advantage of the semi-

supervised approach is to predict multiple classes even when the train-

ing set only includes validated active enhancers. Consistent with this,

Fig. 3. (A) A heatmap showing the regions in the large classes. Each column represents an ENCODE feature in heart tissues and they were minmax-scaled to be

between 0 and 1. (B) A heatmap showing the enrichment (regression coefficient) of JASPAR motifs in classes 1, 2, 3 and 5 compared to class 4 (predicted inactive

regions). The vertical sizes of each row are proportional to the number of regions in the class corresponding to the rows in panel (A). Only motifs that have a sig-

nificant (P<0.05) and positive coefficient for at least one class compared to class 4 are included. Coefficients for class 4 are not available since it was used as the

reference class for all the regressions
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we also showed that constrained k-means can predict enhancer

classes, but requires a priori information about the number of classes.

Moreover, although the predicted active enhancers from the unsuper-

vised DPHM model were weaker candidates compared to those from

the supervised DPHM, the enhancer marks suggest that even the un-

supervised model can be used to predict enhancer classes.

One of the advantages of an infinite mixture model over a finite

mixture model is that the number of hyperparameters in an infinite

mixture model only scales with the number of features, whereas, in

a finite mixture model, it scales with the number of features and

clusters. Our DPHM model has 1þ4rg þ 2rb þ 2 rp hyperpara-

meters, while a GMM with diagonal covariance, would have

k�1þ2k(rg þ rb þ rp), where k is the number of clusters. Hence,

the DPHM model reduces the number of hyperparameters by a fac-

tor of order k, which can be substantial if k is large. Instead of vari-

ational inference, DPHMs can also be fit with Markov Chain Monte

Carlo methods (Neal, 2000), but convergence is difficult to assess

and not guaranteed in a finite number of iterations. We implemented

a Gibbs sampler (Vlachos et al., 2009) to fit the semi-supervised

DPHM, but found that our implementation was numerically un-

stable when the data had a large number of features.

Further work is required to determine whether our DPHM

model is viable for clustering regions genome-wide based on chro-

matin state. The algorithm is O(Tn) as it passes through the entire

dataset and all clusters to update cluster probability vectors, but

would still require a large amount of time for large datasets as it has

to complete a full pass over the dataset at each iteration of coordin-

ate ascent. Moreover, there is substantial overhead in gathering files,

extracting features for every genomic region and exhaustively testing

different priors. Stochastic variational inference could speed up the

algorithm for larger datasets as it allows some variational parame-

ters to be updated based on subsamples of the data (Hoffman et al.,

2013).

The purpose of clustering the clusters was to reduce the number

of clusters, but, in principle, this can also be accomplished by tuning

a. For large datasets, however, a has a marginal effect on the number

of clusters, because variational densities for the stick-breaking varia-

bles are primarily determined by cluster probabilities rather than a
(line 4 of Algorithm 1). The clustering of clusters is a novel, model-

based method to hierarchically cluster data in a multi-way tree

structure. Blundell et al. (2010) derived a hierarchical clustering al-

gorithm that produces multi-way trees, but the algorithm is O(n2log

n), so it may have difficulties scaling to large data. In contrast, even

for hierarchical clustering, our method is still O(Tn), as each layer

of clustering is done independently and only adds terms of order n

to the time complexity. Nonetheless, our method is heuristic and

further work is needed to create a principled, scalable Bayesian hier-

archical clustering model.

5 Conclusion

In this paper, we derived the DPHM model to cluster genomic

regions bound by a master regulator in embryonic mouse heart

based on heterogeneous features. In addition, we derived a vari-

ational inference algorithm to force known active enhancers to clus-

ter together. The semi-supervised DPHM model discovered 47

regions that were similar to the known active enhancers and near

heart-specific genes. Furthermore, we clustered the clusters from the

DPHM model to find five large classes of enhancers with distinct

patterns over their features. The class with the known active

enhancers was enriched with heart-specific biological processes and

TF-binding motifs that are important for muscle system processes.

The other functional classes of enhancers were also enriched with

many different TF-binding motifs. Our results show that the semi-

supervised DPHM model provides a principled Bayesian method for

clustering heterogeneous data with small training sets.
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