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Motivation

• Drug resistance is prevalent in bacterial 
and viral diseases such as malaria, 
tuberculosis and AIDS

• What is drug resistance?

• I’m going to use examples from HIV



ML Tree based on HIV pol gene, from Rambaut et al. 2004

Origin of the HIV virus(es)

• HIV-1 and HIV-2 probably 
emerged from monkeys 
independently

• Evidence for multiple transfers of 
HIV from other primates to 
humans

• Most infections around the world 
are HIV-1 type M, which came 
from chimpanzee

• Other strains are primarily found 
in West Africa

• HIV-1 Probably emerged around 
1930 in Africa

Hahn et al. Science 2000



How does a bloodborne virus get 
from monkeys to humans?

Hahn et al. Science 2000



Evolution doesn’t stop!

• Each colour represents 
sequences from one 
patient

• Natural selection induced 
by the immune system 
drives rapid evolution

• Sequence diversity at any 
time is low

Tree based on HIV env gene, from Rambaut et al. 2004



Evolution doesn’t stop!

Position specific estimates of Ka/Ks from 40,000 patient samples 
from Chen et al. 2004

• Strong evidence for natural selection at key positions in HIV proteins



Position specific a/s ratio

• Usually Ka/Ks (or dN/dS) is computed for a whole gene/protein.  
• Several programs now exist to compute position specific estimates 

using Bayesian or ML inference
• Beware the use of a/s ratios in population samples:

Number of amino acid changes 
at that codon

Number of synonymous 
changes at that codon

“expected” a/s ratio

Transversion rate

Transition rate
Number of possible 
synonymous 
transitions

Number of possible 
amino acid changing 
transitions

we study the expected dN/dS ratio for samples drawn from a single population under selection, and we find 
that in this context, dN/dS is relatively insensitive to the selection coefficient. Moreover, the hallmark 
signature of positive selection over divergent lineages, dN/dS>1, is violated within a population. For 
population samples, the relationship between selection and dN/dS does not follow a monotonic function, and 
so it may be impossible to infer selection pressures from dN/dS.

Kryazhimskiy & Plotkin PLoS Genetics 2008



Background on HIV protease
• HIV protease is a very well-studied protein 

where we can understand resistance mutations

LTR coding regions

RNA genome DNA Human genome

HIV transcripts

polypeptide

Cleavage by 
HIV protease

NC
…

MA

Goh et al. Virology J. 2008

Oliveira et al. J of Virology 2003

CA

Pornillos et al. Cell 2009

…

• Inhibition of HIV 
protease by drugs 
is a major strategy 
for treating HIV

Kohl et al. PNAS 1988



How do mutations confer drug resistance?

HIV protease bound to native substrate (left) and drug (right)
Prabhu-Jeyabalan et al., 2002 Andersson et al., 2003

• E.g., Mutation in the active site that prevent drug binding



Predicting drug resistance
• Knowing when/how drug resistance would 

evolve could be useful:
– Treat patients with drugs that will work on their 

HIV strains (personalized medicine)
– Develop new drugs to which resistance can’t 

evolve (easily)
• Several possible ways to predict evolution of 

drug resistance
– Learn from patient sequencing data
– Learn from lab experiments
– Predict from first principles?



PNAS 2002

• 471 samples, 14 different HIV drugs
• Each position in the protease or reverse 

transcriptase gene is a potential 
predictor, with 20 possible states

• Train decision trees for each drug



Nature Genetics 2011

• ~70,000 virus samples from patients
• Genes from these viruses are inserted into 

a test strain, and the effect on replicative
capacity is measured in the lab 

• “population sequencing” to get estimates of 
genotypes for viral proteins in each strain

• Replicative capacity is predicted from 
genotype using regularized regression 
model

• Predictive power assessed using cross-
valedation

• “fitness landscape” for HIV

Petropoulos et al. 2000 virologic.com



• HIV evolves resistance to protease inhibitors through 
mutations in the active site of the enzyme

• “Resistant” mutations prevent binding of the drugs, but 
allow binding of the peptide substrates

Introduction

HIV Protease bound to a 
peptide substrate

HIV Protease bound to a 
protease inhibitor drug

Prabu-Jeyabalan et al. Structure 2002 Andersson et al. Eur. J. Biochem. 2003



A simple adaptive process
• Imagine that HIV has reached some “equilibrium” in its 

evolution on a (possibly dynamic) fitness landscape 
(including immune system, etc.)

• Adding protease inhibitors greatly reduces the fitness of 
the “wt” genotype

• Over time the population adapts, heading towards a new 
equilibrium



A simple adaptive process
• Assume Protease is a Michaelis-Menten enzyme, and 

viral growth is proportional to the rate of cleavage

v0 =
kcat[S] [Protease]

kM (1+[Drug]/kI) + [S]

sab ≡                                                      ≈ ≈ 
growth  rate b - growth  rate a

growth  rate a
kMa

kMb
- 1

Selection 
coefficient

In general, the selection co-efficients will 
depend on the genotype in a complicated way.

e.g., Wylie & Shakhnovich PNAS 2011

Compare relative fitness 
of genotypes a and b

kIb

kIa
e∆GSa-∆GSb- (∆GDa-∆GDb) - 1

Binding energies of the 
substrate and drug

These are determined by the 3D 
conformation of the amino acid 
residues in the active site



A simple adaptive process
• Assume Protease is a Michaelis-Menten enzyme, and 

viral growth is proportional to the rate of cleavage

v0 =
kcat[S] [Protease]

kM (1+[Drug]/kI) + [S]

sab ≡                                                      ≈ ≈ 
growth  rate b - growth  rate a

growth  rate a
kMa

kMb
- 1

Fab= 
1 - e

1 - e

-2sab

-2Nsab

Selection 
coefficient

Fixation 
probability

e.g., Wylie & Shakhnovich PNAS 2011

Kimura 1962

Compare relative fitness 
of genotypes a and b

kIb

kIa
e∆GSa-∆GSb- (∆GDa-∆GDb) - 1

Binding energies of the 
substrate and drug

No population genetics needed



How do we get binding energies?

• Most resistant genotypes that have been observed 
contain fewer than 3 amino acid differences from the wt

• Evaluate the energy of each amino acid sequence by re-
optimizing the co-crystal structures of the protease with 
drug and native substrate

• Protease active site is ~15 amino acid positions, and 
several are required for catalysis, so they are invariant

• Too hard (for us) to do detailed molecular dynamics 
simulations for all these protease sequences

11
2

“only” x 20 x 20    =   22,000 possible amino acid sequences



• Since the structures of the mutants are expected to 
be very similar to the wt, we can rapidly rule out 
‘bad’ structures using fast DEE-based algorithms

• Don’t actually compute accurate energies for these 
genotypes, just assign them all to a qualitatively 
‘bad’ state

• Use MM-PBSA implemented in AMBER package to 
evaluate energies for structures that remain

• Only 787 of 22,000 amino acid sequences remain 
We can actually compute this fitness landscape!

How do we get binding energies for 
a large fitness lanscapes?

Safi & Lilien J. Comput. Chem. 2010 Safi & Lilien J. Chem. Inf. Model. 2012

Case et al. AMBER 12 UCSF

What does a fitness landscape look like?



Wright 1932



A smaller problem
• Consider only 2 positions in the active site, V82 and I84
• These positions contain many of the known resistant 

mutations

These representations of fitness landscapes are not actually useful, 
because the ordering of genotypes on the X-Y plane is arbitrary
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Wright 1932

Genotypes connected 
in these diagrams are 

***equidistant***



Genotype network 
visualized with 
cytoscape

Fitness (from the perspective of 
the virus) of genotypes is 
indicated by colours: Red nodes 
are deleterious, green are 
beneficial

wt

Connections between nodes 
indicate the number of single point 
mutations between them

E.g., of known drug 
resistant mutants



Evolution is a random walk on the 
genotype graph

a
b

c d

wt

Each pair of nodes separated by a single 
point mutation has bi-directional connections

mutation rate

simulate evolution on our 
fitness landscapes
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Simulation is done at the codon level, so this 
is a Markov chain with 1000s of states



Evolution is a random walk on the 
genotype graph

a
b

c d

wt

Each pair of nodes separated by a single 
point mutation has bi-directional connections

mutation rate

simulate evolution on our 
fitness landscapes
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Most genotypes are not visited by 
the evolutionary simulation

wt

known drug resistant 
mutants

MI HIVdb =







Compare to observed adaptive trajectories

Eshleman et al. J Infect Dis. 2001

This sequence of mutations was reported in a patient that 
developed resistance to this drug

Darkness of edges 
indicates frequency 
of that mutation in 
1000 simulations

wt



Predicting drug resistance
• Knowing when/how drug resistance would 

evolve could be useful:
– Treat patients with drugs that will work on their 

HIV strains (personalized medicine)
– Develop new drugs to which resistance can’t 

evolve (easily)
• Several possible ways to predict evolution of 

drug resistance
– Learn from patient sequencing data
– Learn from lab experiments
– Predict from first principles

Predict adaptation on computed genotype networks
Mutation is a non-negligable force in HIV evolution?
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