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The gain and loss of functional transcription factor binding sites has been proposed as a major source of evolutionary
change in cis-regulatory DNA and gene expression. We have developed an evolutionary model to study binding-site
turnover that uses multiple sequence alignments to assess the evolutionary constraint on individual binding sites, and
to map gain and loss events along a phylogenetic tree. We apply this model to study the evolutionary dynamics of
binding sites of the Drosophila melanogaster transcription factor Zeste, using genome-wide in vivo (ChIP–chip) binding
data to identify functional Zeste binding sites, and the genome sequences of D. melanogaster, D. simulans, D. erecta,
and D. yakuba to study their evolution. We estimate that more than 5% of functional Zeste binding sites in D.
melanogaster were gained along the D. melanogaster lineage or lost along one of the other lineages. We find that
Zeste-bound regions have a reduced rate of binding-site loss and an increased rate of binding-site gain relative to
flanking sequences. Finally, we show that binding-site gains and losses are asymmetrically distributed with respect to
D. melanogaster, consistent with lineage-specific acquisition and loss of Zeste-responsive regulatory elements.
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Introduction

It is now widely accepted that many differences in animal
morphology are driven by changes in gene expression during
development [1–4]. Recent work in diverse species has traced
a variety of morphological novelties to specific changes in
sequences that control gene expression [5–8]. Despite such
discoveries, we have only a limited understanding of the
underlying principles that govern the function and evolution
of these regulatory sequences. We cannot determine the
expression patterns they derive from their nucleotide
sequence, nor can we pinpoint those changes in DNA that
will alter their output.

In this paper we introduce an integrated set of computa-
tional tools and concepts for studying how the functional
components of regulatory sequences change over evolu-
tionary time. The spatial and temporal patterns of gene
expression dictated by regulatory sequences are a function of
the particular combination of transcription factor binding
sites they contain and their arrangement relative to each
other [9]. We therefore treat the evolution of regulatory
sequences as a dynamic process involving the gain and loss of
binding sites, and have developed methods to characterize
these events.

Traditional genetic and biochemical dissection of regula-
tory sequences has generated considerable data on the role of
individual binding sites and the effects of their manipula-
tions. From these experiments we can now claim a reasonable
empirical understanding of the function of a few heavily
studied systems (c.f., [10]). However, these kinds of detailed
experiments are impractical to carry out on a genome-wide
scale, and are impossible in many species. Furthermore, all of
this experimentation has not yet led to a general under-
standing of how binding-site composition and architecture

are related to function that could be applied in the absence of
direct experimental observation.
We believe that the systematic study of binding-site

dynamics will provide insights into the mechanisms of gene
regulation and its evolution that experiments so far have not.
We also think this is the only approach that will yield the
ability to understand the regulation of any gene in any
species, and to predict the effects of changes in regulatory
sequences.
Over the millions of years of evolutionary history, the

molecular logic of gene regulation has revealed itself in the
pattern of binding-site gains and losses that have been
accepted by natural selection. While we have only just begun
to exploit the results of this natural experiment, the results of
several early analyses of regulatory sequence evolution have
been quite informative.
Because evolutionary conservation can be used to identify

transcription factor binding sites (‘‘phylogenetic footprint-
ing’’ [11,12]), many previous studies have examined the
conservation of transcription factor binding sites. Indeed,
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mutations that occur in binding sites are fixed at a rate two to
three times lower than that expected for functionally neutral
mutations [13–18]. Thus, purifying selection may be acting to
remove mutations that cause binding-site loss events. This is
consistent with the model that these mutations impair
regulatory function or alter it in ways that are selectively
disadvantageous.

However, a handful of case studies of binding-site turnover
show that some binding-site gain and loss events are
tolerated, or even preferred, by natural selection. Some of
these clearly alter regulatory output [5,19,20]. For example,
the gain of binding sites for the transcription factor engrailed
in a preexisting regulatory sequence has led to the emergence
of a pigmented spot on the wings of Drosophila biarmepes [5], a
clear example of binding-site gain altering regulatory output.
Interestingly, other case studies have found turnover events
that do not alter function [21,22]. The orthologous even-
skipped stripe 2 enhancers of Drosophila species differ
considerably, with many functional sites found in D.
melanogaster absent in related species. Yet these enhancers
function normally in D. melanogaster embryos [20,22,23].

Evolutionary developmental biologists have understand-
ably focused on site gains and losses that produce evolu-
tionary novelty. With such events, however, the molecular
machinery we are trying to understand becomes a kind of
moving target. Turnover events that do not alter gene
expression, by contrast, are more likely to allow us to distill
general principles about gene regulation by providing a
window on its underlying properties in an environment free
from the changes required to create novel functions.

Nonetheless, there are only a few well-characterized
examples of binding-site turnover. In this work, we aim to
move beyond anecdotal descriptions of binding-site gains
and losses towards the characterization of binding-site
turnover on a large scale. Recent advances in genome
sequencing and high-throughput methods to study gene
expression and its regulation provide a tremendous oppor-
tunity to accomplish this. With the proper analytical
methods, available data should yield myriad examples of

binding-site turnover and, in many cases, we should be able
to directly determine the functional consequences of these
events.
With 12 genomes sequenced and a wealth of literature and

experimental data on gene regulation, the genus Drosophila is
an ideal system for such studies. We have recently extended to
the D. melanogaster embryo experimental methods that map
the locations of bound transcription factors genome-wide
[24,25], providing a large and unbiased collection of
regulatory sequences to study. Here, we analyze the dynamics
of sites bound by the transcription factor Zeste using the
genome sequences of four species in the melanogaster species
group: D. melanogaster, D. simulans, D. erecta, and D. yakuba.
These species diverged from a common ancestor approx-
imately 10 million years ago [26–28].
To perform this analysis, we developed a set of evolu-

tionary models that use comparative sequence data to
identify binding sites gained or lost along specific lineages.
We show that these methods are robust to misalignment and
address several issues arising from the use of genome-wide
transcription factor binding data. Applying these methods to
the Zeste data, we find that at least 5% of the functional Zeste
binding sites in Zeste-bound regions have been created or
lost since the four analyzed species diverged from a common
ancestor. We further show that there has been a net gain of
sites along the D. melanogaster lineage, and evaluate the gain
and loss data with respect to different models of regulatory
sequence evolution. We believe these methods and analyses
will be useful to anyone studying the evolutionary dynamics
of regulatory sequences, and, if applied widely, will contrib-
ute ultimately to new insights into the mechanisms of gene
regulation and the evolution of gene expression.

Results

Experimental Identification of Zeste-Bound Regions
We isolated regions of the D. melanogaster genome bound by

the transcription factor Zeste in stage 11 embryos by
immunoprecipitating chromatin with an anti-Zeste antibody.
We detected bound fragments by hybridization to Affymetrix
whole-genome tiling arrays containing more than 3 million
25-basepair (bp) oligos covering the euchromatic portion of
the D. melanogaster genome at an average density of one oligo
per 35 bp (see Figure 1).
We identified 296 regions bound in vivo by Zeste covering

546,016 bp and containing 306 peaks of signal intensity. For
294 of these bound regions we were able to identify
orthologous sequences in D. simulans, D. yakuba, and D. erecta,
which we aligned using MLAGAN [29]. All subsequent
analyses use these 294 regions.
We constructed a position-weight matrix describing the

binding specificity of Zeste from 26 previously characterized
Zeste binding sites (Figure 2A). Using this matrix, we
identified 1,406 potential Zeste binding sites in the 294
bound regions. The density of Zeste binding sites in bound
regions is roughly 2.5-fold greater than in flanking noncoding
sequences (see Table 1).

Definition of Turnover
We consider a predicted Zeste binding site to be an

example of binding-site turnover if it is bound in D.
melanogaster but not conserved among the four sequenced
species in the melanogaster species group.
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Synopsis

Understanding the ways in which mutations in DNA result in
alterations of an organism’s form and function is a major goal of
molecular evolutionary biology. Changes in gene expression were
long-ago proposed as a source of evolutionary diversity, but it was
only in the last few years that researchers described specific cases
where identified changes in DNA cause differences in gene
expression, which in turn affect morphology. Attention has now
turned to understanding how such sequence changes produce their
effect and whether additional examples of evolutionary novelty can
be found by examining the growing number of available genome
sequences. Moses et al. focus on transcription factor binding sites,
pieces of DNA that serve as molecular switches to turn genes on and
off. These switches are organized into larger units that function as
molecular computers and ensure that genes are made when and
where they are needed. Moses and colleagues introduce a set of
new computational methods to study how these larger units of
regulatory function evolve. While they find that most of these
switches remain fixed in place, a substantial number are created or
destroyed by mutations, yielding new insights into the evolutionary
forces that shape animal morphology.
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Evolutionary Model of Zeste Binding Sites
Our first step towards distinguishing conserved and non-

conserved binding sites was to examine the aggregate evolu-
tionary properties of the 1,406 Zeste binding sites. We
calculated the average rate of nucleotide change (based on
maximum parsimony) at each position across the seven-base
Zeste binding site (Figure 2B).

The observed position-specific variation in evolutionary
rates is expected because of the varying degeneracy tolerated
by Zeste at different positions in its binding site [18]: highly
degenerate positions change rapidly, while more specific
positions change more slowly.

We have previously shown that the position-specific evolu-
tionary properties of functional transcription factor binding
sites are accurately described by a model that assumes that
binding sites are under constant selective pressure to remain
binding sites [18]. This model, based on the protein-evolution
work of Halpern and Bruno [30] and henceforth referred to
as the HB model, generates a distinct probabilistic evolu-

tionary model for every position within a binding site based
only on the factor’s binding specificity. This model for Zeste
will henceforth be referred to as HBZ.
The HBZ model predicts the overall rate of substitution at

each position within the Zeste binding site. A comparison of
these rates to the observed rates of substitution shows overall
good agreement (R2¼ 0.81; Figure 2B). However, the rates of
substitution in the binding sites are faster than those
predicted by the model, although slower than would be
expected under a background noncoding model (HKY [31]).
We also compared the observed rates of each type of

substitution (e.g., Figure 2C and 2D) at each position in the
binding site to the corresponding rates predicted by the
model [18]. Although there is overall good agreement, once
again the observed rates are faster than those from the HBZ
model. Additional comparison with the predicted rates from
the background model revealed that the observed rates
consistently fall between the predictions of the two models.
Assuming that the HBZ model accurately describes the

Figure 1. In Vivo Binding of Zeste

Raw hybridization intensities for oligonucleotide probes in (A) the muscleblind (mbl) locus on chromosome 2R and (B) zeste (z) locus on the X
chromosome. Coordinates are from D. melanogaster release 4.0; annotations from D. melanogaster release 4.2. Black bars show individual oligo
hybridization intensities for two independent immunoprecipitations and hybridizations (z1 and z2). Note the high degree of reproducibility in the data.
The location of bound intervals (see text) is shown as blue boxes, and the oligonucleotides corresponding to the identified binding peaks are colored
red. In (B), the position of known zeste footprints [37] is indicated by an *.
DOI: 10.1371/journal.pcbi.0020130.g001
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evolution of functional Zeste binding sites, these observations
suggest that our set is a mixture of sites evolving under
purifying selection to retain Zeste binding and nonfunctional
sites evolving at or near the background rate.

Classification of Sites Based on Conservation
To classify the 1,406 sites according to conservation, we

used the HBZ model to test whether the observed pattern of
evolution at each position across each site is consistent with it
having been under continuous selection to maintain Zeste
binding since the divergence of the four analyzed species.

Specifically, we designed a likelihood ratio statistic that
compares the pattern of evolution under the binding-site
model (HBZ) to that under a background noncoding model
(HKY). We define

T ¼ log
pðY :::; ZjX; s;HBZÞ
pðY :::; ZjX; s;HKYÞ ;

where p(xjy) is the probability density function of the random
variable x, conditioned on the random variable y, s is the
evolutionary tree that relates the sequences, and HBZ and
HKY represent the choice of rate matrices to describe the
evolutionary process. We use X to represent the ‘‘reference’’
species, D. melanogaster, and Y. . ., Z to represent the other
sequences in the alignment. We calculate the conditional
probabilities recursively by summing over all the possible
ancestral states [32]. Note that the probabilities are con-
ditioned on X, as we aim to classify patterns of evolution
given that we have already observed a binding site in D.

Table 1. Total Numbers of Predicted Zeste Binding Sites in Bound and Flanking Regions

Regions Total Bases Predicted Binding Sites

D. melanogaster Recovered Conserved Nonconserved

Bound 224,742 1,406 1,373 1,061 215

Flanking 425,000 1,081 1,071 654 290

Excess 806.7 6 56.7 715.2 6 38.5 61.6 6 15.7

Z-score 33.92 38.46 4.94

The D. melanogaster column contains the total number of predicted binding sites (single-genome p-value less than 0.001) either within 300 bp of identified peaks in the 294 Zeste-bound
regions for which we could identify orthologs in D. simulans, D. yakuba, and D. erecta, or in the flanking sequences described in the text. The recovered column represents the number
sites of these binding sites that could be identified in the alignments using the rmonkey heuristic. These binding sites were considered conserved if they also had a p-value for the
conservation statistic used by MONKEY that was less than 0.001, or nonconserved if they had a p-value less than 0.01 for the T statistic described here. Excess represents the observed
number of matches in the bound regions minus the number expected based on the density in the flanking regions. 6 represents twice the standard error, which corresponds to 95%
confidence intervals under the normal approximation to the binomial. Z-scores are calculated using the normal approximation to the binomial with a continuity correction. The estimate
of excess nonconserved sites is expected to include approximately eight misclassified conserved sites.
DOI: 10.1371/journal.pcbi.0020130.t001

Figure 2. Rates and Patterns of Evolution in Zeste Binding Sites

(A) The binding specificity of Zeste derived from known Zeste binding sites in the D. melanogaster genome [37], depicted as a ‘‘sequence logo’’ [63],
constructed using http://ep.ebi.ac.uk/EP/SEQLOGO.
(B) Variation in the rate of evolution at each position in predicted Zeste binding sites found in Zeste-bound regions (unfilled squares) along with
predictions of the HB model (filled squares) or the HKY model (grey squares). The rates are correlated with the HB predictions, but are faster. See text for
details.
(C,D) Examination of the rates of different types of substitutions at positions 2 (C) and 3 (D) within the Zeste binding site shows that the observed rates
(unfilled bars) are generally between the predictions of the HB model (filled bars) and the HKY model (grey bars).
DOI: 10.1371/journal.pcbi.0020130.g002

PLoS Computational Biology | www.ploscompbiol.org October 2006 | Volume 2 | Issue 10 | e1301222

Drosophila Binding-Site Turnover



melanogaster. A similar use of conditional probability has been
applied in the two-species case [33].

The T statistic measures whether the observed substitutions
in a site are more consistent with the HBZ model (T . 0) or
the HKY model (T , 0). Since the species considered here are
closely related, and highly conserved sequences are more
likely under the HBZ model, an observation that T . 0
provides only weak support for the hypothesis that a site has
evolved under purifying selection to retain Zeste binding. In
contrast, an observation that T , 0, indicating the presence
of substitutions that interfere with Zeste binding, provides
strong evidence against the hypothesis that a binding site is
conserved.

In using this statistic we are comparing the pattern of
evolution under two expectations (i.e., HKY or HBZ) for the
evolution of the sequence. It is in principle possible that
functional Zeste binding sites evolve under constraints not
captured by the HBZ model. As we do not have a set of
functional Zeste binding sites known not to be conserved, we
cannot directly test the propensity of the statistic to produce
errors in classification. Instead, we examined the alignments
of the binding sites identified by the T statistic as non-
conserved, and found that they consistently contained
substitutions that deviated from the Zeste binding motif.

Figure 3 shows examples of previously characterized Zeste
binding sites [34–37] (obtained from [38] version 2.0) and
their values of the T statistic. The binding sites in the zeste
promoter (Figure 3A) have few substitutions and thus have T

. 0. In contrast, four of the five binding sites in the
Ultrabithorax promoter (Figure 3B) have T , 0, reflecting the
large number of substitutions that have occurred among
these four species. Interestingly, we note that in two cases
(Figure 3B, i and ii) there are predicted Zeste binding sites on
the other strand in the D. yakuba, D. erecta lineage, perhaps
reflecting compensatory evolution, while the other two cases
(Figure 3B, iii and iv) suggest lineage-specific gain and/or loss.
We can calculate the expected distribution of the T statistic

for sites evolving according to the HBZ and HKY models
(Figure 4A). The observed distribution of T statistics for the
1,406 Zeste binding sites (Figure 4B) shows that they are
qualitatively similar to the HBZ distribution. Using the
expected distribution, we can calculate the probability that
a site has the observed value of the T statistic or smaller, given
that it evolved under the HBZ model. We can use this as a p-
value to reject the hypothesis that a binding site is conserved
(although we note that the true statistical power of the test
depends on how closely the HBZ model reflects the true
constraints on Zeste binding sites).
We classified sites as ‘‘not conserved’’ if the p-value for

their value of the T statistic was less than 0.01. Of the 1,406
binding sites, 215 met this criterion, far more than the 14 that
would be expected if all of the sites were conserved and
evolving under the HBZ model.
However, before assuming that all of these 215 non-

conserved sites represent examples of binding-site turnover,
we had to address two potential confounding factors. First,

Figure 3. Evolution of Zeste Binding Sites in the z and Ubx Promoters

(A) Two experimentally characterized [37] Zeste binding sites in the z promoter for which we cannot reject the hypothesis that the binding sites are
evolving under the HBZ model using the T statistic.
(B) Four experimentally characterized [34–36] Zeste binding sites the Ubx promoter for which we can reject the hypothesis that the binding sites are
evolving under the HBZ model using the T statistic. In the species missing orthologous binding sites for (i) and (ii), we find predicted Zeste binding sites
on the opposite strand in approximately the same locations, consistent with compensatory evolution. For (iii) and (iv) there are no such obvious
replacements, suggestive of lineage-specific evolution.
T values and associated p-values are indicated beneath each binding site. Bold, red type indicates the region bound by Zeste in vitro in footprinting
assays. Blue boxes indicate matches to the Zeste matrix. Black boxes indicate matches to the matrix not found in D. melanogaster.
ere, D. erecta; mel, D. melanogaster; sim, D. simulans; yak, D. yakuba.
DOI: 10.1371/journal.pcbi.0020130.g003
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errors in our multispecies alignments could make binding
sites that are actually conserved appear to be evolving
rapidly. Second, we do not expect all of the predicted
binding sites in the Zeste-bound data to be functional.

Alignment Errors Do Not Significantly Impact Our

Analyses in Closely Related Species
Alignment algorithms attempt to reconstruct evolutionary

history by aligning putatively orthologous bases to each other.
However, even the best alignment algorithms are imperfect.
As with many models of molecular evolution, ours assume
that the DNA sequence alignment is perfect, and alignment
errors could result in the erroneous classification of
conserved binding sites as nonconserved.

As part of a larger study of alignment error, we have
performed a simulation of regulatory sequence evolution,
with transcription factor binding sites evolving under the HB
model surrounded by randomly chosen D. melanogaster non-
coding sequences evolving according to the HKY model.
These simulations demonstrate that in alignments containing
a branch of greater than 0.6 substitutions per neutral site,
many conserved binding sites are no longer perfectly aligned

(Pollard et. al, 2006). We therefore limited our analysis to D.
melanogaster and its three most closely related species with
fully sequenced genomes. The longest branch in the tree
relating these four species has fewer than 0.1 substitutions
per noncoding site.
The same simulation study also suggested that even when

conserved binding sites are not perfectly aligned, they are
often overlapping in the alignment. We therefore modified
the software we use to identify conserved binding sites [39] to
recursively recover overlapping binding sites from multiple
alignments, and assumed that these were orthologous binding
sites.
To verify the relevance of these simulations to our Zeste

data we performed a similar simulation of the evolution of
the 284 bound intervals that contain at least one of the 1,406
Zeste sites described above. We evolved these sites under the
HBZ model, and surrounding sequences under the HKY
model, along the tree relating these four species. We then
realigned the simulated sequences using MLAGAN and
searched the alignments for matches to the Zeste matrix as
before. Of the 1,406 nonoverlapping matches in D. mela-
nogaster included in the simulation, our heuristic recovered
1,351 (96%) from the alignments. Of these, we found that only
10 (0.7%) showed p-values for the T statistic less than or equal
to 0.01, which is close to the expected 1%. This suggests that
errors due to alignment contribute negligibly to the analyses
presented here.

Comparison to Flanking Sequences Reveals Significant
Number of Functional Nonconserved Binding Sites
Our genome-wide ChIP–chip experiments do not have

sufficient resolution to detect binding to individual binding
sites, leading us to analyze predicted Zeste binding sites found
in Zeste-bound regions. With the methods we used to identify
these binding sites, we expect to find two predicted binding
sites per 1,000 bp in random sequences with the base
composition of the D. melanogaster genome. While the
sequences analyzed here are more complex than random
sequence, many of the predicted Zeste binding sites may be
chance matches to the Zeste specificity matrix and not bound
by Zeste. It is important that we do not consider these
possible nonfunctional and nonconserved sites when evaluat-
ing binding-site gain and loss.
To estimate how many of the 1,406 binding sites are

nonfunctional, we analyzed predicted binding sites in 425
1,000-bp noncoding fragments located 2–3 kb on either side
of the bound intervals. These sequences have generally
similar base composition and evolutionary properties to the
bound regions. Table 1 compares the numbers of predicted
Zeste binding sites in the bound regions and flanking
noncoding regions. If we assume that binding sites predicted
outside bound regions are nonfunctional, and that nonfunc-
tional binding sites occur at the same rate in bound and
unbound regions, we can place a lower bound on the number
of functional binding sites and functional nonconserved
binding sites in bound regions.
We find an excess of 806.7 (656.7) Zeste binding sites

within 300 bp of peaks in the bound regions, and an excess of
61.6 (615.7) nonconserved sites (Table 1). Because we used a
p-value cutoff of 0.01 to define nonconserved binding sites,
we expect 8.7 functional binding sites to have passed this
threshold by chance. Correcting for these sites produces an

Figure 4. A Statistic to Classify Binding Sites Based on Patterns of

Evolution

(A) The probability density function of the T statistic under either the HB
(black trace) or HKY (grey trace) model of evolution calculated as per
[39,64] and averaged in windows of 100 adjacent scores. The traces are
slightly jagged, reflecting the fact that these distributions are discrete.
(B) The fraction of predicted Zeste binding sites in the bound regions as
a function of the value of the T statistic. See text for details. Dotted lines
bound the area corresponding to p¼ 0.01 under the null hypothesis of
HB evolution.
DOI: 10.1371/journal.pcbi.0020130.g004
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estimate of 53.6 (614.6) nonconserved functional binding
sites in the bound regions. Thus, even with the conservative
assumption that nonfunctional sites are found at equal
densities in bound and nonbound regions, we estimate that
6.6% (þ2.4%, �1.4%) of the approximately 800 functional
binding sites in these regions are not conserved.

We note that the large excesses of predicted Zeste binding
sites in the bound regions (Z¼ 33.9 and Z¼ 38.5 for matches
in D. melanogaster and conserved matches respectively, see
Table 1) are strong evidence that the high-throughput data is
identifying bona fide in vivo Zeste-bound regions. Never-
theless, the data will likely contain false negatives and false
positives, which will tend to reduce the functional enrich-
ment. Because we have assumed that all of the predicted Zeste
binding sites outside of bound regions are nonfunctional, our
estimates for the numbers of functional binding sites are
expected to be conservative.

Systematic biases in the array data, such as differences in
base composition between the bound and flanking regions,
however, could produce unexpected effects. Therefore, as a
control for base composition, rate of evolution, or other local

sequence effects between the flanking regions and the bound
regions, we repeated our analysis using a scrambled version of
the Zeste specificity matrix and found no significant differ-
ences between the bound regions and the flanking regions in
the frequencies of matches in D. melanogaster or conserved
matches (unpublished data) or nonconserved matches (Figure
5). In addition, because the classification is based on the
assumption that functional binding sites evolve under HBZ,
the correction of 0.013 3.6 misclassified binding sites per Kb
is not necessarily conservative. For example, if the HBZ
model differs from the true evolution of conserved Zeste
binding sites such that twice as many conserved sites are
passing the threshold (2% instead of 1%), we would estimate
there are 45.5 nonconserved binding sites or 5.6% of the
total.

Rates of Binding-Site Gain and Loss and the Effects of
Selection
Having demonstrated that approximately 50 D. melanogaster

binding sites in the Zeste-bound regions have not been
conserved since the divergence of the melanogaster sub-
group, we next sought to explicitly analyze rates and patterns
of binding-site loss and gain [40]. To do this, we predicted
Zeste binding sites in each of the four species, and identified
positions in the multiple alignments of the bound and
flanking regions where there was a binding site in at least
one of the species (see Table 2). We found a total of 1,909 such
positions within 300 bp of binding peaks in D. melanogaster, of
which 584 were classified as nonconserved (T statistic p ,

0.01). To infer loss and gain events, we classified each of the
584 nonconserved binding sites according to the species in
which the site is present. As above, we estimated the number
of functional sites by comparison with flanking regions.
We were particularly interested in the 426 (73%) of these

nonconserved binding sites where we could assign a single
likely gain or loss event (Figure 6A). From these, we estimated
the rates of binding-site gain (k) and loss (l), and inferred the
effects of selection by comparing these estimates in the
bound regions with those in the flanking unbound regions.
We defined the rate of binding-site loss as the fraction of

binding sites in the ancestor that are not conserved. The
ancestral binding-site number was estimated as the number
of conserved sites plus the number of nonconserved sites
classified as losses (Figure 6A, v, vi, vii, and viii). We found the

Table 2. Total Number of Predicted Zeste Binding Sites in Any Species in Bound and Flanking Regions

Regions Total bp Matches to Zeste Matrix

Any Species Conserved Nonconserved Gains Losses Net Gain

Bound 224,742 1,909 1,177 584 360 66 294

Flanking 425,000 1,817 763 851 602 78 524

Excess 948.6 6 87.0 773.5 6 68.5 134.0 6 48.3 41.7 6 37.6 24.8 6 16.2 16.9 6 34.2

Z-score 30.6 38.5 6.3 2.3 3.8 0.98

The Any Species column contains the total number of positions in the multispecies alignment where there is a predicted Zeste binding site (single-genome p less than 0.001) in at least
one of the four analyzed species. These sites were considered conserved if they also had a value of the conservation statistic used by MONKEY that was less than 0.001, or nonconserved if
they had p less than 0.01 for the T statistic described here. Gains and losses were classified as described in the text. Excess represents the observed number of matches in the bound
regions minus the number expected based on the density in the flanking regions. 6 represents twice the standard error, which corresponds to 95% confidence intervals under the normal
approximation to the binomial. Z-scores are calculated using the normal approximation to the binomial with a continuity correction.
DOI: 10.1371/journal.pcbi.0020130.t002

Figure 5. Functional Nonconserved Binding Sites Are Enriched in Bound

Regions

The average number of nonconserved Zeste binding sites per kb within
300 bp of peaks in the bound regions (unfilled bars) and the flanking
noncoding regions (grey bars). The threshold p¼ 0.01 was used for the T
statistic with the HB model as the null distribution to identify
nonconserved binding sites. As a control for base composition, rate of
evolution, or other local sequence effects, the numbers of nonconserved
matches to a scrambled version of the Zeste specificity matrix in the
same regions are also shown. Error bars represent the standard error of
the proportion.
DOI: 10.1371/journal.pcbi.0020130.g005
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rates of binding-site loss in the bound regions and flanking
regions to be lb ¼ 0.053 (66 ‘‘losses’’ out of 1243 ‘‘ancestral’’
binding sites) and li ¼ 0.093 (78 ‘‘losses’’ out of 841
‘‘ancestral’’ binding sites), respectively, and that these
differed significantly (p , 0.005, Fisher’s exact test). That
the rate of binding-site loss in the bound fragments was 57%
of that in the flanking regions suggests that purifying
selection has acted to remove many mutations that disrupted
functional Zeste binding sites.

We defined the rate of binding-site gain as the fraction of
ancestral background sequence that contains a nonconserved
binding-site classified as a gain (Figure 6A, i, ii, iii, and iv). We

estimated the length of the ancestral background sequence to
be the total number of bp in D. melanogaster minus the
ancestral binding sites as defined above. The rates of binding-
site gain in the bound and flanking regions were kb¼1.61 (360
‘‘gains’’ out of 223.499 kb) and ki ¼ 1.41 (602 ‘‘gains’’ out of
424.159 kb), respectively, and this difference was also
significant (Z ¼ 2.38, p , 0.01).

Binding-Site Evolution and Functional Evolution

The gain or loss of functional binding sites has the obvious
potential to alter gene expression patterns. However, it has
been suggested that regulatory sequences may frequently

Figure 6. Testing Models of Binding-Site Turnover

(A) Configurations of binding sites in the four species where we can infer a single gain (i–iv) or loss (v–vii) event. There are an additional two situations
where we can infer that only a single event occurred, but we cannot distinguish a loss from a gain; and an additional four scenarios that are not
consistent with a single event.
ere, D. erecta; mel, D. melanogaster; sim, D. simulans; yak, D. yakuba.
(B) Schematic representation of a model for evolution at the level of binding sites. Selection could lead to an excess in the number of binding sites by
increasing the rate of binding-site gain, by decreasing the rate of binding-site loss, or both. Indicated are the relative rates of gain and loss in the bound
regions compared with the flanking noncoding regions; that the relative rate of loss is less than one suggests the action of purifying selection to retain
binding sites. That the relative rate of gain is greater than one is consistent with selection or functional drift. See text for details.
(C) The fraction of gains, losses, and net change in binding-site number (grey bars) along the D. melanogaster lineage are respectively greater, less, and
greater than the expectation based on the phylogenetic tree (dashed line). This is expected if there has been lineage-specific evolution of function, but
not if all changes are compensatory. See text for further discussion. Error bars represent the standard error of the proportion.
(D) The distribution of the number of ‘‘co-occurring pairs’’ of complementary nonconserved binding sites in 1,000 random permutations (grey bars).
Compensatory changes imply an excess of co-occurring sites, but the observed value (black bar) does not fall in the extreme of this distribution.
DOI: 10.1371/journal.pcbi.0020130.g006
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evolve through compensatory gain and loss events that
produce little if any functional change [23]. To evaluate the
extent of these two modes of evolution in the Zeste-bound
regions, we compared the rates and patterns of binding-site
gain and loss along the lineage leading to D. melanogaster since
its most recent common ancestor with D. simulans, to gains
and losses along the other lineages.

Because the bound regions we are evaluating here come
from experiments in D. melanogaster, any sequence changes
that affect regulatory function should be asymmetrically
distributed with respect to D. melanogaster. In particular, if
any of the bound regions are unique to D. melanogaster, we
might expect to find Zeste binding-site gains in these regions
along the D. melanogaster lineage. Conversely, we would not
expect to detect many Zeste binding-site losses along the D.
melanogaster lineage if those losses impaired binding. There-
fore, we might expect to see an excess of binding-site gains
and a deficit of binding-site losses along the lineages leading to
D. melanogaster.

To examine lineage-specific rates of binding-site gain and
loss, we computed the excess (relative to flanking sequences)
fraction of nonconserved binding sites that showed a single
change along the D. melanogaster lineage (Figure 6C). Although
the melanogaster branch accounts for about 13.5% of the
evolutionary distance covered by these species (0.032 of 0.23
total substitutions per site spanned by four species), it
accounts for 32% (13.5 of 41.7) of the excess binding-site
gain events and only 7% (1.7 of 24.8) of the excess loss events,
consistent with the hypothesis of lineage-specific gain and
loss of Zeste-bound regions. In addition, if we look at the net
gain (gains minus losses) of nonconserved binding sites, there
is an excess of 16.9 binding sites. Changes on the melanogaster
branch account for 70% (11.8) of these. It is important to
note, however, that while we can clearly reject the hypothesis
of symmetrically distributed changes, the excesses of these
subdivided classes of nonconserved binding sites were not
statistically significantly different than the background. The
asymmetries that we observed may therefore be caused by any
number of heterogeneities in the data, though we did not
notice such effects along the melanogaster lineage in the total
numbers of predicted Zeste binding sites or the number of
nonconserved matches of these types for a scrambled version
of the Zeste matrix (unpublished data).

That the net gain in binding sites was small, and seemed to
occur mostly on the melanogaster lineage, suggests that many of
the changes in functional nonconserved binding sites are
compensatory, that is, cases where a binding-site loss was
compensated with the gain of a binding site elsewhere in the
same bound region. To test this model, we used the initial
classification of nonconserved binding sites illustrated in
Figure 6A to evaluate how frequently specific binding-site
gain events were matched with compensatory losses (the
scenarios in Figure 6A were grouped as (i) and (v), (ii) and (vi),
(iii) and (vii), (iv) and (viii)). In this analysis we also included
the binding sites corresponding to the pair of scenarios
consistent with one change, but whose direction we could not
infer.

We observed 33 instances where complementary binding-
site gain and loss events occurred in the same bound region.
We compared this number with that observed in permuta-
tions in which the total number of binding sites in each
region was kept constant, but the evolutionary scenario to

which each site corresponded was randomized. The observed
co-occurrence value in the bound regions did not fall in the
extreme of this distribution (Figure 6D), failing to provide
support for the compensatory change model. We constructed
several other test statistics based on similar reasoning and we
were unable to find any that provided support for the
compensatory turnover model (unpublished data).

Discussion

Despite general appreciation for the importance of
regulatory changes in the evolution of morphology [1–3]
and an understanding of the mechanistic importance of
transcriptional regulation in development [4], the technical
tools to study the molecular evolution of regulatory sequen-
ces are still being developed. In this study we have described
computational methods for the systematic analysis of bind-
ing-site evolution that integrate genome-wide in vivo binding
data with multispecies alignments of noncoding DNA. Our
methods are based on a probabilistic model of binding-site
evolution that allows us to identify binding sites that have
either been created or destroyed since the divergence of the
species being studied. While the exact p-values we provide
depend on the assumption that conserved sites evolve under
this model, the important point is that we have developed a
method to statistically identify binding sites that do not
appear conserved in the multiple alignments. Perhaps as
importantly, we showed how to conservatively control for
alignment error and the potential presence of nonfunctional
sites in regions bound by a given transcription factor, both of
which can lead to erroneous identification of binding-site
turnover.
These technical advances allowed us to analyze a large

number of binding sites for a single factor (D. Zeste) and test
several important hypotheses about binding-site evolution.
While simulations [41,42] or studies of small numbers of well-
characterized binding sites for multiple factors [17,22,40,43]
had demonstrated the possibility of binding-site turnover,
our unbiased, genome-scale analysis provides strong evidence
that, at least for Zeste, the phenomenon is general. No fewer
than 5% of functional Zeste binding sites have turned over
since the relatively recent (approximately 10 million years
ago) divergence of the four Drosophila species we analyzed
here. A turnover rate of approximately half a percent of sites
per million years is in line with earlier estimates based on far
smaller datasets [40,43].
By examining the phylogenetic distribution of the large

number of binding sites available for analysis, we were able to
separate turnover events into binding-site losses and gains,
and to estimate the rate of each process. The reduced rate of
binding-site loss in bound regions is consistent with earlier
studies that showed that binding sites are under purifying
selection [13–18]. In some sense the well-established ‘‘con-
servation’’ of binding sites is contrary to the reports of
binding-site turnover—if binding sites are under functional
constraint, how can they turn over? Because our analysis was
at the level of individual binding-site loss events (as opposed
to nucleotide substitutions), we could show explicitly that the
rate of turnover events does reflect purifying selection. This
implies that the selection must be weak enough that binding-
site disrupting mutations are still fixed at an appreciable rate.
In addition to evidence for purifying selection, two
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observations—the increased rate of gain of functional Zeste
binding sites in Zeste-bound regions, and the excess of gains
and dearth of losses along the D. melanogaster lineage—raise
the possibility that positive selection has acted to fix new
Zeste binding sites either to alter the regulation of existing
target genes, or to bring additional genes under the control
of Zeste. However, we cannot eliminate the possibility that
these new functional binding sites were selectively neutral
and fixed by drift. It is possible that some of our bound
regions are simply places where additional Zeste binding (and
perhaps even the corresponding alteration in gene expres-
sion) does not have any strongly deleterious consequences. In
such a scenario, the fixation of selectively neutral Zeste
binding sites by drift may preferentially induce new Zeste
binding. Although this may seem unlikely, we note that Zeste
is a nonessential transcription factor, and that two recent
studies examining the evolution of gene expression proposed
that many of the observed changes are consistent with a
neutral model [44,45], although this model remains contro-
versial [46].

While there have been several recent reports of positive
selection acting on regulatory sequences [6,47–50], methods
to distinguish drift and purifying selection based on genome-
scale interspecific comparisons will be of great interest.
Furthermore, in this work, we utilized binding data from a
single species, D. melanogaster, for practical reasons. However,
the technology now exists to perform such experiments in
multiple species. Parallel functional studies in multiple
species will allow explicit comparison of the changes in
regulatory sequences to changes in binding of transcription
factors and gene expression patterns, alleviating many of the
ambiguities encountered here.

Another major challenge in the analysis presented here was
the presumed mixture of functional and nonfunctional
predicted binding sites in bound regions. This effect was
exacerbated by our focus on sites that are not conserved
across the species we analyzed. Based on the frequency of
nonconserved sites in sequences flanking bound regions, we
estimated that only approximately 25% of the nonconserved
binding sites are functional. This large number of non-
conserved, nonfunctional sites limited the statistical power of
several of our analyses. As in previous work that has identified
compensatory turnover of well-studied functional sites [23],
we showed that the Zeste binding sites in the Ubx promoter
are very likely to represent an example of compensatory
turnover. Nevertheless, the statistical test we developed
yielded no evidence that, given the observed rates of
binding-site gain and loss, such compensatory changes occur
more frequently than expected by chance in this dataset. The
inability to distinguish functional and nonfunctional sites
limits studies of this kind. Improved resolution of ChIP–chip
experiments allowing the identification of individual binding
sites would greatly impact the study of regulatory sequence
evolution. Alternatively, with enough sequence data, it might
be possible to identify functional sites purely by the
application of binding-site evolution models to multiple-
species alignments containing many species. For example, if
we had sequences for the entire D. melanogaster species
subgroup, with hundreds of species, we might be able to
recognize the signature of purifying selection acting on a
particular subtree, but not other lineages, thereby directly
identifying functional sites and characterizing their turnover.

Despite these challenges, we have provided genome-scale
statistical evidence that binding-site gains and losses are
prevalent in Drosophila. We suggest that the combination of
large-scale functional data, multiple closely related genome
sequences, models of binding-site evolution, and methods
that are insensitive to or compensate for experimental and
analytical error will prove valuable for such future studies of
binding-site turnover.

Materials and Methods

Specificity matrix construction. A specificity matrix [51] for Zeste
was constructed from 26 footprinted binding sites [37] by using the
total number of observations of each base at each position plus a total
of one pseudo-count to each position distributed as (0.3, 0.2, 0.2, 0.3)
for each of (A, C, G, T). As only the seven central positions contained
significant information (see Figure 1A), only these seven central
positions were used as the specificity matrix for this study.

To make the ‘‘scrambled’’ matrix used in Figure 5, we sought a
matrix that would not match real Zeste binding sites, but would
retain some of the structure of the Zeste motif. We found that much
of the matrix structure could be retained, but that if the central GAG
was destroyed in order we no longer observed enrichment in D.
melanogaster (unpublished data). The matrix used here contained the
columns in the order 1,2,3,5,6,4,7.

The Zeste matrix and the scrambled Zeste matrix used here are
available in Dataset S1.

Zeste in vivo binding data. We identified regions of the D.
melanogaster genome bound in stage 11 embryos by the transcription
factor Zeste by chromatin immunoprecipitation and hybridization to
an Affymetrix whole-genome tiling array. The complete details of
these experiments and the subsequent data analysis will be presented
elsewhere (XL, MDB, DAP, DAN, MBE, unpublished data).

Briefly, 7.5-h-old to 9.5-h-old embryos were crosslinked with
formaldehyde and chromatin was prepared by CsCl gradient as
previously described [52]. Chromatin immunoprecipitation was
carried out with affinity purified anti-zeste antibody [53], and normal
rabbit IgG was used for mock ChIP reactions. The ChIP, control ChIP
samples, along with input DNA, were amplified using a random-
prime–based PCR amplification protocol [54]. The amplified DNA
was fragmented with DNase I, biotinylated, and hybridized to
Affymetrix whole genome D. melanogaster tiling arrays. Two inde-
pendent immunoprecipitations and subsequent hybridizations were
performed, along with control immunoprecipitations using IgG.
Hybridizations were also performed with amplified input (pre-
immunoprecipitation) DNA.

To process the data, Affymetrix’s ‘‘bpmap’’ file (which contains
oligo sequence, array grid coordinate, and genomic positional
information) was filtered and remapped to the D. melanogaster genome,
release 4.0. A BLAST search was performed with each oligo against the
genome. Only those oligos with exactly one exact match to the genome
were used in the analysis. Oligo intensity values from the exper-
imentally derived ‘‘.cel’’ files were median scaled to 50. To identify
bound regions, a 675-bp window was advanced across each chromo-
some one oligo at a time, and each window assigned a score equal to
the trimmed mean (lowest and highest values dropped) of the
individual oligo ratios (treatment/ control). Data were combined from
all pairwise comparisons between the six treatment chips (two anti-
Zeste IPs each with three technical repeats or two mock IgG IPs each
with three technical repeats) and three control chips (input chromatin
with three technical repeats). Only windows with ten or more features
were examined to avoid poorly sampled, partially masked regions. A
cutoff score was chosen to produce an estimated 1% false positive rate
by comparing the distribution of window scores in the Zeste data and
the IgG control. All windows with scores exceeding this cutoff were
considered bound, and any windows that overlapped one another by
100 bp or more were joined together into intervals and assigned the
score of the highest window within the interval. These composite
windows or intervals were then ranked according to the best median
ratio sub-window (350 bp) within each interval. To eliminate clear
false positives, an intersection analysis was made between the Zeste
intervals and the seven mock IgG-derived intervals. Five of the
intervals were found to intersect by 100 bp or more and were removed
from the Zeste interval list. Last, a graphical representation of each
interval was examinedmanually. Three intervals toward the bottom of
the list were found to contain poor data that overlapped masked
repetitive regions. These were also removed. This process produced
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296 intervals. Of five known direct targets of Zeste [38], we identified
bound intervals adjacent to Ubx, z, and Dpp. A simple peak-finding
algorithm was used to identify one or more peaks of signal intensity
within each interval. Intervals and peaks are available in Dataset S2.

Choosing flanking regions. The flanking ‘‘background’’ noncoding
sequences were obtained by considering 1-kb segments 2 kb on either
side of the bound intervals and excluding those that overlapped
exons. We also performed analyses that used flanking regions with
exons and found similar results (unpublished data). To verify that the
bound and flanking sequences have similar overall properties, we
trained first-order and second-order Markov chains on each set and
found very similar (R2¼ 0.96 and 0.94, respectively) estimates for the
transition probabilities. In the case of the second-order chain, we
noted that the largest deviations were p(CjCT) and p(GjGA), which
match the core GAG/CTC of Zeste’s specificity (Figure S1). Further,
we estimated the rate of evolution using paml [55] for each segment
in the bound and flanking regions, and found the rate of evolution to
be very similar in the two sets (median 0.212 and 0.213 substitutions
per site, respectively).

Prediction of binding sites in D. melanogaster. To predict binding
sites in D. melanogaster, we used the program MONKEY, which
calculates the p-value associated with a likelihood ratio comparing
the probability of the observed sequence under the specificity matrix
to a position-independent 0th order background model [56,57]. We
specified the background model to be 60% AT, very close to the AT
content observed in Drosophila noncoding regions for the species used
in this study. The 1,406 nonoverlapping matches in the bound regions
in D. melanogaster were obtained by searching for all matrix matches
with p , 0.001 in the intervals within 300 bp of a peak; where two
matches overlapped, the one with the smaller p-value was chosen.
There were 224,742 bp within 300 bp of a peak, including some
within 300 bp of more than one peak.

Assignment of orthologous noncoding regions. Genome sequences
were downloaded from the following public sources: FlyBase (http://
www.flybase.org), D. melanogaster: release 4.0; Drosophila 12 Species
Assembly, Annotation, and Alignment (http://rana.lbl.gov/drosophila/
assemblies.html), D. simulans: dsim_davis_29sep04, D. yakuba: dy-
ak_davis_22may04, D. erecta: dere_agencourt_arachne_28oct04.

For each analyzed noncoding region in D. melanogaster, orthologous
regions of the D. simulans, D. erecta, and D. yakuba genomes were
identified by one of two methods: where the D. melanogaster sequence
was found in a previously identified blocks of synteny (VNI, DAP,
MBE, unpublished data), the orthologous sequence was extracted
from alignments of the synteny blocks; alternatively Blastn [58]
searches with the target region and flanking sequence were used to
identify orthologous sequences directly, subject to a filter on percent
identity and gapped fraction to eliminate alignment to unrelated
sequences. All sets of orthologous sequences were then aligned using
MLAGAN [29].

Calculating and predicting rates of evolution in aligned binding
sites. The model of Halpern and Bruno [30] gives the rate of
evolution, R, of base a to base b at position p as

Rpab ¼ Qab 3
ln fibQba

fiaQab

� �

1� fiaQab

fibQba

where Q is the (position-independent) underlying mutation matrix
and f is the frequency matrix describing the specificity of the factor. It
is only possible to estimate, however, the evolutionary distance (rate3
time) measured in substitutions, but because we know the time for all
sites within one species must be the same, we can infer differences in
rates based on differences in distances. We therefore set the
background noncoding evolutionary (distance) model equal to Q,
and predict the distance, rather than the rate. To obtain estimates of
branch lengths and the transition–transversion rate ratio for the
HKY background noncoding model, we ran paml [55] on a set of
1,000 aligned random 10-kb noncoding regions. We found kappa to
be close to 2.0, and used that value for subsequent analysis. We used
the following species tree [59] with the branch lengths set to be the
median of the 1,000 regions: ((mel:0.03157, sim:0.02078):0.02049,
(yak:0.06574, ere:0.07119):0.02383), measured in substitutions per site.

To predict the expected distance (K) at each position (see Figure
2B), we use Kp ¼ Ra Ra6¼b fpaRpab for HB [18] and Kp ¼ Ra Ra6¼b fpaQab
for HKY. Similarly, to predict the expected distance for each type of
change (k, see Figure 3C–3D), we have kpab¼ fpaRpab for HB and kpab¼
fpaQab for HKY. We note that the predictions of rates are based
entirely on the specificity matrix for the factor and the background
noncoding evolution model, and therefore do not depend on the
binding sites and alignments inferred in these regions.

Observed rates of evolution were calculated as follows. The bases
aligned to the Zeste matches (p , 0.001) within 300 bp of peaks in the
bound regions of D. melanogaster were extracted for further analysis.
Parsimony costs for each column in the alignment were computed
using the traditional parsimony algorithm [60]. The rate at each
position, K, (see Figure 3A) is the total parsimony cost at that position
in all the Zeste matches, divided by the total number of ungapped
bases at that position. The observed rates for each type of change
(Figure 3C and 3D) were calculated by inferring the ancestral states
by maximum parsimony, and where both the parent and child could
be inferred unambiguously, and they did not match, we inferred that
a change had taken place. Because in many cases it is possible to infer
that a change has occurred, but not unambiguously infer the
ancestral bases, the total number of changes we could infer in this
way was less than the total parsimony cost. To correct for this we
scaled the rate at each position by the fraction of changes for which
the direction could be inferred. For example, the rate of base a to
base b at position p would be given by

kpab ¼
npa!b

Np
3

CpX
i6¼j

npi!j
;

where k represents the evolutionary distance (rate 3 time) for this
type of change, n and N represent the number of inferred changes
and the number of ungapped positions, respectively, and C represents
the total parsimony cost over all matrix matches at that position. We
note that this scaling does not affect the relative estimates of rates at
the same position.

Simulation of noncoding DNA evolution to obtain estimates of
alignment error. To estimate how often the alignment algorithm
might misalign a transcription factor binding site, we developed a
realistic, noncoding DNA evolution simulation program called
CisEvolver [61]. Briefly, CisEvolver generates noncoding sequences
along a tree with the option of including binding sites evolving under
the HB model. We used the D. melanogaster noncoding sequence as the
‘‘ancestor’’ for the simulation and allowed the background sequences
to evolve according to the evolutionary tree described above.
Insertions and deletions were treated as a Poisson process with rate
equal to 0.1 the substitution rate, and size distribution taken from D.
melanogaster polymorphism data [62]. Sequences were realigned using
MLAGAN with default parameters.

A conservative, recursive approach to identify aligned binding
sites. Because the simulation of noncoding DNA suggested that the
alignment algorithm could not be expected to align binding sites
perfectly even if they are under constant constraint, we modified the
MONKEY program to recover orthologous sets of binding sites using
the following divide and conquer heuristic. 1) Identify the highest-
scoring single species matrix match in a region, either requiring it to
be in D. melanogaster (as in Figure 5), or allowing it to be in any species
in the alignment (as in Figure 6). 2) Search each sequence for the
highest scoring match that overlaps by at least one bp in the
alignment, and assign these as the orthologous sequence. 3) Exclude
the region of the alignment that spans the match in any of the
sequences. 4) Repeat on the binding-site free intervals to the left and
right until no single species match passes a predefined threshold (in
our case 0.001). This recursive MONKEY (rmonkey) will be made
available as a new version of the MONKEY package.

Although this heuristic will very often align sequences that are
nonorthologous, we sought a conservative way to ensure that if there
are orthologous sequences overlapping they will be discovered. We
also performed the analysis using an even more conservative heuristic
that ruled out matches that preceded a previously identified match by
less than the width of a motif. While overall the results were similar
(unpublished data), we found slightly less enrichment of all types of
binding sites.

Once we had obtained these ‘‘alignments’’ for each single species
match to the matrix, we performed several analyses on each one. First,
we computed the p-value associated with the Ŝ statistic used by
MONKEY to identify conserved binding sites (Moses et al., 2004). This
statistic compares the likelihood of the aligned binding site under the
HB model to the background model, and can be regarded as an
evolutionary generalization of the information content. We defined
conserved binding sties as those that contained at least one single
species match with p , 0.001 (identified by our heuristic) and p ,
0.001 for the Ŝ statistic used by MONKEY. Next, we calculated the T
statistic as described below. Finally, when we had allowed the single
species match to occur in any of the species in the alignment (as in
Figure 6), we tested which of the species had single species matches
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with p , 0.001, and used this to classify them according to the
evolutionary scenarios described above.

Calculating the distribution of the T statistic. We note that the
statistic given above can be rewritten using Bayes theorem as

T ¼ log
pðX;Y :::;ZjHBÞpðXjHKY Þ
pðX;Y :::;ZjHKY ÞpðXjHBÞ

¼ log
pðX;Y :::;ZjHBÞ
pðX;Y :::; ZjHKYÞ � log

pðXjHBÞ
pðXjHKY Þ ¼ Ŝ� log

pðXjHBÞ
pðXjHKYÞ ;

where we represent the alignment of multiple sequences as X,Y. . .,Z,
and omit the dependency on the evolutionary tree for notational
simplicity. The probability of aligned sequences given an evolu-
tionary model and tree is calculated using classical methods [32]. We
note that the first term, (Ŝ), is the evolutionary generalization of the
information content [39], and the second term is similar to the single
sequence likelihood ratio but takes into account the distance from
the root to the reference species, X. To calculate the value of the
second term, we marginalize over all the other leaves in the tree, i.e.,
pðXjHBÞ ¼ RY :::;Z pðX;Y :::; ZjHBÞ. We note that because of the
conditional independence structure of the bifurcating tree, this is a
function of X and its ancestors only.

As with the Ŝ statistic [39], it is possible to compute the distribution
of this statistic under various assumptions by expressing it as a
‘‘weight matrix’’ with entries given for the pairwise case by:

Miab ¼ log
pðXia ¼ 1;Yib ¼ 1jHBÞ
pðXia ¼ 1;Yib ¼ 1jHKYÞ � log

pðXia ¼ 1jHBÞ
pðXia ¼ 1jHKYÞ :

The distribution can then be calculated recursively [39]. In addition,
we note that this statistic can also provide a conservative test of
binding-site conservation by computing the probability of observing
a score as large, under the hypothesis that there was a match to the
matrix but it was evolving under the background (HKY) evolutionary
model.

Supporting Information

Dataset S1. Zeste and Scrambled Matrix

Found at DOI: 10.1371/journal.pcbi.0020130.sd001 (120 KB XLS).

Dataset S2. gffs of Bound Regions and Peaks

Found at DOI: 10.1371/journal.pcbi.0020130.sd002 (10 KB XLS).

Figure S1. Markov Chain Transition Probabilities Estimated from
Bound and Flanking Sequences

(A) Estimates for the first-order Markov chain showing no striking
deviations.

(B) Estimates for the second-order Markov chain show enrichment of
the Zeste specificity GAG/CTC core.

Found at DOI: 10.1371/journal.pcbi.0020130.sg001 (255 KB PDF).
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