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7.1 � Introduction – Pattern Recognition and Discovery 
in cis-Regulatory Informatics

The first complete genome sequences of eukaryotes revealed that much of the 
genetic material did not code for protein sequences (Lander et al. 2001; Venter et al. 
2001). Although this noncoding DNA was once thought to be “junk” DNA, it is 
now appreciated that large portions of it are actively conserved over evolution 
(Waterston et al. 2002; Johnston and Stormo 2003), suggesting that these regions 
contain important functional elements.

A first hypothesis about the function of this noncoding DNA is that it is involved 
in the regulation of gene activity. One of the best-understood mechanisms of gene 
regulation is the modulation of transcriptional initiation by sequence specific DNA 
binding proteins (or transcription factors). These proteins recognize short sequences 
in noncoding DNA that fall into families or contain consensus patterns or motifs.

In general, we have little understanding of how the information in noncoding 
regulatory sequence specifies complex patterns of gene expression. In analogy to 
the genetic code that translates DNA sequence to amino acids in a protein, researchers 
have suggested the existence of an unknown “cis-regulatory code” that translates 
DNA sequence to patterns of gene expression (Levine and Davidson 2005).

To specify complex patterns of regulation, genes are often regulated by multiple 
transcription factors, and the binding sites for these factors are organized into 
discrete regulatory regions, often called “enhancers” or “cis-regulatory modules.” 
These regulatory regions are often found in the proximal 5¢ promoter regions, but 
they may also occur much further upstream, downstream, or in intronic regions.
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It is these regulatory regions that execute the cis-regulatory code, and systematic 
identification of these noncoding DNA regulatory regions and the binding sites 
within them is of great interest in postgenome era molecular biology; the sheer 
vastness of the noncoding DNA sequence to be analyzed implies that computational 
methods will have an important role to play.

7.1.1 � Two Major Challenges

The biological questions regarding cis-regulatory sequences can be broken into two 
major parts. The first can be thought of as identifying the patterns or motifs associated 
with each transcription factor. Given this set of patterns, the next challenge is to iden-
tify the specific positions in the noncoding DNA where the transcription factors actu-
ally bind in vivo. This is directly analogous to the two steps of a statistical clustering 
problem; first to identify the clusters and second to assign each datapoint to a cluster. 
As we shall see, sophisticated statistical methods aim to solve these simultaneously. 
This distinction is important because the experimental approaches to attack these 
problems can be quite different so that historically they were distinct problems. Here 
we will use the terminology that “motifs” or “consensus sequences” refer to the rep-
resentations of specificity or patterns associated with transcription factors, whereas 
“instances,” “matches,” or “regulatory sequences” refer to the specific places in non-
coding DNA where transcription factors are predicted or known to bind.

7.1.2 � Overview of Regulatory Informatics

This chapter will cover three reasonably well defined types of bioinformatic appli-
cations. The first are databases and repositories for organizing, storing, and distributing 
experimentally identified regulatory sequences and motifs; next are pattern 
matching site prediction methods that begin with known motifs or patterns and 
attempt to predict the regulatory sequences in noncoding DNA; and finally are 
de novo or ab initio motif-finding methods that attempt to discover the motifs (and 
perhaps matches to them simultaneously). In each section, we provide a table with 
some examples of software implementations. However, these tables are not 
intended to be comprehensive, but are rather representative of the work in the area. 
As regulatory bioinformatics is still rapidly developing, readers should refer to 
recent reviews to find the latest implementations.

7.2 � Databases and Repositories for Regulatory  
Sequences and Motifs

The simplest function of online databases is to store binding sites that have 
been characterized through biochemical and genetic experiments (Heinemeyer 
et al. 1998). The technically difficult aspect of these applications is to extract the 
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experimental data from the primary biological literature. Usually this is per-
formed by experts who read large numbers of papers and enter the results into 
the databases. More recently, computational text mining approaches have also 
been applied to extract regulatory sequences and information from the literature 
(Aerts et  al. 2008). Several databases of curated motifs are described in 
Table 7.1.

7.2.1 � Mathematical/Computational Representations of Motifs

Given a set of experimentally characterized regulatory sequences that are known to 
be bound by a particular factor, a first task is to identify and summarize the specificity 
of the transcription factor in a motif or consensus. There are two popular strategies 
to do this.

Table 7.1  Databases for storing experimentally identified cis-regulatory sequences

Resource Types of data Tools Notes

Transfaca Classification of 
transcription factors, 
experimentally 
proven binding sites, 
counts matrices

Many Available with 
subscription

Jasparb Matrices Logos, reverse 
complements, 
and more

Freely available, plant 
and animal matrices 
only

SCPDc Transcription factors, 
characterized binding 
sites, counts matrices, 
consensus sequences

Pattern matching Freely available, 
Saccharomyces 
cerevisiae only

REDflyd/Drosophila 
DNase I 
Footprint 
Databasee

Transcription factor 
binding sites and 
regulatory regions 
(CRMs) z

Links to genome-
wide alignments

Freely available, 
Drosophila 
melanogaster only

ORegAnnof Regulatory regions, 
Transcription factor 
binding sites,  
includes evidence  
for each  
record

Freely available, open 
source data and web 
application, integrates 
information from 
multiple databases

PRODORICg Transcription factor 
binding sites, 
operons, matrices, 
promoter  
architecture

Composite patterns, 
Genome Browser, 
and more

Freely available, 
prokaryotes only

a (Wingender et al. 1996), b (Sandelin et al. 2004a), c (Zhu and Zhang 1999), d (Gallo et al. 2006), 
e (Bergman et al. 2005), f (Montgomery et al. 2006), g (Münch et al. 2003)
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Matrix representation: Here each position of the motif is treated as a multinomial 
distribution on the residues. This representation of motifs is used in probabilistic 
methods and implies an infinitely large, continuous space of motifs. Despite this, 
the matrix representation has several attractive features, discussed in more detail 
later on in the chapter:

  (i)	 The parameters of the multinomial at each position can be readily estimated 
using statistical inference methods.

 (ii)	The multinomial distribution at each position can be used to obtain a mea-
sure of “information” contained in each position in the motif (Schneider 
et al. 1986).

(iii)	 These multinomials can be transformed into “log-odds” or weight matrices, 
which are a computationally convenient form to store classifiers (Stormo 2000).

(iv)	 Experimental and theoretical evidence suggests that this representation is 
related to the binding energy of the protein-DNA interactions (Berg and von 
Hippel 1987).

Consensus representation: Consensus representations of motifs are more familiar 
to most biologists and have also been important for computational approaches. 
A consensus representation of a motif may simply be the most frequent letter at 
each position in the motif. Alternatively, “degeneracy codes” or mismatches may 
be used to represent non-optimal matches. The main computational advantages of 
the consensus representation are:

 (i)	 The space of motifs is discrete, so computational strategies for matching and 
de novo motif finding are highly efficient, and

(ii)	 The space of motifs is finite, so computational strategies for de novo motif-
finding can aim to search exhaustively.

To illustrate the various representations of motifs, we consider a set of known binding 
sites (called GATA sites) from the SCPD database.

 > YIR032C	 GATAAG
 > YIR032C	 GGTAAG
 > YIR032C	 GATAAG
 > YJL110C	 GATAAT
 > YKR034W	 GATAGA
 > YKR034W	 GATAAC
 > YKR039W	 GATAAG
 > YKR039W	 GATAAC

The consensus representations for this motif might be GATAAG with one mismatch 
allowed or GRTARN where R represents A or G and N represents any base.

We next derive the maximum likelihood estimate (MLE) for the frequency matrix 
representation using this example. This example will introduce the notation and 
terminology that we will use later on in the chapter. We represent the sequence data 
at each position as a four-dimensional vector, where each dimension corresponds to 
one of the bases A, C, G, T.
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This is often referred to as a “counts” matrix and such matrices are provided by 
many databases.
The likelihood of the data is defined as the probability of the data given the model, i.e.,

=( ) ( | model)L X p X

where p(A|B) represents that probability of the random variable A conditioned on the 
random variable B. Under the multinomial model for each position, the likelihood of 
the counts matrix X is the product of the probability of each base, in our case

	
=

= ´ ´ ´ ´ ´ ´ ´ ´ ´ ´8 7 1 8 8 7 1 1 2 4 1
1 2 2 3 4 5 5 6 6 6 6

( ) ( | motif)

G A G T A A G A C G T

L X p X

f f f f f f f f f f f
	

where f are the parameters of the multinomial at each position in the motif. This can 
be written compactly as

	
= Î

=Õ Õ
1

( | motif) ib

w
X

ib
i b ACGT

p X f 	

where i is the position in the motif, and b indexes the bases. To find maximum 
likelihood estimators (MLEs) of these parameters, we simply need to find the 
values of the parameters that maximize this function. The simplest strategy to do 
this is take derivatives with respect to the parameters and set them to zero. However, 
in this case, as in many probabilistic models, taking derivatives of the products 
is difficult. To get around this issue, we instead optimize the logarithm of the likeli-
hood, such that the products become sums. Because the logarithm is monotonic, 
any values of the parameters that maximize the logarithm of the likelihood will also 
maximize the likelihood. In addition, we note that we will not accept any values of 
the parameters as the MLEs: we want to enforce the constraint that the probabilities 
at each position must sum to one, =å 1ibb

f . Such constraints can be included using 
Lagrange multipliers. Putting 

all this together gives

	 l
= Î

æ ö
= + -ç ÷è øå å å

1

log[ ( )] log 1
w

ib ib ib
i b ACGT b

L X X f f 	

as the function we wish to maximize, where l is the Lagrange multiplier. We now 
set the derivatives with respect to each of the frequency parameters to zero. 
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For example, using the linearity of the derivative and that =
d 1

log( )
d

x
x x

, for the 
parameter at position j, for base c, we have

	 l
¶

= - =
¶

log[ ( )] 0jc

jc jc

X
L X

f f
	

Solving this and substituting into the constraint gives 
l

= jc

jc

X
f  and l = å jbb

X , 
the total number of observations at position j.

Thus, we have the intuitive result that the MLE of the frequency for each base 
is just the number of times we observed that base (X

qc
) divided by the total number 

of observed bases at that position. It is important to note that in our example, our 
estimates of the frequency at position 1 are f

1 
= (0,0,1,0). This implies that based on 

our data we conclude that there is no probability of observing “A,” “C,” or “ T ” at this 
position. Given that we have only observed 8 examples of this motif, this seems a 
somewhat overconfident claim. Therefore, it is common practice to “soften” the 
MLEs by adding some “fake” or pseudo data to each position in the counts matrix. For 
example, if we use 1 as the psuedocount, our estimate of the frequencies at the first 
position becomes f

1
 = (1/12,1/12,9/12,1/12), and reflects our uncertainty about the 

estimates. These pseudocounts can be justified statistically using the concept of 
prior probabilities, which is discussed in detail elsewhere (Durbin et al. 1998).

7.3 � Identifying Binding Sites Given a Known Motif

Given a matrix or consensus representation of a motif, we now consider the problem 
of identifying new examples of binding sites.

Given a consensus representation, it is possible to say for each possible sequence 
of length w, whether it is a match to the motif or not. For example, a consensus 
sequence with a mismatch allowed at any position will match 1+4w of the 4w 
possible sequences of length w. For our example of GATAAG with one mismatch, we 

have 
+ ´

= =
6

1 4 6 25
0.0061

40964
. This means that 0.6% of 6-mers will match this

motif. For the degeneracy code representation, the number of sequences that 
match is the product of the degeneracies at each position. For GRTARN, this is
´ ´ ´ ´ ´

= =
6

1 2 1 1 2 4 16
0.0039

40964
. Although this may seem to be a few (99.6% of

sequences do not match), in a random genome of 100MB, we expect ~390,000 
matches by chance! This is two orders of magnitude greater than the maximal 
reasonable expectation for the number of GATA sites in a genome. Although real 
genomes are not random, matches to motifs do occur frequently by chance, swamping 
the number of matches that are functionally bound in the cell. The so-called 
“Futility Theorem” (Wasserman and Sandelin 2004) conjectures that the large number 
of random matches relative to functional binding sites makes identification based on 
pattern matching futile.
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Using the matrix representation of the motif, for any sequence of length w, we 
can follow a number of explicit statistical classification strategies to decide whether 
a sequence is an example of the binding site. Here we use X to represent a single 
sequence of length w.

One commonly used test statistic to compare two models is the likelihood ratio 
(not to be confused with a likelihood ratio test). In our case, we compare the likeli-
hood that the sequence of interest, X, is drawn from our motif frequency matrix, to 
the likelihood that X was drawn from a background null distribution. There are 
many ways to construct such a background distribution; here we consider the 
simplest, namely, that the background is a single multinomial.

If the sequence we are considering is GATAAG, =

0 1 0 1 1 0

0 0 0 0 0 0

1 0 0 0 0 1

0 0 1 0 0 0

A

C
X

G

T

,

we can calculate the likelihood of X under the models as we did for the counts 
matrix above. In the case of the matrix model for the motif (f) and a background 
distribution (g), the likelihood ratio is simply

	 = Î

= Î
= Î

æ ö
= = = ç ÷è ø

Õ Õ å å
Õ Õ

1

1
1

( | motif)
( ) log log log

( | )

ib

ib

w X w
ibi b ACGT ib

ibw X
i b ACGT bbi b ACGT

f fp X
S X X

p X bg gg
	

Thus, S(X) provides a quantitative measure of how similar a sequence is to the 
frequency matrix. When S(X) > 0, X is more similar to the motif model than the 
background model.

To identify new examples of the motif in a new sequence, a typical strategy is 
to compute the statistic, S, for each overlapping subsequence of length w in the 
sequence. For computational simplicity, this is often done using a “weight” matrix 

in which entries are given by 
æ ö

= ç ÷è ø
log ib

ib
b

f
M

g
, where as above, i indexes the position

in the motif, and b indexes the nucleotide bases. To calculate S, one simply adds up 
the entries in this matrix corresponding to the observed bases. In our notation, this 
can be written simply as the inner product

S(X) = M . X

For the example above, using g = (0,3,0,2,0,2,0,3) this is

	

- - -é ù
ê ú- - - é ùê ú ê úê ú- - - ê ú= =ê ú ê ú- - -ê ú ê úê ú- - - ë ûê ú
-ê úë û

1.28 0.875 1.32 1.28

0.799 0.875 0.182 1.28 0 1 0 1 1 0

1.28 0.875 0.875 0.916 0 0 0 0 0 0
( ) · 5.4

0.916 0.875 0.875 1.28 1 0 0 0 0 1

0.799 0.875 0.182 1.28 0 0 1 0 0 0

0.588 0.223 0.734 0.588

S GATAAG 85 	



144 A. Moses and S. Sinha

BookID 151692_ChapID 7_Proof# 1 - 21/08/2009 BookID 151692_ChapID 7_Proof# 1 - 21/08/2009

the maximum possible likelihood ratio score for this matrix. Some examples of 
implementations of matrix matching are described in Table 7.2.

7.3.1 � Choosing a Cutoff for the Likelihood Ratio

An important question in using such a classification framework is how high a value 
of S is needed before we can be confident that we have identified a novel example 
of the motif. Several approaches to this problem have been proposed. There is a 
finite set of possible scores to a matrix model, and the maximum and minimum 
score for each matrix are different. In order to standardize the scores when comparing 
between multiple matrix models, the likelihood ratio for a particular sequence is 
often transformed into normalized score that reflects how close it is to the maximum 
score. For example, the transformation

	
-

=
-

MIN

MAX MIN

( )
( )

S X S
S X

S S
	

standardizes the scores to fall between zero and one, which can be interpreted 
intuitively.

We next consider three statistically motivated approaches to standardizing the 
scores from matrices in order to choose a cutoff. The classical statistical treatment 
(Staden 1989) of this problem is to treat the background distribution as a null 
hypothesis and consider the P-value or probability of having observed the score S 
or more under the background distribution. In order to calculate P-values, we must 
add up the probabilities of all sequences X that have a score greater than S, which 
means enumerating ~4w sequences. However, because the positions in the motif are 
treated independently, these calculations can be done recursively in computational 
time ~4w. This allows us to calculate, for each value S, the P-value under the null 
hypothesis (Fig. 7.1).

It is important to note that the validity of these P-values depends on the accuracy 
of the null model or background distribution. For this reason, it is often preferred 
to use an “empirical” null distribution in which the P-value is computed simply by 
counting the number of times a score of S or more is achieved in a large sample of 
“null” sequences comprising genomic sequence not thought to contain real examples 
of the binding site.

Regardless of the method for obtaining these P-values, in a sequence of length 
l, we expect to test l − w subsequences, and therefore can apply a multiple testing 

Table 7.2  Tools for matrix matching

Tool Purpose Notes

Patsera Matching known matrices to sequences Calculates P-values
Delila-genomeb Matching known matrices to sequences Information theory-based scoring
a (Hertz and Stormo 1999), b (Gadiraju et al. 2003)
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correction to these P-values to control the expected false positives. For example, if 
we are to search a promoter of one KB of sequence, and we expect one match, we 
might choose the cutoff 0.05/1000 = 5×10 − 5, known as the Bonferoni correction. 
Alternatively, we can express the confidence as an E-value (or expect value, which 
is the P-value multiplied by the number of tests) or using a correction for false 
discovery rate (Benjamini and Hochberg 1995).

A second statistical approach to choosing a threshold for classification is to 
note that likelihood ratio statistics such as this have the attractive property that 
when S > 0, the likelihood of the sequence under the motif model is higher than 
that under the background model, and under the “maximum likelihood” (ML) rule 
for classification we should assign the data to the model that has the higher likelihood. 
However, this rule carries the implicit assumption that our prior expectation is that 
each subsequence is equally likely to be an example of the motif or the background 
model. In a real regulatory region, the unknown locations of binding sites might 
represent a small number of positions amongst thousands of basepairs of back-
ground sequences. This “prior” expectation can be incorporated in a maximum a

posteriori classification rule (MAP) by using p
p
-æ ö> ç ÷è ø

1
logS , where p is the prior 

probability of observing the motif.

Finally, using these priors, it is also possible to compute the posterior probability 
that a given position in the sequence is an example of the motif using Bayes’ 
theorem

	 = =
- p+ +

p ( )

( | motif) (motif) 1
(motif | )

1( | motif) (motif) ( | ) ( ) 1 S X

p X p
p X

p X p p X bg p bg
e
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Fig. 7.1  Exact P-values for the likelihood ratio score
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This yields a number between 0 and 1 that is intuitively interpretable and can be 
expressed as a function of the likelihood ratio statistic S(X).

Classification based on the likelihood ratio affords greater control of the false 
positives, as it allows us to increase the cutoff as the search becomes large, thus 
reducing the number of spurious matches. However, even the best possible match 
to the matrix will still occur by chance in about 4w base-pairs. Thus, while the likeli-
hood ratio gives a quantitative measure of how close a putative sequence is to the 
matrix, it does not address the large number of expected matches in random 
sequence – matrix matching does not escape the Futility Theorem.

7.3.2 � Relationship to Information Theory

Given this statistical model of motifs, it is possible to ask for each frequency 
matrix, how strong a classifier is it. In other words, given that a sequence is a true 
example of the motif, how easy is it to distinguish from the random background. To 
measure this quantitatively, we can calculate the average or expectation of S given 
than the sequences have come from the motif model. This average is over all pos-
sible sequences of length w. However, as with the P-value calculation above, we 
can use the independence of positions in the motif model to factor this sum

	
= Î

æ ö
= = =ç ÷è ø
å å å
all 1

[ ( ) | ] ( ) ( | motif) log I
w

pb

pb
X p b ACGT b

f
E S X motif S X p X f

g
	

where E[ ] represents the expectation. Interestingly, this formula can also be 
obtained using an information theoretic approach (Schneider et al. 1986). If base 2 
is used for the logarithms, I is known as the “information content” in the motif and 
gives a value in bits (Schneider et  al. 1986). Several interesting bioinformatic 
results can be obtained from this information theoretic perspective. For example, in 
the case of the uniform background distribution, the probability of observing a 
match to the matrix with score  > 0 in random sequence is given by 2 − I. Furthermore, 
the information theoretic perspective yields an intuitive relationship between the 
presence of binding sites in noncoding sequence and the entropic force of random 
mutation. Indeed, some early “de  novo” motif finding approaches (Stormo and 
Hartzell 1989) were motivated by the assumption that the motif in a set of binding 
sites would be the maximally informative motif, and this could be quantified by 
searching for the patterns with the most information.

The information content of a motif as defined above is also the Kullback–Leibler 
divergence (Kullback and Leible 1951) between the motif model and the back-
ground distribution, and can be shown to be related to the average binding energy 
of the transcription factor for its target binding sites (Berg and von Hippel 1987). 
The convergence of the statistical, information theoretic and biophysical treatments 
of this problem on the formula above is a great achievement in computational biology, 
and suggests that there are deep connections between the models that have motivated 
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these analyses. As we shall see below, the likelihood ratio, S(X) will have an important 
role to play in de novo motif finding as well.

7.4 � Second Generation Regulatory Sequence Prediction 
Methods: Combinations and Conservation of Motifs  
to Improve Classification Power

A simple calculation of the P-values or information content for an example motif 
indicates that in a large genome, high-scoring matches to the motif matrix are very 
likely to appear even under the background null model. This is the motivation of the 
so-called Futility Theorem: if bona fide regulatory elements are rare, searching for 
them with motifs as described above will yield many false positives and have little 
power to identify functional examples of binding sites. Two major approaches have 
been developed to improve predictive power, and we discuss each of these in turn.

7.4.1 � Exploiting Binding Site Clustering

The first method is to search for combinations or clusters of transcription factor 
binding sites (Wasserman and Fickett 1998; Markstein and Levine 2002). Some 
transcription factors tend to have multiple binding sites in short regions, so as to 
increase the probability of binding to the DNA in that region. This results in what is 
sometimes called “homotypic clustering” of binding sites (Lifanov et al. 2003), i.e., 
an above average density of binding sites of the same factor at a locus. Moreover, 
transcriptional regulation is known to be combinatorial, i.e., multiple transcription 
factors often act in concert to regulate the activity of a target gene. Therefore, regulatory 
sequences may have binding sites for multiple transcription factors, a phenomenon 
called “heterotypic clustering.” From the perspective of pattern recognition, the 
presence of multiple binding sites improves the signal to noise ratio.

To take advantage of the additional signal, methods (Table 7.3) have been designed 
to search for regions of the genome that contain multiple closely related binding sites. 
A simple implementation of this idea is to begin with one or more motifs, predict sites 
matching each motif using the method described above, and count the number of sites 
in a sequence window of some fixed length (Berman et al. 2002; Halfon et al. 2002). 
One would then scan the entire genome for windows with the largest numbers of sites 
and the predicted binding sites in those windows would be reported.

This simple approach has been shown to empirically add statistical power to 
regulatory sequence prediction. However, one potential problem with this scheme is 
its use of ad hoc (and usually high) thresholds on matches to motifs when the matrix 
representation is used. There are biological examples of regulatory sequences that 
function by using several weak affinity binding sites rather than one or a few strong 
sites (Mannervik et al. 1999). Identifying weak sites would require very low thresholds 
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on S(X) in our computational procedure (Sect. 3), leading to a large number of site 
predictions, including several false ones. What is needed here is a method that con-
siders both the number and strengths of binding sites in a candidate regulatory 
sequence: it should accommodate the presence of weak binding sites, but more 
of these should be required to provide as much confidence as a smaller number of 
strong sites. Since the strength of binding sites cannot be captured by consensus 
string models, the following discussion will assume a matrix model of motifs.

One way to allow for the clustering of motifs of different strengths is to score 
every substring X in a sequence window using the score S(X) described above, 
and determine the sum of these scores. That is, the sequence window Y is scored by

=
= å 1

( ) ( )
Y

ii
T Y S Y  where Y

i
 is the substring at offset i in Y. This allows us to assess 

the extent of homotypic clustering in Y, while allowing for strong as well as weak 
sites, and without imposing any thresholds. This scheme could be extended to work 
with more than one motif by simply summing over the motifs. Notice however, that 
adding the different S(Y

i
) terms amounts to multiplying probabilities of events, 

which is questionable since the events (different Y
i
) are not independent. Another 

alternative is to use 
=

= å ( )

1
( ) iS Y

i

Y
T Y e . This in fact is more justified statistically, as

we see next. Consider a probabilistic process (Segal et  al. 2003) that generates 
sequences of length L

Y
 = |Y| by:

(a)	 Choosing, uniformly at random a number i between 1 and (L
Y
 − w + 1),

(b)	 Sampling a site (of length w) from the motif,
(c)	 Planting this site starting at position i (and ending at position i + w − 1), and
(d)	 Sampling every other position (outside of i … i + w − 1) from the background 

frequency distribution.Denoting the random variable indicating the start posi-
tion of the planted site (step c) by i, we have the joint probability

	
Ï + -

=
- + Õ

{ ... 1)

1
( , ) ( | motif) ,

1 ji Y
j i i wY

p Y i p Y g
L w

	

where g
x
 is the background probability of base x. Summing this over all i to obtain 

p(Y), and contrasting it with the likelihood under the null model, we get the likeli-
hood ratio as

Table 7.3  Methods to search for clusters of binding sites

Tool Purpose Notes

MASTa Identifies matches to motif matrix Combines P-values for multiple motifs
cis-analystb Identifies clusters of matrix matches User defined sliding window and matrix 

cutoffs
Stubbc Identifies clusters of matrix matches Uses HMM; User defined sliding window
Cluster busterd Identifies clusters of matrix matches Uses HMM; window length automatically 

learned
a (Bailey and Gribskov 1998), b (Berman et al. 2002), c (Sinha et al. 2006), d (Frith et al. 2003)
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which equals (up to a constant factor) the score = å ( )( ) iS Y

i
T Y e suggested above.

A more comprehensive materialization of this idea is in the form of “Hidden 
Markov Model” (HMM) based methods. Such methods assume a “generative 
model” for regulatory sequences, and compute the likelihood of the sequence under 
the model. The generative model is a stochastic process with states corresponding 
to motifs for the different transcription factors that are expected to be involved in 
combinatorial regulation of the genes of interest (Fig. 7.2). The process visits the 
states probabilistically, and emits a sample of a motif whenever it visits the state 
corresponding to that motif (Fig.  7.2, red arrows). The emitted binding site is 
appended to the right end of the sequence generated thus far. A “background” state 
(Fig.  7.2, BKG) allows for these emitted binding sites to be interspersed with 
randomly chosen non-binding nucleotides. At any point, the process may transition 
to any state with some fixed probability called the “transition probability” of that 
state, which is a parameter of the model. (Fig. 7.2, p

1
, p

2
, p

3
, p

b
). Different imple-

mentations take different strategies to choosing values for these parameters. 
The sequence of states that the process visits is called a “path” of the HMM. 

Fig. 7.2  Hidden Markov Model for CRM discovery
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Any given sequence Y may be generated by many exponentially paths, and the joint 
probability p(Y, p) of the sequence Y and a particular path p can be computed 
efficiently. The likelihood of the sequence Y is then computed by summing over 

all possible paths, i.e., 
p

q = qpå( | ) ( , | )p Y p Y , where q denotes the parameters of

the HMM. This summation can be performed efficiently using the algorithmic tech-
nique of “dynamic programming.” The score of sequence Y is the log-ratio of this 
likelihood to the likelihood of Y being generated by a background model (that does 

not use the motifs), i.e., 
q
q

=
b

( | )
( ) log

( | )

p Y
T Y

p Y
 where q

b
 denotes the parameters of

the background model, and p(Y|q
b
) is the likelihood of this model.

7.4.2 � Evolutionary Comparisons for Regulatory  
Sequence Prediction

A second major class of methods to improve the predictive power in the search for 
regulatory sequences is the incorporation of evolutionary information. The intuition 
here is that mutations in functional sequences will lead to a fitness defect, and indi-
viduals carrying them will be removed from the population by natural selection. 
Mutations in nonfunctional sequences will have no effect on fitness, and therefore 
may persist in the population and become fixed through genetic drift. Thus, over 
long evolutionary time, functional noncoding sequences will show few changes in 
their sequences, while nonfunctional sequences will evolve rapidly. This is the 
guiding principle of comparative genomics.

In order to apply comparative methods, the first step is to identify orthologous 
noncoding DNA sequences. There are many ways to accomplish this. In some cases 
simply searching closely related genomes for similar sequences can identify the 
orthologous noncoding regions. More sophisticated approaches include distance or 
tree-based methods to rule out paralogous regions, as well as considering the 
homology of nearby coding regions to ensure chromosomal synteny. Once orthologous 
noncoding sequences have been identified, these must be aligned, preferably using a 
DNA multiple aligner that performs a global alignment of the shorter sequence.

The technique of identifying evolutionarily conserved sequences in alignments 
has been called phylogenetic footprinting, to indicate the idea that functional con-
straint leaves a footprint of conservation in DNA sequences. Simple approaches to 
phylogenetic footprinting identify regions of alignments of noncoding regions above 
a certain percentage identity cutoff. Such comparative methods were first combined 
with matrix matching approaches by requiring that the matches to the matrix fall into 
“conserved” regions. These approaches have been demonstrated to greatly improve 
the power of motif matching methods by removing large numbers of false positives.

More elegant statistical approaches to phylogenetic footprinting employ explicit 
probabilistic models for the evolution of noncoding DNA. Based on the hypothesis 
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that functional sequences will evolve at a slower rate than surrounding regions, 
methods have been developed that explicitly compare the likelihood of each stretch 
of sequence under slow or fast evolutionary models. Because the sequences in the 
multiple alignments have evolved along an evolutionary tree, it is necessary to 
explicitly account for their phylogenetic relationships using an evolutionary model. 
This can be done by using a continuous-time Markov process to model the substitu-
tions between the DNA bases, and a phylogenetic tree relating the sequences, in 
which the bases in the ancestral sequences are treated as unobserved or hidden 
variables. To compute the likelihood of such a model it is necessary to sum over all 
possible values of (or marginalize) the hidden variables (Felsenstein 1981).

Like the multinomial models for single sequences described above, probabilistic 
evolutionary models treat each position in the sequence independently, although 
rather than single bases at each position, the data are now columns in the multiple 
alignment. For example, for a pair wise alignment we have a tree with three nodes, 
the two sequences, X and Y and the unobserved ancestral sequence A. The likelihood 
of the pair wise alignment can be written as

	
1

( , ) ( , | , )
l

i i
i

L X Y p X Y R T
=

= Õ 	

where the joint probability of the sequences can be written in terms of the unob-
served ancestral residue as

	 ( | , ) ( | , , ) ( ) ( | , , ) ( | , , ) ( )
i i

i i i i i i i i i i i
A ACGT A ACGT

p X Y R T p X Y A R T p A p X A R T p Y A R T p A
Î Î

= =å å 	

where R represents the transition matrix of the continuous time Markov process, T 
represents the topology of the evolutionary tree (in this case the three nodes) and 
p(A) are prior probabilities on the ancestral bases, and are usually assigned to be 
equal to the equilibrium distribution of the continuous time Markov process. An 
important feature of this model is that the evolution along each lineage (that leading 
to X and that leading Y) is independent, conditioned on the state of the ancestor A. 
To identify conserved sequences, one can form a likelihood ratio at each position 
between a “background” evolutionary model, say R

b
, and a “conserved” evolutionary 

model where substitutions happen at a slower rate, R
c
.

	 ( , | , )
( , )

( , | , )
i i c

i i
i i b

p X Y R T
U X Y

p X Y R T
= 	

Extending this approach further, it is possible to posit a “hidden” state determining 
whether a piece of alignment is drawn from a conserved model or from the back-
ground model, and develop an HMM to identify conserved sequences. HMMs 
emitting columns of alignments rather than individual residues are often referred to 
as “phylo-HMMs” and are increasingly used in comparative genomics.

Finally, it is possible to combine probabilistic models for sequence evolution  
for the specificity and evolution of the transcription factor binding sites and the 



152 A. Moses and S. Sinha

BookID 151692_ChapID 7_Proof# 1 - 21/08/2009 BookID 151692_ChapID 7_Proof# 1 - 21/08/2009

background sequences. The critical step here is to assign the prior probabilities on 
the ancestral states to be the frequencies in the motif matrix. Classifiers based on 
these models can be constructed in much the same way as described above and have 
achieved much greater predictive power than approaches that match in single 
sequences.

Table  7.4 lists some of the implementations employing approaches utilizing 
comparative information.

7.5 � De novo Motif-Finding

So far, we have assumed that the specificity of transcription factors was known, and 
the goal was to identify the regulatory regions or binding sites they controlled. 
However, in many cases, neither the sequence specificity, nor the binding sites of a 
transcription factor are known. Instead, the challenge is to infer the sequence speci-
ficity directly from a set of noncoding DNA sequences believed to contain binding 
sites. These methods rely on little biological information and are often referred to 
as “de novo” or “ab initio” because the computational method must identify the 
new motifs, starting from the beginning.

7.5.1 � Statistical Overrepresentation of Consensus  
Sequence Motifs

The first approach to the ab initio discovery of transcription factor motifs assumes 
that the motifs are described by their consensus sequences (Sect. 2). There are a few 
commonly used variants of this motif model. In the simplest model, the motif is a 
string over the four letter alphabet {A, C, G, T}, and binding sites are required to 
be exact occurrences of the string (van Helden et al. 1998). In a second variant, the 

Table 7.4  Comparative methods to identify regulatory sequences

Tool Purpose Notes

ConSitea Identifies conserved  
matrix matches

Pairwise analysis only

VISTAb Identifies conserved regions,  
matrix matches

Popular graphical display format

Footprinter Packagec Identifies conserved regions Uses (i) binomial distribution and  
(ii) parsimony-based approaches  
to asses conservation in windows

eShadowd Identifies conserved regions Uses likelihood ratio tests
PhastConse Identifies conserved regions Uses phyloHMM
MONKEYf Identifies conserved matches  

to matrix models
Probabilistic model of binding site 

evolution, computes P-values
a (Sandelin et al. 2004b), b (Dubchak and Ryaboy, 2006), c (Blanchette and Tompa 2003), d (Ovcharenko 
et al. 2004), e (Siepel et al. 2005), f (Moses et al. 2004b)
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binding sites are allowed to be at most one mismatch (Hamming distance 1) away 
from the motif sequence (Tompa 1999). A third commonly used model uses 
“degenerate symbols” such as “R” (which stands for “purine,” i.e., “A” or “G”) and 
“Y” (for pyrimidine, i.e., “C” or “T”) in the motif alphabet, and binding sites have 
to be exact matches with any of the allowed nucleotides at the degenerate positions 
(Sinha and Tompa 2000). Typically, the motif is specified to be of a short ( < 10 bp), 
fixed length k. Each of the above motif models clearly defines a “search space” of 
all possible motifs; e.g., in the first variant, the search space includes all 4k strings 
of length k. It also lays out a prescription to count a motif’s occurrences in any 
given sequence. Ab initio motif discovery in this framework then amounts to find-
ing the one (or few) motif(s) in the search space that has the greatest statistical 
significance, as determined by their respective counts in the given set of sequences. 
We will next see a simple illustration of how such statistical significance may be 
determined.

Suppose we are given a DNA sequence S of length L
s
, and a motif m. Let N(S,m) 

denote the count of m in S. Next, consider a random sequence X, also of length L
s
, 

that is generated by sampling one character at a time, as per the probability distribu-
tion {p

a
, p

c
, p

g
, p

t
}. The count N(X,m) is therefore a random variable defined by the 

generative process (the “null model”), whose probability distribution will tell us 
about the statistical significance of m. Intuitively, if it is highly unlikely that a count 
of N(S,m) or greater is observed in a random sequence, then we should interpret the 
motif m as being statistically overrepresented in S. Let us define p

m
 as the probability 

that motif m occurs at a specific position in X. In the simplest motif model of exact 
matches, this is given by

	
1

i

k

m m
i

p
=

= pÕ 	

Now, consider each of the positions j = 1 to j = L
s
–k + 1, where the motif m may 

occur in the random sequence X. The probability of occurrence of m at position j is 
given by p

m
, for all j. If we further assume that these events are independent, we 

have L
s
 − k + 1 independent and identically distributed (“i.i.d”) Bernoulli trials with 

parameter p
m
. Therefore, the number of occurrences of m in X follows a Binomial 

distribution with parameters L
s
 − k + 1 and p

m
. That is, the P-value of the observed 

count N(S,m) is given by

	 1

( , )

1
(1 ) sL k ns n

m m
n N S m

L k
p p

n
- + -

³

- +æ ö
-ç ÷è øå 	

This is an estimate of the statistical significance of the motif m in sequence S (van 
Helden et al. 1998). The smaller the value, the greater the significance.

In the above calculation, we made a crucial assumption that the events of motif 
m occurring at different positions in a sequence are statistically independent. This 
is obviously a flawed assumption, since a motif’s occurrence at a position j and 
the next position j + 1 (overlapping occurrences) are dependent variables: for a 
self-overlapping motif like “AAAAAA,” occurrence at a position j implies a high 
probability of occurrence at the very next position j + 1, while for a motif such as 
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“ACGTTG,” occurrence at j and j + 1 are mutually exclusive events. We therefore 
turn our attention to a slightly different approach to evaluating statistical signifi-
cance – through the use of “z-scores.” We shall see how the flawed independence 
assumption is avoided in this new approach.

We assume the same null model as above, i.e., the random sequence X is generated 
by L

s
 i.i.d. samples from the probability distribution {p

a
, p

c
, p

g
, p

t
}. Let X

mi
 be an 

indicator random variable for the occurrence of motif m at position i. That is, this 
variable takes the value “1” if m occurs at position i in X, and “0” otherwise. Let X

m
 

be the count of m in X. That is,

	
1

 where 1
L

m mi s
i

X X L L k
=

= = - +å 	 (7.1)

Note that the observed count N(S,m) is the value of this random variable X
m
 for the 

sequence S. Let m
m
 = E(X

m
) denote the expectation of this random variable, and s

m
 

denote its standard deviation, under the i.i.d null model. Then we define the z-score 
of the motif m as

	 ( , )
( , ) m

m

N S m
z S m

m
s

-
= 	

This is the number of standard deviations by which the observed count exceeds the 
expectation. A high value of this statistic indicates statistical significance. Our next 
task then is to compute the mean and standard deviation of X

m
.

The expectation follows directly from (7.1). We note that the expectation of a 
sum is the sum of the expectations (the principle of “linearity of expectation”); 
hence we have

	 ( )( ) ( ) ( 1)m mi mi mi mE X E X E X p X Lp= = = = =å å å 	

Here, the third equality comes from the fact that the expectation of an indicator 
(0/1) variable is simply the probability of it being 1. Also, p(X

mi
 = 1) is equal to p

m
, 

as seen above. The standard deviation computation is slightly more complicated, 
but similar in spirit. Recalling that the variance is given by 2 2 2( ) ( )m m mE X E Xs = - , 
we need only to calculate 2( )mE X , for which we have

( )
+ - - +

= + = +

+ - - +

= + = +

æ ö æ öæ ö
= = = + +ç ÷ ç ÷ç ÷è ø è ø è ø

æ ö æ öæ ö
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, 1
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1

( ) 2 2
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i j i i j i i j i k

i k L k

mi mi mj mi mj
i i j i i j i k

E X E X E X X E X X X X X

E X E X X E X X

Note that the first term is simply ( ) ( )mi mi
E X E X=å  since X

mi
 is an indicator 

variable.
The second term is (twice of) the expected number of occurrences, in a sequence 

of length L, of two overlapping sites matching the motif. This may be computed by 



1557  Regulatory Motif Analysis

BookID 151692_ChapID 7_Proof# 1 - 21/08/2009

enumerating all strings of length 2k − 1 or less that have two overlapping occur-
rences of m, and adding their expectations, computed in the same way as E(X

m
). 

This term makes the variance depend on the self-overlapping structure of motif m. 
It is easy to see that among two motifs with the same p

m
, and hence the same mean, 

if one has self-overlap and the other does not, the former will have the greater vari-
ance in its count. Finally, the third term amounts to (twice of)

	

1

2 1 1

1

2 1
2

1
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( 1) ( 1) ( 1) ( 1)
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Here, the third equality follows from the fact that in an i.i.d. generated sequence, 
nonoverlapping occurrences are independent events. Note that if the null model is 
not i.i.d., and instead follows a higher order Markov chain (as is often the case), this 
independence assumption falls through, and other techniques are required to efficiently 
compute the third term.

The above calculations have been performed under several simplifying assump-
tions. In practice, the null model is often taken to be a second or third order Markov 
chain to capture adjacent nucleotide correlations that are present in real genomic 
sequences. The motif model typically allows for mismatches, so that the random 
variable X

m
 must represent counts under that model. Another complication arises from 

the fact that motif finding is often performed on both strands of the given sequence(s). 
Counting occurrences of the motif on both strands leads to additional statistical 
dependencies that must be handled. It is possible to extend the above calculations to 
account for all these complications in an efficient manner (Sinha and Tompa 2000).

7.5.2 � De novo Motif Finding for the Matrix Representation

The classical probabilistic formulation of the motif finding problem posits that a 
biological sequence is made up of short subsequences, each of which may be an 
instance of the motif or drawn from a random background distribution (Table 7.5). 
The first models used in motif-finding were designed to solve the following problem. 
Given a set of sequences each containing one example of an unknown motif at an 
unknown location, find both the motif and the locations. From this perspective 
motif-finding was related to multiple alignments, such that the unknown position 
of the binding site was the point at which the sequences could be placed into 
ungapped multiple alignments.

Here we treat a slightly more general, but intuitively simpler version of this 
problem, where there is no constraint on the input sequences or the number of 
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motifs in each input sequence. This implies a simple, two-component mixture 
model where each subsequence of length w is drawn from either the motif or 
background multinomials. In practice, modern de  novo motif finders often 
provide several variations on the assumptions about the distribution of motifs in 
the input data.

If each subsequence is considered to be independent, the likelihood of the entire 
sequence under the mixture model can be written as the product of all the subse-
quences of length w,

	
1

( ) ( | motif) (motif) ( | ) ( )
l w

i i
i

L X p X p p X bg p bg
-

=

= +Õ 	

where i indexes the position of the beginning of the subsequence relative to the 
input sequence X. Above, in the case of the multinomial model for a counts matrix, 
it is possible to maximize the likelihood directly and obtain the parameter 
estimates. However, it is not possible to obtain closed form solutions for the 
parameter estimates by directly differentiating the likelihoods of mixture models 
such as the one proposed above. Two major strategies have been employed for 
optimization, namely sampling approaches (here we consider Gibbs sampling) and 
Expectation-Maximization (EM), and we discuss each in turn.

7.5.2.1 � Expectation-Maximization

The EM approach views the free parameters of the model as the unknown frequencies 
of each residue in the multinomial at each position in the motif. This means that for 

Table 7.5  De novo motif finding methods

Tool Purpose Notes

RSATa/YMFb Consensus string based 
moti f-finder

Word statistics with enumeration  
of motif space

MobyDickc Consensus string based  
motif-finder

Uses a segmentation algorithm  
to identify optimal “words”

MITRAd Exhaustive consensus 
with mismatch search

Uses suffix tree

Weedere Exhaustive search with 
statistical ranking

Best performing algorithm in a systematic 
comparison (Tompa et al. 2005)

Gibbs Motif samplerf Matrix-based de novo  
motif finder

Original Gibbs sampler

MEMEg Matrix-based de novo  
motif finder

Popular EM-based method, includes 
several models for the distribution  
of motifs in the input sequences

Consensush Matrix-based de novo  
motif finder

Information based method

NestedMICAi Matrix-based de novo  
motif finder

Nested sampling method; no need for 
initial “seeding” step

a(van Helden et  al. 1998), b (Sinha and Tompa 2000), c (Bussemaker et  al. 2000), d (Eskin and 
Pevzner 2002), e (Pavesi et al. 2004), f (Lawrence et al. 1993), g (Bailey and Elkan, 1994), h (Stormo 
and Hartzell 1989), i (Down and Hubbard 2005)
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a DNA motif of width w, there are 3w parameters, or a likelihood surface with 3w 
dimensions. The motif-finding problem is simply the problem of estimation of 
these parameters by maximizing the likelihood. However, because the positions of 
the motifs are unknown, the EM approach is to posit the existence of unobserved 
(or hidden) variables that specify at each position in the input sequence data, 
whether a particular position is an example of a binding site or not (Lawrence and 
Reilly 1990).

We represent these hidden variables as a vector at each position, Z
i
 = (1,0) if the 

w-mer starting at position i is a binding site, and Z
i
 = (0,1) if it is drawn from the 

background. To find parameter estimates, we assume that these hidden variables are 
observed, and then try to follow the maximization procedure above. Given the posi-
tions of the binding sites, we could write the “complete” likelihood:

	
1 motif ,

( ) [ ( | ) ( )] im

l w
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L X p X m p m
-

= Î
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We therefore maximize this function as above. Taking logarithms yields,
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We can now add Lagrange multipliers for the various constraints and differentiate with 
respect to the parameters as above. For example, for the frequency parameters we

include the constraint 1pbb
f =å , and obtain 0

1
0

l w i pb

i
pb

Z X

f

-

=
- l =å , which after 

rearranging and substituting into the constraint, yields
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We now recall that this derivation was done under the assumption that we actually 
knew the positions of the binding sites in the input, i.e., that Z

i
 were observed. This 

is where the expectation step of the EM algorithm arises: we simply replace the 
Z

i
 with their expectations, based on our current estimates of the parameters. The 

expectation of a variable that takes on only 1 or 0 is simply the probability of non-
zero outcome, so the expectations of these variables can be calculated using Bayes’ 
theorem as above.

	 0 0
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Thus, the EM algorithm constitutes filling in these “posterior probabilities” of 
the unknown positions of the binding sites, recomputing the estimates of the param-
eters based on these, then recomputing the estimates of the hidden variables, etc., 
until convergence. This iterative strategy is guaranteed to increase the likelihood at 
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each step. Once the parameter estimates have stabilized, we can be confident that 
we have reached a local maximum in the likelihood. It is important to note, how-
ever, that this may not represent the global maximum in the likelihood. Furthermore 
we have not yet addressed the issue of where to obtain the initial estimates of the 
parameters to begin the EM procedure. In fact, these issues must be addressed in 
practice with heuristics based on intuition about the problem.

7.5.2.2 � Gibbs Sampling

Sampling approaches posit a Markov chain whose equilibrium distribution is the 
posterior distribution of interest. This Markov chain starts with initial guess 
parameters, and then iteratively refines the guess. Once the chain has reached 
equilibrium, parameter estimates can be obtained by averaging over the states 
visited by the chain. Needless to say, the key to this procedure is how to define the 
transition probabilities in such chains; in other words, the rule for refining the 
guess. In general such approaches are called Markov-chain-Monte-Carlo or 
MCMC methods and have been considered elsewhere. Here we will focus on a 
particular type of MCMC algorithm that has been applied effectively to the 
de novo motif finding problem.

Gibbs Sampling is the procedure of sampling a new parameter estimate (or guess) 
according to the probability of the new guess conditioned on the current estimates 
of the remaining parameters. In our case the parameters are regarded as the unknown 
positions of the binding sites in the input data, and the estimates of the frequency 
matrix. For motif finding, therefore, at each iteration, one of the current binding site 
positions is selected at random to be replaced. The frequency matrix is recalculated 
leaving out the selected binding site and every available position in the input data is 
re-evaluated by computing the statistic S(X

i
) described above at each position.

While the derivation for the exact equations for the Gibbs Sampler is too com-
plicated to reproduce here, it can be shown (Liu et al. 1995) that the probability 
required for the Gibbs Sampler is given approximately by
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S X
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Thus, a new binding site is then chosen by choosing randomly from the available 
positions with probability proportional to S. Interestingly, the new binding site does 
not necessarily improve the likelihood: the site at p might have a lower likelihood 
by chance than the one it was replacing. However, on average this procedure will 
tend to sample binding sites that are near the current motif. Critically, the “tighter” 
or more information contained in the motif, the more likely the sampling procedure 
is to sample “near” it in sequence space. Thus, although the Gibbs Sampler will 
explore the entire space, it will be strongly biased to sample near maxima in the 
likelihood; the higher these maxima, the stronger this bias.
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7.6 � Second Generation Motif-Finding Methods

In addition to the computational difficulty of finding the local maxima in a high-
dimensional likelihood space, several lines of evidence suggested that there is not 
enough information in some motifs to identify them in large regions of noncoding 
DNA of the eukaryotic genomes that are becoming available. The motif-finding 
approaches described above are general; they do not take into account specific 
properties of the transcription factor binding site finding problem. Recently, new 
motif finding methodology has been developed that used similar computational 
techniques and models, but included additional data about sequence specific tran-
scription factor binding sites in the motif finding.

7.6.1 � Associations with Functional Genomics Data

The first methods explicitly designed to identify motifs in noncoding DNA used 
additional information about which genes were likely to be regulated by a transcrip-
tion factor. The simplest of these cases is simply where motif finding is done on two 
sets of sequences, those likely to be regulated and those unlikely to be regulated. This 
information can be as simple as the functional classification of a gene. Searching for 
motifs that separate two sets of noncoding regions can be thought of as a statistical 
discrimination problem, and many statistical methods can be applied.

It is possible to increase the sophistication of such discriminative methods, 
such that the motifs are taken as explanatory variables for quantitative, possibly 
multivariate data. For example, genome-wide transcription factor binding data can 
provide a ranked list of genes that are most likely (and least likely) to be bound 
by a transcription factor. Motif-finding methods can exploit this information by 
searching for patterns that are statistically associated with these rankings. Similarly, 
genome-wide gene expression data can give information about which genes change 
expression in response to developmental changes or to the environment. If a tran-
scription factor leads to a change in expression of transcripts in a particular condi-
tion, the expression of all (or many) of the genes containing the motif are expected 
to change. Therefore, motifs can be identified based on whether they can explain 
the variance in genome-wide gene expression data using regression and other 
statistical methods.

7.6.2 � Incorporating Comparative Information  
into de novo Motif Finding

Another important group of next generation de novo motif-finders are comparative 
or phylogenetic methods. With the availability of complete genome sequences for 
closely related organisms, including comparative sequence information in motif 
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finding was a natural extension. The first methods to use comparative information 
did so using heuristics to encapsulate the notion that motifs should be conserved in 
alignments of homologous sequences. Soon after, motif-finders that incorporated 
explicit probabilistic models of evolution into motif finding were developed.

7.6.3 � Other Methods and Future Directions

Another interesting strategy for motif finding is to use prior information about the 
pattern of information content in real transcription factor binding sites. This essen-
tially attempts to reduce the number of nonbiological maxima in the likelihood 
function, by biasing the search away from regions of the motif space that are 
unlikely to represent real biological motifs (Table 7.6). In general, methods that 
identify additional biological features of motifs in eternal datasets, or in sequence 
data will be of continued interest in the short term.

Table 7.6  De novo motif-finders that incorporate additional information

Tool Purpose Notes

SeedSearcha Consensus-based discriminative 
approach

Hypergeometric statistics

DMEb Identifies motifs overrepresented  
in one set of sequences relative 
to a background set

Matrix-based, enumerative 
discriminative approach

DRIMc Identifies motifs in a ranked  
list of sequences

Consensus-based, enumerative 
hypergeometric statistics with 
corrections

REDUCEd Identifies motifs correlated with 
gene expression

Uses multiple regression

GMEPe Identifyies motifs associated with 
gene expression data

Uses z-scores

Footprinterf Identifies conserved motifs 
in orthologous noncoding 
sequences

Parsimony based approach

Kellis et al.g Identifies conserved motifs in 
genome-wide alignments

No popular implementation, computes 
conservation of “mini”-motifs, and 
combines these into larger motifs

EMnEMh/PhyMEi Identifies conserved motifs in 
orthologous noncoding sequences

Phylogenetic E–M based approach

PhyloGibbsj Identifies conserved motifs in 
orthologous noncoding sequence

Phylogenetic sampling based approach. 
Relaxes assumption of complete 
conservation

TFEMk Identifies motifs with particular 
information content profiles

Adds additional constraints to  
traditional E–M maximization

a (Barash et  al. 2001), b (Smith et  al. 2005), c (Eden et  al. 2007), d (Bussemaker et  al. 2001),  
e (Chiang et al. 2001), f  (Blanchette and Tompa 2003), g (Kellis et al. 2004), h (Moses et al. 2004a), 
i (Sinha et al. 2004), j (Siddharthan et al. 2005), k (Kechris et al. 2004)



1617  Regulatory Motif Analysis

BookID 151692_ChapID 7_Proof# 1 - 21/08/2009

As more diverse data become available, computation systems that combine 
diverse data types, as well as the pattern recognition methods described in this chapter 
will become increasingly powerful. Indeed, recent methods have attempted to con-
struct regulatory networks using model-based approaches to synthesize motif finding 
and analysis of functional genomics data (e.g., Segal et  al. 2003). Computational 
methods will undoubtedly have an exciting role to play as we advance toward the 
goal of predicting gene expression from sequence (Segal et al. 2008).
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