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Abstract	

Molecular Evolution of Posttranslational Regulation in Intrinsically Disordered Regions 

Nghiem (Alex) Nguyen Ba 

Doctor of Philosophy 

Graduate Department of Cell and Systems Biology 

University of Toronto 

2014 

 

Protein posttranslational regulation is a major facet of protein function, and efforts have been 

made to systematically characterize the level of control of proteins. For example, systematic 

determination of protein localization, phosphorylation, and interactions have allowed the 

examination of the regulatory network of the cell. However, the study of the evolution of this 

underlying regulatory network requires a higher resolution analysis of the sequences that are 

responsible for this level of control.  

The overarching goal of this thesis was to examine the role of the evolution of protein 

regulatory sequences as a molecular mechanism driving functional diversity. I developed 

computational tools and methods for the identification and characterization of these 

regulatory sequences, as well as experimental approaches to study the evolutionary impact of 

changes within these sequences. 

I first characterized the evolution of phosphorylation sites and used the property that they are 

strongly conserved relative to their flanking disordered regions as a computational means to 
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systematically identify motifs in the budding yeast proteome. These results suggest that 

incorporating evolutionary conservation is sufficient for the prediction of around 30% of the 

known short linear motifs. Applying these computational approaches to the budding yeast 

proteome showed that thousands of short linear motifs exist and still remain uncharacterized. 

Using a relative rates test, I showed that motifs frequently change selective constraints after 

gene duplication and showed that these changes can alter protein regulation over evolution. 

Finally, I designed a high-throughput experimental pipeline to systematically, quantitatively 

and precisely assess the fitness consequences of rewiring a regulatory network and applied it 

to test whether a bi-functional protein has sub-functionalized over evolution. 
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Chapter	I 	

General	Introduction	

I.1 Abstract 

Cellular and physiological responses within a single organism are intricately controlled by 

their underlying genetic regulatory network. Posttranslational control of proteins is mediated 

by short linear motifs, which are short peptides sequences within disordered regions of 

proteins. These sequences are recognized by regulator proteins that can alter protein 

subcellular localization, degradation rates, and even amino acid properties, such as 

posttranslational modifications. Many proteins contain several short linear motifs and 

interplay between them can create complex regulatory networks. Over the course of 

evolution, motif turnover can play a role in rewiring the regulatory network of the cell, 

leading to different phenotypes that may form the basis of the organismal diversity observed 

throughout the tree of life. This evolution is facilitated by the position of short linear motifs 

within fast evolving disordered regions that lack structural constraints.  
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I.2 Introduction 

The central dogma in biology states that the genetic information encodes the proteins that are 

the major functional components of the cell. This idea has led to exciting research about the 

nature of the regulation of the expression of this genetic information and to functional 

characterization of thousands of identified proteins in the kingdoms of life. Despite this 

important discovery of information flow, there are still several outstanding questions about 

the nature and the mechanisms of gene regulation, especially regarding the role of regulatory 

evolution in the observed organismal diversity. 

The field of comparative genomics showed remarkable conservation of proteins across the 

tree of life: up to 31% of the proteins found in the budding yeast Saccharomyces cerevisiae 

have functional homologs in mammals (Botstein et al. 1997). Similarly, chimpanzees and 

humans show a high degree of genetic similarities (Chimpanzee Sequencing and Analysis 

Consortium 2005). The challenge of comparative genomics is therefore to decipher how 

small amount of genetic changes can lead to vastly different and distinct phenotypes. The 

basis of my research follows the hypothesis that subtle changes in protein enzymatic 

functions, such as speed of substrate turnover, are unlikely to account for the majority of the 

genetic basis for the differences in phenotype between individuals and between species. 

Rather, mutations affecting the regulation of the proteins may be responsible for most of the 

biological differences between species (Figure I-1; (King and Wilson 1975)).  
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Figure I-1. Evolution by mutations in regulatory sequences. Bottom panel represents several mutations 

that affect regulation rather than enzymatic functions: transcriptional level (changes in transcription 

factor binding sites), mRNA splicing level (changes in exons) and changes in protein regulatory 

sequences. The final outcome can lead to different protein abundance and posttranslational regulation 

(such as protein localization as shown in the example).  

 

Fueled by technological advances in microarray and ChIP-seq technology, comparative 

genomics on the differences in gene expression have now shown that transcriptional changes 

are one of the major contributors of functional differences between species (reviewed in 

(Wray et al. 2003; Villar et al. 2014)) and it is likely that regulatory divergence affects all 

facets of protein control. For instance, evolutionary changes in mRNA splicing control can 

create vastly different arrays and quantities of isoforms across species (see (Barbosa-Morais 

et al. 2012) for a genome-wide analysis of splicing variants in vertebrates and see (Marshall 
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et al. 2013) for a well-characterized example of splicing evolution in yeast). Finally, changes 

in protein regulation once the proteins have been translated could also be contributing to the 

functional differences of proteins between species.  

In the following sections, I will discuss the molecular mechanisms by which proteins can be 

regulated by posttranslational regulation. Specifically, I will introduce the computational 

challenges to represent and predict the protein sequences that mediate the posttranslational 

regulation of the protein. I will then focus this discussion on four molecular mechanisms that 

cells use to turn proteins on and off as well as related experimental effort to characterize the 

specific sequences that are responsible for this control. Finally, I will focus on the 

importance of these regulatory connections in the field of comparative genomics. 

I.3 Short linear motifs 

I.3.1 Molecular definition of short linear motifs 

Protein posttranslational regulation and modifications frequently occur via short linear 

motifs, which are short 2 to 15 amino acid sequences that are recognized by the modifying 

enzymes or the binding partners (Gould et al. 2010). These sequences have been labeled as 

linear as a definition to indicate that the three dimensional nature of the motif is undefined 

rather than non-existent. Other biological definitions of patterns or motifs that explicitly take 

into account the three dimensional arrangements of the proteins exist (Doxey et al. 2006; 

Doxey et al. 2010), however are not discussed further in this thesis. 

In contrast with interactions over large surface areas, such as interactions within the nuclear 

pore complex (Alber et al. 2007), protein interactions through short linear motifs are very 

dynamic and localized processes (Yaffe et al. 2001). Recognition of short linear motifs by 

other proteins usually occurs through specialized protein domains, which are typically large, 

folded and modular structures, such as in the case of SH2 domains (Pawson et al. 2001). A 

high-resolution molecular view of the short linear motif during these interactions indicates 

that even short peptide fragments can provide strong specificity of recognition by these 

domains (Waksman et al. 1992). Although the affinity of the interactions through short linear 

motifs is typically weaker (nanomolar to low micromolar range (Dinkel et al. 2012)) than 
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interactions occurring between two large domains (low nanomolar range), this weaker 

affinity has been thought to promote transient and dynamic interactions within signaling 

networks (reviewed in (Li 2005) and (Diella et al. 2008)). Therefore, there is an opportunity 

for multiple interactions to occur within short distances and for these interactions to be 

highly modular and regulated. This mode of interaction is likely to be the case for hub or 

scaffold proteins (Cortese et al. 2008). These scaffold proteins can bring multiple different 

proteins together through multiple short linear motifs that are recognized by specific domains 

on the cognate proteins.  

For these interactions to be possible, a requirement in the flexibility of the local region of the 

short linear motif must be met. This flexibility in protein backbone is now recognized as an 

intrinsic state of protein backbone dynamics and is termed ‘intrinsically disordered’ 

(discussed below). 

I.3.2 Computational representations of short linear motifs 

Short linear motifs have often been described as amino acid patterns or consensus sequences 

in the form of regular expressions (Gould et al. 2010) and several tools can be used to scan 

protein sequences for the presence of matches (e.g. Scansite (Obenauer et al. 2003)). A major 

issue with regular expressions is the all-or-nothing character of the representations. This 

difficulty of representing short linear motifs using patterns is apparent when not all true 

instances of the short linear motifs match the regular expression (Dinkel et al. 2012). 

Relaxing the constraints on the expression usually leads to increased spurious matches and 

fine-tuning these expressions is necessary for appropriate biological conclusions (this 

procedure is performed manually by two of the most commonly used databases of biological 

regular expressions: PROSITE (Hulo et al. 2006) and ELM (Dinkel et al. 2012), but users are 

recommended to also perform this task). Other more popular representations are sequence 

logos from an underlying PSSM (position-specific scoring matrix), which are more 

probabilistic interpretations of the characters present at each positions of the short linear 

motif (Figure I-2; (Schneider and Stephens 1990)). More ambitious representations have also 

been used (such as anti-motifs (Alexander et al. 2011)) to attempt to model the more 

complex nature of the recognition of the short linear motif by other proteins. However, not 
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all short linear motifs obey simple patterns and hidden Markov models have been shown to 

perform well in some cases (e.g. nuclear localization signals (Nguyen Ba et al. 2009)). 

 

Figure I-2. Sequence logo of the bipartite nuclear localization signal. Characterized bipartite nuclear 

localization signals recognized by importin alpha were aligned and are represented by their 

information content using sequence logos. 

 

An important property of short linear motifs is that, because they are short, most matches in 

the proteome are unlikely to be biologically relevant. Another property of short linear motifs 

is that they tend to be degenerate (positions with poor information content, see Figure I-2) 

and therefore, an important computational challenge is the classification of sequence matches 

of previously characterized short linear motifs.  

I.3.2 Computational predictions of short linear motifs 

Systematic computational predictions of short linear motifs have been generally divided into 

two main areas: 1) the classification of instance matches, and 2) the de novo prediction of 

short linear motif consensus sequences. 

Classification of instance matches use contextual information and machine learning 

approaches to differentiate characterized instances to random instances (Blom et al. 1999; 

Linding et al. 2008). These approaches take advantage of several sequence features or 

experimental data, such as disorderedness (see Chapter I.8), surface accessibility (Via et al. 
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2009) and evolutionary conservation (Budovskaya et al. 2005; Chica et al. 2008). However 

these approaches require a training data set that may not be easily obtained.  

De novo prediction of short linear motif consensus sequences uses experimental evidence to 

gather a list of proteins likely to share the same linear motif. This approach assumes that 

motifs on proteins have been gained through convergent evolution and that experimental 

approaches can adequately enrich for at least one short linear motif. Following this, k-mer 

enrichment (Rigoutsos and Floratos 1998) or other sophisticated statistical approaches 

(Bailey and Elkan 1994) can be used to predict consensus sequences. Other successful 

approaches combine features that were discovered to be useful in the classification of 

instance matches with enrichment of motifs (Neduva and Russell 2006). 

I.4 Posttranslation regulation by short linear motifs 

I.4.1 Protein-protein interaction 

All biologically functional short linear motifs by definition must interact with another protein 

(or another region of the protein containing them) or to a molecule (such as water). 

Therefore, precise molecular roles for short linear motifs are usually described by the 

function of the regulator or by the posttranslational modifications (PTMs) on specific amino 

acids. Nevertheless, some short linear motifs are strictly defined by their binding preferences 

to particular protein domains and are typically termed ‘binding motifs’.  

Experimental characterization of protein-protein interactions in yeast have taken advantage 

of the yeast two-hybrid system (Uetz et al. 2000; Ito et al. 2001) to identify binary 

interactions. This system is able to detect more transient interactions than techniques aimed 

at identifying complexes, such as co-immunoprecipitation followed by mass spectrometry 

(Ho et al. 2002). In another study, we found that yeast two-hybrid was well suited to detect 

kinase-substrate interactions (see Chapter I.4.2 and (Sharifpoor et al. 2011)). Although some 

kinase-substrate interactions are facilitated by kinase-docking sites, which are short linear 

motifs that specifically bind to a kinase domain to enhance phosphorylation (Reményi et al. 

2006), several substrates of kinases do not contain specific binding motifs, and detection of 

interactions using the yeast two-hybrid system can be due to the interaction during catalysis, 
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due to other cellular means (such as protein scaffolds (Cortese et al. 2008)), or due to 

interactions not mediated by short linear motifs. Nevertheless, because of the sensitivity of 

yeast two-hybrid in detecting transient interactions, proteins containing domains that 

specialize in recognizing short linear motifs have often been subjected to proteome-wide 

yeast two-hybrid screens (e.g. the SH3 domain (Tonikian et al. 2009)). In turn, these screens 

can allow the discovery of the binding specificity of these domains using computational 

approaches described in Chapter I.3.2. 

Other more direct approaches in deciphering the binding specificities of proteins have taken 

advantage of high-throughput techniques such as phage display (Tonikian et al. 2009; Teyra 

et al. 2012). These in vitro techniques allow the production of consensus sequences that are 

recognized by peptide-binding domains. However, they do not provide a list of in vivo target 

that may be required in studying the cellular regulatory networks. 

Protein regulation by binding through short linear motifs can facilitate the recognition of 

regulating proteins (many non-PTM short linear motifs are like this), or alternatively these 

interactions can be mediated by pseudosubstrates that can inactivate the regulatory protein 

upon binding (such as in Acm1 and Mad3 pseudosubstrate inactivation of the anaphase 

promoting complex (Burton and Solomon 2007; Choi et al. 2008)). These pseudosubstrates 

contain the short linear motifs that are usually recognized by the regulator but these 

pseudosubstrates contain other sequences that lock the regulator upon binding. 

I.4.2 Protein phosphorylation 

The discovery of protein kinases in the early 1950’s (Burnett and Kennedy 1954; Fischer and 

Krebs 1955) led to several biochemical studies establishing the molecular mechanisms of 

phosphate addition to specific amino acids. The role of protein phosphorylation as an 

activating mechanism was thought to be related to protein folding leading to a final stable 

conformation. Although still a relevant today, protein phosphorylation as a central 

mechanism of protein regulation was established shortly after the discovery of protein 

phosphatases dedicated to removing phosphate groups from proteins (Graves et al. 1960). 

Therefore, proteins could be turned on or off by the cell after they had been produced. These 

kinases and phosphatases appeared to have specific targets and, analogous to transcription 
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factors and their molecular recognition of DNA, recognized specific amino acid peptides on 

proteins. Several studies have now systematically established in vitro the recognition 

sequence of several kinases (Mok et al. 2010) and the recognition sequences obtained from 

these studies show remarkable similarities to consensus sequences in vivo. Interestingly, 

several kinases show almost identical consensus sequences. How kinases of similar 

consensus sequences can have different targets is still an outstanding question, especially 

considering that signaling complexity through the eukaryotic tree of life partly consists of 

duplicated kinases (Manning et al. 2008). Several mechanisms to enhance kinase-substrate 

specificity have been uncovered and are often mediated by short linear motifs that promote 

binding, perform allosteric regulation of the kinase activity, or colocalizes the substrate with 

the kinase (reviewed in (Reményi et al. 2006; Ubersax and Ferrell 2007)). 

The important processes controlled by phosphorylation propelled the rapidly growing field of 

phosphoproteomics. Technological advances allowing the rapid determination of kinase 

recognition site preferences, along with mass spectrometry, allowed the rapid detection of 

several thousands of phosphorylation sites in eukaryotic proteomes along with the putative 

kinases responsible for these modifications (Sadowski et al. 2013). A parallel angle to study 

cell signaling and phosphoproteomics is to systematically catalog all targets of kinases 

(Sharifpoor et al. 2011). Several assays have been proposed, including protein chips (Ptacek 

et al. 2005) and mass spectrometry using analog-sensitive kinases (Holt et al. 2009). An 

important question following the discovery of these thousands of identified sites is whether 

these sites are biologically relevant. There are currently no easy and reliable way to 

determine the in vivo function of these identified phosphorylation sites, however, efforts have 

been made to prioritize the interrogation of functional phosphorylation sites (Beltrao et al. 

2012). 

Notable examples of important kinases are the cyclin-dependent kinases (CDKs), which are 

proteins first discovered to be necessary for the progression of the cell cycle. Specific 

temporal activation of CDKs has been found to orchestrate the series of events leading to 

proper cell division. Interestingly, CDKs usually have more than a single cyclin that can 

activate them and these cyclins can induce remarkable substrate specificity (Kõivomägi, 

Valk, Venta, Iofik, Lepiku, Morgan, et al. 2011).  
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I.4.3 Protein subcellular localization 

Protein localization was recognized to be important for their function with the advent of two 

important technological advances: centrifugation to separate cellular compartments, and 

microscopy to observe them. But how do the proteins ‘know’ where to travel within the cell 

once they have been made? In the 1970s, the signal hypothesis was formulated in the seminal 

work by Gunter Blobel (Blobel and Dobberstein 1975), which described the presence of 

genetically encoded localization signals within proteins that were recognized by the cellular 

machinery and transported to different compartments. Thus, proteins localizing to similar 

compartments all contained similar localization signals that could be recognized on their 

primary amino acid sequence. In a similar vein as protein phosphorylation as an activating 

mechanism, localization toward certain compartments was seen as a rapid way of activating 

the function of a particular protein (for example translocation of transcription factors 

involved in stress response (Hao et al. 2013)). Experimentally, protein localization has been 

one of the simplest regulatory mechanism to assay due to the discovery that green-

fluorescent protein (GFP) fused to the protein of interest could be used to visualize the 

localization of a protein using fluorescence microscopy (Wang and Hazelrigg 1994; Tsien 

1998). Indeed, systematic GFP-tagging of the yeast proteome was performed recently (Huh 

et al. 2003) allowing large-scale collection of yeast protein subcellular localization using 

high-throughput microscopy. 

Among the best studied examples of protein localization as a regulatory mechanism is the 

nuclear localization signal (Görlich and Mattaj 1996). Active transport of proteins to the 

nucleus in eukaryotic cells requires the interaction of several import proteins (dubbed 

importins) with the signal peptide, which then transports the protein possessing the signal 

peptide to the nucleus via the nuclear pore complex. Classically, the nuclear localization 

signals have been classified using two patterns: the monopartite pattern, which loosely 

matches the K[KR]x[KR] consensus sequence, and the bipartite pattern which loosely 

matches the KRx10-12KRxK consensus sequence (Lange et al. 2007). However, we and others 

have shown that this pattern is rarely adequate to predict nuclear localization signals 

(Nguyen Ba et al. 2009). Finally, nuclear export signals are used to finely tune the temporal 

nature of protein localization towards the nucleus. These nuclear export signals exhibit 
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leucine-rich content and are more challenging than nuclear localization signals to predict due 

to fact that they are slightly structured signals (Xu et al. 2012). Experimentally, using GFP 

fusions, two major approaches to test nuclear localization/export signals have been 

employed. First, to test for necessity, site-directed mutagenesis of the putative localization 

signals can be used to test for disruption of the nuclear import or export. Second, to test for 

sufficiency, the putative localization signal can be used alone (or in conjunction with a 

nuclear localization signal, when testing for export signals) to direct 3x-GFP (to control for 

passive diffusion of 1x-GFP through the nuclear pore complex) to the nucleus or to the 

cytoplasm. Tandem-GFP (3x-GFP) is used to control for passive diffusion of the monomeric 

GFP through the nuclear pore complex, which allows but significantly delays GFP passage 

through the nuclear pore complex (Mohr et al. 2009). 

Cellular processes that respond to exogenous signals require the signal transduction from the 

cytoplasm to the nucleus. The outcome of the several signaling cascades is the rapid 

translocation of either kinases or transcription factors to the nucleus (Cartwright and Helin 

2000; Xu and Massagué 2004), highlighting the importance of protein localization as a 

regulatory mechanism. 

I.4.4 Protein degradation 

Cellular programs such as the cell-cycle are composed of several checkpoint sub-programs 

that ensure complete biogenesis of the necessary molecules before progression to the next 

sub-program. These sub-programs follow a specific order that must be met for adequate 

division and this order is governed by the successive degradation and production of proteins 

between the phases of the cell-cycle. At least two important complexes control the proteins 

present during the cell-cycle: The Skp, Cullin, F-box containing complex (SCF), which is the 

major regulator of protein degradation in the G1/S and G2/M transition (Ang and Wade 

Harper 2005), and the anaphase-promoting complex (APC) which is responsible for the 

metaphase-anaphase transition and the prevention of G1/S transition. These complexes are 

E3 ligases that attach ubiquitin and mark proteins for degradation by the proteasome (for a 

more thorough review on degradation signals see (Ravid and Hochstrasser 2008)). 
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Ubiquitination is a posttranslational modification of lysine residues that are specifically 

recognized by the proteasome. 

Like phosphorylation and localization, protein degradation is controlled by short peptide 

sequences in the primary amino acid sequence of the protein. Because the E3 ligases 

ultimately ubiquitinate the target protein (a posttranslational modification of lysine residues), 

which flags proteins for degradation by the proteasome, degradation signals fall in the 

category of “binding sites”. The best studied example of these recognition sites is the 

destruction box (D-box) present in many important cell-cycle proteins (Buschhorn and Peters 

2006). This D-box consists of 2 important amino acids (RxxL) that are recognized by the 

Cdc20 and Cdh1 subunit of the APC. Interestingly, many of these proteins also possess the 

KEN-box, which is also recognized by the APC subunits (D-boxes and KEN-boxes probably 

bind the APC at different affinity). Both Cdh1 and Cdc20 are mutually exclusive subunits of 

the APC, and akin to cyclins, the destruction of several proteins by the same enzyme is 

clearly controlled by its current regulating subunit. The relative proportion of Cdc20 and 

Cdh1 can therefore control the relative degradation of D-box and KEN-box containing 

proteins.  

Regulation by the SCF complex is slightly more complicated, requiring priming 

phosphorylation sites on the target before it can be recognized by the F-box protein. The F-

box protein (e.g. Cdc4 in yeast) recognizes specific phosphorylated sequences and transports 

the substrate to the SCF complex. The short linear motifs controlling these sequences of 

events are termed ‘phosphodegrons’ (e.g. Cdc4-mediated phosphodegron), and therefore, the 

regulation of destruction is also controlled by the cell-cycle kinases (Ang and Wade Harper 

2005). 

I.5 Regulatory networks 

At the heart of these examples of important posttranslational regulatory mechanisms 

underlies a complex interplay between these regulatory sequences that can be described as a 

regulatory network. Proteins contain several regulatory signals within their primary sequence 

that may not act independently and may even absolutely require sequential activation of 
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signaling components for proper protein function. Because these signals act in a context-

specific manner, understanding the full effect of subtle changes on the output of a regulatory 

network has proved to be a challenging task. Under several assumptions and in the presence 

of perturbation data, computational modeling has been used with great effect to help 

deciphering the behavior of the network (Hasty et al. 2001).  

An example of a complex regulatory network on a single protein is within the cell-cycle 

regulator Sic1, which is an intrinsically disordered protein with several regulatory signals 

that depend on each other for proper function (Nash et al. 2001; Kõivomägi, Valk, Venta, 

Iofik, Lepiku, Balog, et al. 2011). Importantly, the order and physical distance between the 

motifs all appear to play a role into proper cell-cycle control. In Sic1, a hydrophobic patch 

allows docking of Cln2-Cdk1, which primes the initial phosphorylation event. This in turn 

allows robust docking by Cks1 and enhances the phosphorylation of a second nearby 

phosphorylation site by Cln2-Cdk1. This second phosphorylation is again recognized by 

Cks1 to enhance phosphorylation of the first phosphodegron. Once the first phosphodegron 

is fully phosphorylated, Clb5-Cdk1 interacts with another docking site (RxL) on Sic1, and 

phosphorylates the second phosphodegron. This phosphodegron in turn is recognized by the 

F-box component of the SCF complex (see previous section). The requirement on the order 

of events is dictated by the order of the short linear motifs, which is consistent with the 

spacing requirements.  

I.6 Regulatory divergence and short linear motif evolution 

The evolution of posttranslation regulation can be studied on multiple levels. The first high-

level view attempts to decipher the regulatory divergence of components between species 

and is most similar to the large-scale microarray analyses of gene expression across species 

(see (Qian et al. 2011) for a study on protein-protein interaction evolution). The second level 

examines more fine-scale details of the evolutionary process using multiple sequence 

alignments of orthologous proteins once the sequences responsible for the regulation are 

known (Figure I-3, see (Freschi et al. 2011)). 
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Figure I-3. Different scales to study posttranslational regulatory evolution. Studying the 

microevolutionary process of regulatory sequence turnover can be performed at the site level, which 

is useful for modeling the evolution of posttranslational regulatory divergence at the sequence level; 

however a more global view can provide a better picture of the protein-level changes in regulation. 

 

In general, there is an agreement between the two types of studies in that protein regulation is 

usually conserved, but the rate at which regulatory changes occur are still under debate. For 

example, large-scale studies on individual phosphorylation sites have shown that most 

phosphosites are not conserved, but overall phosphorylation of the protein is maintained 

(Holt et al. 2009). These seemingly contradicting results can be reconciled by at least two 

explanations: 1) the majority of regulatory sequences identified from high-throughput 

experimental studies are non-functional (Landry et al. 2009), or 2) the multiple sites on 

proteins are under stabilizing selection with some redundancy between each sites (Holt et al. 

2009).  

Nevertheless, these observations are facilitated by the fact that regulatory sequences can 

rapidly change over evolution. In contrast to protein-protein interactions through large 

interfaces, new short linear motifs can be created by few point mutations because of their 
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short nature. Therefore, even complex regulatory networks can emerge and disappear 

through a small number of mutations.  

A striking example of regulatory divergence over evolution occurs in the Mcm3 protein 

(Moses, Liku, et al. 2007). In this example, the authors used computational approaches 

(Moses, Hériché, et al. 2007) to predict proteins likely to be phosphorylated by Cdk1 and 

found that, when applied to orthologs of the Mcm3 protein, one particular yeast clade gained 

several phosphorylation sites in a local region. This cluster of phosphorylation sites appeared 

to be in close proximity of a characterized nuclear localization signal, and the authors 

hypothesized that the phosphorylation sites regulate the nuclear import of the protein. 

Consistent with this, cell-cycle regulated nuclear import of the Mcm3 protein could be 

observed, and this regulated nuclear import was highly correlated with the presence of the 

predicted phosphorylation sites, indicating that novel regulatory connections in Mcm3 

occurred in evolution. 

I.7 Gene duplication and regulatory changes 

Although many genes between organisms are conserved, there can be an important 

difference in gene content across species (see (Rubin et al. 2000) for a review on eukaryotic 

pan-/core-genomes). In many cases, this difference in gene content is facilitated by gene 

duplication events (see (Cheng et al. 2005) for a comparison of segmental duplications in 

humans and chimpanzees). Even across human populations, copy number variations have 

been shown to be extensive (Redon et al. 2006) and can be important drivers of cancer 

mutations (Zack et al. 2013). Therefore, the evolutionary outcomes of gene duplication 

events have been of great theoretical interest. 

There are at least three models for the fate of duplicate genes (Ohno 1970; Force et al. 1999; 

Lynch et al. 2001): non-functionalization of the duplicate gene by degenerative mutations, 

neo-functionalization whereby one copy gains a novel function and sub-functionalization 

where mutations repartition the functional elements of the ancestral gene. Although sub-

functionalization in itself is not expected to provide any fitness advantages (as depicted by 

the duplication-degeneration-complementation model (Force et al. 1999)) because no new 
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functions have been created, beneficial mutations can arise by taking advantage of the 

repartitioning of ancestral gene function to specialize the duplicates (escape from adaptive-

conflict (Hittinger and Carroll 2007)). These beneficial mutations can be due to changes in 

gene expression (such as in expressing different levels of the gene in different tissues) or due 

to posttranslational regulatory changes (such as in different localization of the protein in 

different tissues). Therefore, genetic novelty can be the target of mutations that affect protein 

regulation. 

I.8 Intrinsically disordered regions 

One of the first evidence for dynamic protein structure comes from X-ray crystallography 

studies on conformational change of macromolecules (Doucet and Benoit 1987), such as the 

ones that are derived from a phosphorylation event (Volkman et al. 2001). Despite this, only 

slight reorganization of the globular nature of proteins was thought to occur and this rigid-

body motion of proteins was the dominant view of protein dynamics. Proteins were thought 

to exist in few states and regulatory mechanisms could switch proteins from one state to 

another. 

However, recently, the discovery of proteins with no single stable tertiary structure revisited 

an old idea of proteins with constant dynamics (reviewed in (Forman-Kay and Mittag 2013)). 

Although the term appears to indicate the complete absence of constraints (colloquially 

described as a spaghetti noodle, see (Uversky 2013)), more precise definitions of intrinsically 

disordered regions are required for understanding their function. More conservative 

descriptions of intrinsically disordered simply use the term ‘flexible’, which appears 

borrowed from the structural biology field to describe changes in rotamers with oscillation in 

backbone dynamics. Possibly a more accurate description of intrinsic disorder in proteins it 

that no distinct boundary exists between structured and unstructured regions but that a 

continuum of movement and backbone dynamics exists (Uversky 2013). Therefore, for many 

intrinsically disordered proteins there are still some structural constraints on their 

conformations despite rapid conversions of large-scale changes in overall shape of the 

disordered region.  
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Despite current technological advances that have allowed the characterization of intrinsically 

disordered regions, the in vivo existence of intrinsically disordered regions is still 

controversial (Tompa 2012; Janin and Sternberg 2013). This view stems from the 

observation that intrinsically disordered proteins were initially described in vitro without the 

proper cellular context. This absence of proper cellular context implied that the binding 

partners, the effective concentration of the protein within the cell, or the solute 

concentrations, played important roles in the final structure of those particular disordered 

regions. Consistent with this, some proteins become folded when purified with their binding 

partner but are unfolded if purified alone (Daughdrill et al. 1997). This is supported by the 

existence of chaperones and a general stress response against unfolded proteins (Schröder 

and Kaufman 2005; Ron and Walter 2007).  

However, a key discovery using bioinformatics was that, unlike the prediction of protein 

tertiary structures, intrinsically disordered regions could be identified by sequence alone (J J 

Ward et al. 2004; Prilusky et al. 2005; He et al. 2009; Mizianty et al. 2014). It was found that 

amino acid composition was sufficient for obtaining adequate accuracy in de novo discovery 

of protein disordered regions. The importance of these tools is highlighted by the CASP 

(Monastyrskyy et al. 2014) benchmarking competition where a category for predicting 

intrinsically disordered regions exists. In addition, these regions could be differentiated from 

regions prone to aggregation (Monsellier and Chiti 2007). Arguably, this indicates that 

disordered regions cannot simply be in vitro artifacts that lead to ordered regions inside the 

cell. Consistent with this, disordered proteins do not tend to interact with chaperones more 

than globular proteins (Hegyi and Tompa 2008). Using these computational tools, systematic 

bioinformatics analyses of several proteomes lead to the discovery that eukaryotic proteomes 

are abundant in intrinsically disordered regions (J J Ward et al. 2004). At least 30% of the 

human proteins were predicted to have disordered regions. Interestingly, the prokaryotes 

have very low level of proteins containing disordered regions, and disordered proteins from 

bacteria have been found to be enriched in secretion effectors during infection of eukaryotic 

hosts (Marín et al. 2013), suggesting that intrinsic disorder is a general feature of eukaryotic 

proteomes. 
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The implication of protein disordered regions in signaling is now well appreciated as many 

signaling proteins, such as transcription factors (Liu et al. 2006), have been shown to contain 

disordered regions. Importantly, site directed mutagenesis to directly remove the disordered 

regions have been shown to severely impair function of several of these proteins (for 

example, the N-terminus of p53 is disordered (Dawson et al. 2003) and required for p53 

activation (Cain et al. 2000)). Because prokaryotes are poor in disordered regions, an 

attractive hypothesis about the existence of disordered regions revolves around some form of 

organismal complexity (Schad et al. 2011; Pancsa and Tompa 2012). Although this 

hypothesis still lacks compelling evidence, signaling complexity has been proposed to be the 

major reason for the expansion of disordered regions in eukaryotic cells. 

Other correlations have been found with disordered proteins. Amongst them are toxicity 

upon overexpression (Vavouri et al. 2009) and positive correlation with the number of 

binding partners (Dunker et al. 2005).  

I.9 Parallels with transcriptional regulation and evolution 

Most of the research on regulatory evolution has been centered on transcriptional evolution 

and our understanding of molecular evolution affecting transcription can be leveraged to 

study posttranslational regulatory evolution. For example, transcription factor binding sites 

are typically found in cis near genes they affect and are short degenerate sequences that offer 

similar computational challenges in their prediction. Although it is thought that the selection 

constraints on non-coding DNA will be different than the selection constraints on proteins, 

some interesting properties about the evolution of individual transcription factor binding sites 

can be mirrored in short linear motifs (Moses et al. 2003; Moses et al. 2006) with analogous 

roles in regulatory divergence. For example, the probabilistic profile (the sequence logo) of 

the recognition sequence by transcription factors shows remarkable correlation with the rate 

of evolution at the individual bases (Moses et al. 2006) whereby more degenerate positions 

evolve more rapidly. Another interesting pattern in the evolution of transcriptional regulation 

is that regulatory networks tend to be more conserved than individual sites (Stefflova et al. 

2013). Therefore, it is likely that there is some form of stabilizing selection on the clusters of 

binding sites, but that individual binding sites are free to change location. Finally, because 
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transcription factor binding sites appear more conserved than the remaining non-coding 

DNA, comparative genomics can be used to systematically predict regulatory sequences in 

non-coding DNA (Moses et al. 2004; Siepel et al. 2005). 

These micro-evolutionary processes that affect transcription factor binding sites are 

facilitated by the lack in structural constraints on the non-coding DNA sequence. There 

exists an interesting analogy with this lack of constraints on non-coding with the lack of 

constraints on protein disordered regions (Moses and Landry 2010). Intrinsically disordered 

regions lack stable tertiary conformations and this has led to the hypothesis that selection 

constraints on amino acids at specific positions may not be necessary. Indeed, several lines of 

evidence have identified that the disordered state of a particular region can be conserved over 

evolution without significant residue conservation (Bellay et al. 2011).  

At a higher molecular level, DNA chromatin state can alter the accessibility of transcription 

factors to their recognition sites and it has recently been shown that patterns of methylation 

can change rapidly over evolution (Gokhman et al. 2014). This is similar to changes in the 

state of disorder over evolution that has been observed in other studies (Bellay et al. 2011).  

I.10 Research objectives and thesis overview 

Currently, systematic experimental tools or computational approaches to reliably and 

systematically identify short linear motifs in proteins are still lacking and this has hampered 

the study of posttranslational regulatory divergence. To this end, this thesis presents novel 

computational tools to predict protein regulatory sequences and study their evolution. The 

specific aims of this thesis are as follows: 

1) Understand the evolution of well-characterized short linear motifs. 

2) Use this understanding for the de novo prediction of short linear motifs using comparative 

genomics. 

3) Characterize the turnover of short linear motifs and the role of turnover in functional 

divergence over evolution. 
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4) Present experimental techniques to study the fitness effects of identified regulatory 

turnover.  

In Chapter II, using a set of in vivo and functionally characterized phosphorylation sites from 

different kinases, the effect of purifying selection on the recognition sequences relative to 

their flanking regions (five amino acids on both sides) is quantified and various properties of 

the turnover of these phosphorylation sites are characterized (Nguyen Ba and Moses 2010). 

The low percentage of phosphorylation site turnover and the conservation of the regulatory 

sequences when compared to their flanking region both form the basis of the computational 

tool presented in the Chapter III. This tool was used on the whole yeast proteome and 

identified thousands of putative short linear motifs that are very likely to be functional 

(Nguyen Ba et al. 2012). In Chapter IV, using this tool and additional statistical methods, I 

identified short linear motifs that are likely to have relaxed selective constraints after the 

whole-genome duplication event in budding yeast. Specifically, I found that paralogous 

genes are much more likely to undergo regulatory changes after gene duplication than single-

copy genes (Nguyen Ba et al. submitted). Finally, in Chapter V, I use state-of-the-art genetic 

techniques to assay the fitness contributions of regulatory network rewiring after gene 

duplication. 

A general discussion of future directions and outstanding questions relating to the evolution 

of disordered regions and more complex regulatory network is presented in Chapter VI. 

 



21 

Chapter	II 	

Evolution	of	Characterized	Phosphorylation	Sites	in	Budding	Yeast	

This is an author-produced PDF of an article accepted for publication in Molecular Biology 

and Evolution following peer review. The version of record:  

Evolution of characterized phosphorylation sites in budding yeast 

Mol Biol Evol. 2010 Sep;27(9):2027-37. doi:10.1096/molbev/msq090. Epub 2010 Apr 5. 

Alex N Nguyen Ba1,2, Alan M Moses1,2,¥ 

is available online at: http://mbe.oxfordjournals.org/content/27/9/2027.abstract 

1. Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, 

Toronto, Canada 

2. Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 

Willcocks Street, Toronto, Canada 

  



Chapter II. Evolution of characterized phosphorylation sites in budding yeast 22 

 

II.1 Abstract 

Phosphorylation is one of the most studied and important regulatory mechanisms that 

modulate protein function in eukaryotic cells. Recently, several studies have investigated the 

evolution of phosphorylation sites identified by high-throughput methods. These studies have 

revealed varying degrees of evidence for constraint and plasticity, and therefore, there is 

currently no consensus as to the evolutionary properties of this important regulatory 

mechanism. Here, we present a study of high-confidence annotated sites from budding yeast 

and show that these sites are significantly constrained compared with their flanking region in 

closely related species. We show that this property does not change in structured or 

unstructured regions. We investigate the birth, death and compensation rates of the 

phosphorylation sites and test if sites are more likely to be gained or lost in proteins with 

greater numbers of sites. Finally, we also show that this evolutionary conservation can yield 

significant improvement for kinase target predictions when the kinase recognition motif is 

known, and can be used to infer the recognition motif when a set of targets is known. Our 

analysis indicates that phosphorylation sites are under selective constraint, consistent with 

their functional importance. We also find that a small fraction of phosphorylation sites 

turnover during evolution, which may be an important process underlying the evolution of 

regulatory networks.  
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II.2 Introduction 

Protein phosphorylation is a ubiquitous posttranslational modification in cells as a means to 

regulate a variety of cellular processes (Johnson and Hunter 2005). Despite its importance, 

until recently, few studies had examined the evolution of this regulatory mechanism. 

Phosphorylation sites are critical functional elements within proteins, and therefore, they are 

expected to be conserved over evolution. This conservation can be exploited to predict kinase 

substrate interactions (Budovskaya et al. 2005). However, two recent studies examined the 

evolution of phosphoregulation in the eukaryotic cell cycle and found evidence for 

evolutionary changes in the regulatory networks (Jensen et al. 2006; Moses, Liku, et al. 

2007). Furthermore, a structural study of phosphorylation sites in mitotic proteins found 

similar levels of conservation between phosphorylation sites and other similar residues 

(Jiménez et al. 2007), suggesting no specific constraints on these sites. 

With the availability of high-throughput data sets, it has become possible to examine the 

evolutionary properties of large sets of phosphorylation sites (Macek et al. 2008; Holt et al. 

2009; Landry et al. 2009; Yachie et al. 2009). Most studies have found evidence for 

evolutionary conservation of phosphorylated S/T/Y residues compared to unphosphorylated 

residues (Gnad et al. 2007; Macek et al. 2008; Malik et al. 2008; Landry et al. 2009). In 

addition, one high-throughput study compared phosphorylation patterns between distantly 

related yeast species and quantified the rate of evolution of these patterns (Beltrao et al. 

2009). Despite providing evidence for constraint, these studies all identified a large number 

of phosphorylation sites that were not preserved over evolution. These nonconserved sites 

may contribute to the large difference of patterns of phosphorylation between species 

(Beltrao et al. 2009). However, it is also important to consider whether many of the sites 

contained in high-throughput data sets are not critical to protein regulation; for example, 

some fraction of sites obtained by mass spectrometry may not be functional sites (Lienhard 

2008; Landry et al. 2009). These nonfunctional sites are not expected to be preserved over 

evolution, and therefore may appear as evolutionary changes.  

Another important issue is that the alignments used in some of the previous studies include 

sequences from distantly related species, which creates uncertainty in the analysis because 



Chapter II. Evolution of characterized phosphorylation sites in budding yeast 24 

 

short degenerate motifs such as phosphorylation sites may not be aligned accurately in 

distant species comparisons (Balla et al. 2006). 

Motivated to address these difficulties, we sought to examine the evolution of a large set of 

high-confidence phosphorylation sites, where we could obtain high-confidence alignments of 

orthologous protein sequences. To do so, we assembled 249 characterized phosphorylation 

sites in budding yeast from the literature, where the likely kinase responsible for 

phosphorylation is known. By examining alignments of protein sequences from closely 

related species we can explicitly test evolutionary hypotheses about phosphorylation sites 

using the ratio of nonsynonymous to synonymous substitutions (Ka/Ks) (Nei and Gojobori 

1986). Our results show that the rate of amino acid substitution within the site is lower than 

the surrounding region and that this property is observed whether the sites appear in 

structured or unstructured regions of the substrate proteins. As expected, we find that the 

patterns of substitution in phosphorylation sites are consistent with the specific constraints 

imposed by the consensus recognition site for the kinase. We also investigate the birth and 

death and compensation rates of these annotated sites and show that there are evolutionary 

constraints on the appearance and disappearance of sites in targets of kinases, but only weak 

constraints on compensation. We also consider the possibility that gain and loss of 

phosphorylation sites is due to redundancy, but we find no evidence that sites are more likely 

to be lost or gained in proteins with high number of sites. 

Finally, we show that the evolutionary conservation of phosphorylation sites relative to 

surrounding amino acid sequence can be exploited to improve prediction of kinase substrates 

or to find the kinase specificity. 
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II.3 Results 

II.3.1 A set of functional phosphorylation sites in S. cerevisiae for which the kinase is 

known 

In order to study the evolutionary properties of phosphorylation sites, we searched the 

literature for experimentally verified phosphorylation sites where the kinase had been 

identified in low-throughput experiments. Although there is no single experiment that 

conclusively shows that a specific site is phosphorylated by a specific kinase in vivo, we 

chose to include phosphorylation sites where 1) site-specific mutagenesis on the 

phosphoacceptor site (usually S/T/Y to A to create nonphosphorylatable mutants) has 

revealed a functional role for the site or group of sites or 2) low-throughput identification of 

phosphosites by mass spectrometry had identified sites. The vast majority of the sites 

included have been confirmed by site-specific mutagenesis. In addition, we required that 

each site has evidence for the specific kinase responsible, either by in vitro experiments 

showing phosphorylation of the site by that kinase or by in vivo experiments showing that the 

phosphorylation or mutant phenotype depended on a particular kinase. Because kinases 

usually recognize a short degenerate consensus sequence around the phosphorylated residue 

(Miller and Blom 2009), knowing the identity of the kinase responsible allows us to 

accurately define the extent of expected conservation around the phosphorylation site. This 

contrasts with previous studies on phosphoevolution where phosphorylation sites have been 

obtained with high-throughput mass spectrometry (Macek et al. 2008; Holt et al. 2009; 

Landry et al. 2009; Yachie et al. 2009) and where the kinase was unknown. In those studies, 

the evolutionary properties of only the phosphoacceptor sites can be studied. 

We focused on seven kinases for which we could define a consensus sequence: CDK (or 

Cdc28), Mec1, CKII (Cka1/Cka2/Ckb1/Ckb2), Prk1, Ipl1, PKA (or Tpk1/Tpk2/Tpk3) and 

Pho85 (see Table II-1). We manually aligned all the sites for each kinase and determined the 

extent of the consensus sequences based on the information content. These consensus 

sequences are represented as seqlogos (Schneider and Stephens 1990; Crooks et al. 2004) in 

Figure II-1. We refer to these sites as “annotated” phosphorylation sites, and we believe that 
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they represent a high-confidence set of bona fide phosphorylation sites in budding yeast. A 

complete table of these sites and references can be found as supplementary table II-S1.  

A B C

D E F

G

 

Figure II-1. Sequence logos of aligned annotated sites of seven kinases A-G) Annotated 

sites from each kinases were aligned along with their flanking regions and boundaries were chosen 

where the information content was > 1.  

II.3.2 There is evidence of conservation of phosphorylation sites 

We first sought to test for evidence of evolutionary constraint on the annotated 

phosphorylation sites. To perform our analysis, we aligned orthologous proteins from four 

closely related species of yeasts (S. cerevisiae, S. paradoxus, S. mikatae and S. bayanus, see 

Materials and Methods). We then used maximum parsimony (Durbin et al. 1998) (see 

Materials and Methods) to calculate the rate of amino acid and synonymous substitution (Ka 

and Ks) (Nei and Gojobori 1986) in the phosphorylation sites (termed “site”). Because 
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phosphorylation sites occur preferentially in unstructured regions of proteins (Gnad et al. 

2007; Landry et al. 2009), and phosphoproteins evolve more slowly than other proteins 

(Gnad et al. 2007), comparing them with a random sample of sites can be misleading.  We 

therefore compared the rates of evolution in the characterized phosphorylation sites with five 

amino acids on each side (termed “flank”). We use the flanking region to control for 

structured and unstructured segments of proteins, as well as different rates of protein 

evolution. To explicitly test for a difference in substitution rate between the sites and flanks, 

we performed an LRT to compare the hypothesis that the site evolves at a different rate than 

the flanking region with the hypothesis that a single rate of evolution explains the patterns in 

both classes (see Materials and Methods). In each case we also performed a nonparametric 

bootstrap to confirm the significance of our results (see Table II-1). 

  



Chapter II. Evolution of characterized phosphorylation sites in budding yeast 28 

 

Table II-1. Summary of the sites included in our analysis. Ka/Ks was calculated as in the 

Materials and Methods. The LRT is the likelihood ratio statistic and the P-value is given following a 

Χ2 with a degree of freedom equal to 1 (See Materials and Methods). P-value from bootstrap analysis 

is given by the number of times the Ka/Ks of the flank was observed to be higher than the site in 1000 

non-parametric bootstraps (See Methods). Double asterisks show strong significance (P < 0.01), and 

one asterisks shows significance (P < 0.05).  

Kinase 

Number of 

phosphorylation 

sites 

Ka/Ks 

in site 

Ka/Ks 

in flank 
LRT 

P-value of 

LRT 

P-value of 

bootstrap 

CDK 114 0.071 0.109 19.62 9.4 * 10-06 ** 0.005 ** 

Mec1p 47 0.062 0.173 24.26 8.4 * 10-07 ** <0.001 ** 

Ipl1p 18 0.140 0.157 0.008 0.93 0.37 

CKII 17 (27) 0.050 0.099 3.06 0.08 0.003 ** 

Prk1p 20 (23) 0.034 0.060 4.94 0.03 * 0.128 

PKA 14 (18) 0.126 0.057 N/A N/A 0.986 

Pho85p 19 (22) 0.025 0.062 5.64 0.018 * 0.031 * 

Total 249 (269) 0.069 0.118 64.36 1 * 10-15 ** <0.001 ** 

aIn parenthesis is the total number of sites found in the literature. Our analysis excluded overlapping 

sites. 

N/A: Not applicable due to higher Ka/Ks in flank.  
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Using this method, we found that there is a significant reduction in amino acid substitution 

rate within the phosphorylation sites as compared with the flanking regions (Ka/Ks 0.069 vs. 

0.118 for sites and flanks respectively, LRT = 64.36, P-value<10-14, Figure II-2a and Table 

II-1). This indicates that phosphorylation sites evolve under specific evolutionary constraint 

relative to the regions in which they occur in proteins. 
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Figure II-2. Difference in Ka/Ks ratio between sites and their flanking regions.  A) Ka/Ks 

ratio of annotated sites and their flanking regions. B) Ka/Ks ratio of amino acids denoted as critical, 

degenerate or nonspecific and the flanking region of each site. Lines between each bar shows 

significant differences under the LRT. C) Ka/Ks ratio of annotated sites from each kinase. In all 

graphs, the error bars are obtained from a 95% confidence interval from a nonparametric bootstrap of 

1000 replicates. Error bars are only shown for cases with at least 40 phosphorylation sites. 

Significance from the LRT is shown as an asterisk (P<0.05). 

Because we defined a phosphorylation site to include more information than the 

phosphoacceptor, we investigated the Ka/Ks ratio of amino acids defined as critical 

(substitution would very likely prevent phosphorylation), degenerate (substitution may lower 

phosphorylation affinity), or nonspecific (substitution is unlikely to impact phosphorylation). 

We categorized each position in the recognition motifs based on the information content (see 

Materials and Methods). We calculated the Ka and Ks at each position of the 
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phosphorylation site consensus sequence and binned the sites according to the categorization. 

As expected, the Ka/Ks ratio of the amino acids defined as critical (0.057) is lower than 

degenerate amino acids (0.068), which are lower than nonspecific amino acids (0.104, Figure 

II-2B). 

Performing the analysis on each kinase independently reveals a lower Ka/Ks ratio in the sites 

versus the flanking residues for all the studied kinases but PKA (Figure II-2C). The LRT 

indicates that most of the sites of kinases have a significantly lower rate of substitution than 

the flanking residues. 

It is possible that this lower rate of substitution is due to the difference in frequency of 

particular amino acids within the consensus sequences, as compared to the flanking regions. 

To confirm that this could not explain our results, we used as a negative control 514 proteins 

which were shown not to be targets of CDK by Ubersax et al (Ubersax et al. 2003). We 

randomly sampled an equivalent number of sequences matching the CDK consensus from 

these “nontargets” and computed the Ka/Ks ratio as well as the LRT described above (see 

Materials and Methods). On average these nontargets showed LRT statistics of 1.8 

(s.d=2.23), much less than the LRT=19.62 observed for the annotated sites.  This indicates 

that the differences in amino acid composition between the sites and flanks cannot account 

for the large LRT statistics that we have observed in the annotated sites. We note that the 

nontargets include some fraction of false negatives, and therefore this can be regarded as a 

conservative estimate for the contribution of the difference in residue frequencies. Therefore, 

at least for CDK sites, the lower rate of substitution within the site compared to the flanking 

region was not due to amino acid content as our negative and annotated sets show 

dramatically different results while having similar amino acid content. 

We note that most of the sites in our data set appear in unstructured regions of proteins (75% 

unstructured, 25% structured), and a previous study (Landry et al. 2009) has stressed the 

importance of studying the context of the phosphorylation site in evolutionary analyses. 

However, we found that the constraint observed above is similar in both structured and 

unstructured regions (Figure II-3).  
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Figure II-3. Difference in Ka/Ks ratio between sites and their flanking regions 

categorized by structured and unstructured regions.  Ka/Ks ratio and results of the LRT of 

annotated sites and their flanking regions for annotated sites separated by structured or unstructured 

regions. Error bars were obtained from a 95% confidence interval from a nonparametric bootstrap of 

1000 replicates. Significance from the LRT is shown as an asterisk (P<0.05). 

II.3.3 Phosphorylation site turnover 

Previous studies have shown that phosphoregulation may change over evolution (Moses, 

Liku, et al. 2007), and consistent with this, alignments of phosphorylation sites over long 

evolutionary distances show evidence of change (Holt et al. 2009; Tan et al. 2009). One 

possible explanation is that the sites may not be required to stay at a particular location in a 

protein and therefore may shift position over evolution (Moses, Liku, et al. 2007; Holt et al. 

2009; Tan et al. 2009), especially in unstructured regions (Brown et al. 2002). Another 

explanation is that proteins with multiple sites may lose or gain a few sites without changing 

the regulation of the protein (Moses, Liku, et al. 2007; Serber and Ferrell 2007). In both these 

cases, functional phosphorylation site turnover does not impact protein function. However, a 

third possibility is that phosphorylation sites identified in high-throughput experiments may 
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be nonfunctional, and the evolutionary changes we observe are simply due to the loss of 

nonfunctional residues.  

We decided to test whether we could observe the microevolutionary steps that underlie the 

changes in functional phosphoregulatory networks. We therefore sought to quantify the rate 

of turnover of phosphorylation sites within our set of annotated sites. We considered sites 

that contained substitutions of the critical residues (see Materials and Methods) to be 

nonconserved. Of the 249 functional sites in our set, we found 22 (8.8% +/-1.8) that were not 

conserved in the alignments of the closely related species studied here. We confirmed that 

these nonconserved sites were not due alignment errors or missing data (supplementary table 

II-S2).  

To test for evidence of selection influencing the rates of phosphorylation site turnover, we 

took advantage of the CDK unbiased “nontarget” set (Ubersax et al. 2003).  If selection acts 

to preserve functional phosphorylation sites, we predict that characterized sites should be lost 

at a slower rate than similar sequences in the nontargets. On the other hand, if 

phosphorylation sites were recently added by positive selection, we would expect to see a 

faster rate of characterized phosphorylation site gain relative to the appearance of matches to 

the consensus sequence in proteins we know not to be targets. Another hypothesis for the 

observation of turnover is that constraint at the individual site is superseded by the constraint 

that total number of sites should be conserved. Therefore, if selection is acting to preserve 

the total number of sites in a protein, a “death” can be compensated by a “birth” nearby on 

the same lineage. To test these hypotheses, we compared the rate of birth (Figure II-4A for 

an example), death (Figure II-4B for an example), and compensation (Figure II-4C) from our 

annotated CDK sites with the consensus sequences in the set of unbiased negative proteins 

(nontargets) from Ubersax et al. We chose the set of unbiased nontargets because the birth 

rate obtained from the total negative set would be biased, as these proteins were chosen to be 

tested on the basis of the presence of a consensus sequence.  
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Figure II-4. Birth and death rate comparison. A) Example of a site birth. Site shown is a CDK 

site in Cnm67. B) Example of a site death. Site shown is a Mec1 site in Mrc1. C) Example of site 

death compensated by a birth. Site shown is a CDK site in Tgl4. D) Birth, death, and compensation 

rates of our annotated CDK sites were compared to the consensus sequences appearing in the set of 

unbiased negative targets by Ubersax et al. Significance from a Fisher’s exact test is shown as an 

asterisk (P < 0.05). 

We counted birth as sites appearing in the lineage leading to S. cerevisiae after the 

divergence with S. mikatae or S. paradoxus and deaths where sites disappeared in either S. 

mikatae or S. paradoxus, and compensation as a pair of birth and death within the same 

lineage. Doing so, we found that in our annotated sites, both the birth rate and the death rate 

were lower than in the set of unbiased nontargets (0.019 vs 0.075 for deaths P=0.04 and 0.14 

vs 0.55 P<0.01 for births, Fisher’s exact test, Figure II-4D). Although we observed an 

increased rate of compensation within our annotated set, it was not found to be significant 

(0.5 compensation/turnover vs 0.2 compensation/turnover, P-value = 0.14, Fisher’s exact 
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test, Figure II-4D). To control for the possibility that this birth and death rate difference is 

due to the difference in the amount of structured or unstructured regions in both sets, we also 

calculated the birth and death rates on only unstructured regions or structured regions. Doing 

so, we found similar results: Both the birth and death rates are lower in the annotated set 

whether or not we look at structured or unstructured regions (data not shown).  

Taken together, this analysis indicates that functional sites are under selective constraint to 

be preserved and that the bona fide targets of the kinase are also less likely to spawn new 

sites, suggesting selection against spurious matches to the consensus. We propose that in real 

targets, the appearance of new sites is more likely to disrupt protein function  (e.g., 

inappropriate phosphorylation of a protein domain) than in the nontargets where consensus 

matches are likely not to be phosphorylated (e.g., because the kinase is never localized close 

to the substrate). 

If selection acts on the number of phosphorylation sites, rather than the specific residues, loss 

or gain of sites may be permissive in proteins with a high number of phosphorylation sites. 

We found that the average 8.8% site turnover was seen across all proteins regardless of their 

site count and found no significance with a simulation of random turnover event (Figure II-

5). We tested our statistical power to observe significance in this test and found that, in a 

simulation where we assumed a site was n times more likely to be lost in a protein with n 

sites than in a protein with a single site, we did have a large enough sample size to detect this 

effect. 
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Figure II-5. Turnover in proteins with different number of sites.Percentage of 

nonconserved site within proteins of different number of sites. Significance of the different 

distributions was assessed with a Χ2 test at a significance level of 5% with degrees of freedom equal 

to 2. 

II.3.4 Conservation of phosphorylation sites can improve kinase target and specificity 

predictions 

Two important challenges in computational biology are predicting kinase substrates based on 

kinase specificity (Kobe et al. 2005; Turk 2008; Miller and Blom 2009) and predicting 

kinase specificity given a set of known substrates (Schwartz and Gygi 2005). We observed 

that experimentally confirmed phosphorylation sites had a lower rate of substitutions than 

their flanking region. We sought to see if this information could be used to improve kinase 

target prediction or if it could uncover specific recognition motifs. To perform this analysis, 

we attempted to predict targets and specificity of CDK and Mec1, the kinases for which we 

had the most available data. 

We first attempted to predict kinase targets. For CDK, our set of positives and negatives 

were obtained from Ubersax et al.’s set of CDK targets using a CDK-as1 allele (Ubersax et 
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al. 2003). To incorporate the slower rate of evolution of phosphorylation sites into sequence-

based prediction, we applied the LRT described above to the matches to the CDK consensus 

sequence in each particular protein. Running our LRT on individual proteins, we observe that 

the likelihood ratio alone is a strong predictor of targets, yielding significant positive 

predictive value (P<0.05, Fisher’s Test compared to the consensus sequence alone). Because 

proteins with more matches to the CDK consensus are more likely to represent bona fide 

targets of this kinase (Moses, Hériché, et al. 2007), we also analyzed targets separately 

depending on the number of matches to the full consensus. 

We find that the improvement in positive predictive value is more pronounced when the 

number of full consensus matches within the protein is lowest (Figure II-6a). This is likely 

due to the strong predictive power achieved in the case of large numbers of consensus sites in 

the absence of evolutionary information.  The evidence for constraint on phosphorylation 

sites improves prediction in the cases where consensus sites alone provide poor predictive 

power. 
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Figure II-6. Improved target prediction using the LRT.  A) Ratio of the positive predictive 

value of the LRT against the consensus sequence alone on the Ubersax et al. set of negative and 

positive targets of CDK. The number of matches to the full CDK consensus sequence was used to 

separate the set in multiple categories. B) Ratio of positive predictive value of the LRT against the 

consensus sequence alone on our set of proteins with annotated phosphorylation site. Positive targets 

were genes that had annotated Mec1 sites and negative targets were the rest of the proteins with 

annotated sites having a Mec1 consensus sequence.  
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We then performed a similar analysis on Mec1 targets. Our set of positives were the proteins 

with annotated Mec1 sites, and our set of negatives were protein targets of other kinases 

within our initial data set. Similar to CDK, we observe that the LRT on individual protein is 

a strong predictor of targets with significant positive predictive value (P<0.05, Fisher’s Test 

compared to the consensus sequence alone) (Figure II-6b). 

We next tested whether the evolutionary information could be used to search for the kinase 

recognition motif. For a given set of kinase targets, we identified all k-mers that included a 

serine or a threonine within unstructured regions and tested their conservation compared with 

their flanking region using the LRT. For k-mers that are found at least three times in the 

unstructured regions of the substrates, we found that the LRTs are sufficient to uncover both 

the CDK recognition motif ([ST]-P, indicated with circles in Figure II-7a) and the Mec1 

recognition motif ([ST]-Q, indicated with circles in Figure II-7b). As a negative control, we 

performed a similar analysis on the non-CDK targets described above, and did not recover 

the CDK consensus (data not shown). 
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Figure II-7. Kinase specificity prediction using the LRT.  A) K-mers with serines or 

threonines ranked by their likelihood ratio statistics in the unstructured regions of CDK targets. Black 

circles are k-mers which fit the known CDK consensus sequence. B) K-mers with serines or 

threonines ranked by their likelihood ratio statistics on Mec1 targets. Black circles are k-mers which 

fit the known Mec1 consensus sequence. 
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This indicates that the evolutionary conservation can be complementary to the information 

about the number of consensus sites when predicting kinase substrates and that it can help in 

predicting kinase recognition motifs. 

 

II.4 Discussion 

Our study differs from previous studies in four main methodologies. First, the 

phosphorylation sites in our study were known to be functional. Second, we only included 

closely related species of yeasts. Third, we included important residues other than the 

phosphosite in the evolutionary rate calculations. Finally, the phosphosites were categorized 

by their respective kinases in order to verify differences between kinases. Our methodology 

was chosen to ensure that we obtained reliable alignments and to ensure that our analysis did 

not include falsely labeled phosphorylation sites. Thus, we have higher confidence in the 

alignments and the studied sites, but our conclusions are based on less data and substitutions, 

which are necessary to infer evolutionary properties.  

Nevertheless, our analysis of the annotated phosphorylation sites in S. cerevisiae yielded 

several results which have been suggested in other studies (Gnad et al. 2007; Macek et al. 

2008; Beltrao et al. 2009; Holt et al. 2009; Landry et al. 2009; Yachie et al. 2009): On 

average, phosphorylation sites show evidence of functional constraint, but individual sites 

appear to turnover during evolution. We note that the number of sites in our study is much 

smaller than many of the previous studies (and represents a small fraction of the total number 

of phosphorylation sites in the yeast proteome). Furthermore, as we only studied seven 

kinases, we note that it might not be possible to generalize our study to the whole 

phosphoproteome. Indeed, results vary between kinases: For example, PKA sites did not 

show evidence for constraint relative to their flanking sequences. At least in the case of 

CDK, however, our results seem to be generalizable, as we observe similar results (see 

Appendix Figure I-1) on putative phosphorylation sites in a large set of CDK targets 

(Ubersax et al. 2003).  
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In addition, conservation of sites within very closely related species of yeasts has been 

observed for sites within targets of CDK (Holt et al. 2009) and the lower death rate in 

annotated CDK sites that we observed is consistent with the observation that enrichment of 

sites is also maintained over evolution (Holt et al. 2009).  

In another study, it had been shown that phosphorylated residues from high-throughput data 

in yeast do not appear to be constrained when compared to nonphosphorylated 

serines/threonines/tyrosines (Landry et al. 2009). Further analysis from that study showed 

that constraint was significantly observed when comparing phosphorylated residues with 

known function instead in a human dataset. Consistent with this, we found that constraint 

could not be observed by comparing the phosphoacceptor with its flanking residues in their 

yeast high-throughput dataset (see Appendix Figure I-2). Because our sites were all shown to 

be functional, our analysis confirms the idea that functional sites are more likely to be 

preserved (Budovskaya et al. 2005; Landry et al. 2009).  

The above indicates that evolutionary information can therefore be used to infer functional 

phosphorylation sites in proteins known to be phosphorylated by a certain kinase. Indeed, 

some studies in the past have taken advantage of this information (Wang et al. 2005; Koch et 

al. 2009) for their protein of interest. Evolutionary conservation has also been used 

systematically to predict novel substrates of PKA (Budovskaya et al. 2005). Although we did 

not devise a method to predict targets of kinases, we confirmed that, as a proof of concept, 

simple evolutionary constraint improves predictive power in proteins with small numbers of 

full consensus sites.  

Furthermore, kinase specificity has been predicted in the past using enrichment of linear 

motifs (Schwartz and Gygi 2005) as proteins phosphorylated by a kinase often share a 

common recognition motif around the phosphoacceptor. We also have shown that because 

these motifs tend to be conserved, evolutionary information can help in predicting the kinase 

recognition motif in the case where the substrates are known. 

Although conservation seems to be a general feature of functional phosphorylation sites, by 

looking at well-characterized sites in closely related species, we quantified the process of 

evolutionary change in phosphorylation sites: We found that ~9% of phosphorylation sites 
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were not conserved in the closely related species considered here. Turnover of 

phosphorylation sites could be consistent either with redundancy of sites in unstructured, 

multiply phosphorylated regions or with changes in phosphoregulatory networks (Moses, 

Liku, et al. 2007; Beltrao et al. 2009; Tan et al. 2009).  

Consistent with the hypothesis that the total number of sites within a protein is conserved, 

and the individual sites are free to turnover, we observed examples of compensation within 

our annotated set, although we could not find statistical evidence for selection on this 

process. Similarly, we could not find any evolutionary evidence for redundancy of 

phosphorylation sites in multiply phosphorylated proteins. 

On the other hand, it has been proposed that changes in regulatory networks are enabled by 

the presence of phosphorylation sites in unstructured regions that evolve rapidly (Collins 

2009; Holt et al. 2009). However, our data showed similar constraints on phosphorylation 

sites in structured and unstructured regions, which is in agreement with previous results 

regarding functional sites (Landry et al. 2009). Another explanation for the prevalence of 

phosphorylation sites within unstructured regions is that phosphorylation of structured 

regions is more likely to disrupt function. This is supported by the fact that there are fewer 

consensus matches in structured regions in the targets than expected (0.1846 in annotated 

targets vs. 0.2853 per thousand residues in non-targets). However, we also observed a 

reduction in the birth rate of phosphorylation consensus sites in bona fide targets relative to 

the nontargets, indicating that spurious phosphorylation sites may disrupt function even in 

the unstructured regions. Understanding the constraints on the organization of regulatory 

sequences in proteins is an important area for further research.  

Nevertheless, our evidence for “turnover” of characterized phosphorylation sites provides the 

microevolutionary material for the plasticity in regulatory networks that has been observed 

over longer evolutionary timescales (Jensen et al. 2006; Moses, Liku, et al. 2007; Beltrao et 

al. 2009). This plasticity in regulatory networks has also been seen in other classes of 

regulatory elements, namely in transcription factor binding sites. It is interesting to note that 

the fraction of nonconserved phosphorylation sites found in our study (8.8% over species 

divergent by 5-20 million years (Kellis et al. 2003)) seems proportional to the fraction of 
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nonconserved functional transcription factor binding sites when comparing humans to 

mouse, where 36-40% of sites turnover (Dermitzakis and Clark 2002) during the 65-75 

million years separating those species (Mouse Genome Sequencing Consortium et al. 2002)). 

Our finding that the positions with high information content in phosphorylation sites showed 

fewer substitutions also mirrors the patterns of evolution seen in transcription factor binding 

sites (Moses et al. 2003). Therefore, we speculate that conservation with a small rate of 

turnover is likely to be a general feature of many other classes of regulatory elements. 

II.5 Materials and Methods 

II.5.1 Alignment of closely related species of yeasts 

Genomic sequences from the four species in our study (Saccharomyces cerevisiae, 

Saccharomyces bayanus, Saccharomyces paradoxus and Saccharomyces mikatae (Kellis et 

al. 2003)) were obtained from the SGD (SGD Project 2011) and translated open reading 

frames were aligned using t-coffee (Notredame et al. 2000) at default settings. DNA 

sequences were aligned using the aligned protein sequences by inserting the gaps from the 

protein sequence alignments into the cDNA sequences. In all, 86% (5045/5884) of the genes 

in S. cerevisiae were aligned successfully. The amino acid sequences of these species are 

very similar: 73% of the columns in these alignments have no amino acid differences. 

II.5.2 Consensus sequences of phosphorylation sites 

The phosphoacceptor for each kinase was aligned, and the flanking sequences were added 

afterwards. We created a seqlogo (Schneider and Stephens 1990; Crooks et al. 2004) for each 

kinase and set the consensus sequence to start and end where the information content equaled 

1.  

We defined critical residues as those residues that are likely to be necessary for 

phosphorylation. These include the phosphoacceptor and residues with information content 

comparable to the phosphoacceptor. We defined degenerate residues to be residues with 

lower but observable information content and nonspecific residues as residues with marginal 

information content. 
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We defined phosphorylation sites as the consensus sequence match of the respective kinase. 

This includes the phosphoacceptor as well as critical, degenerate, and nonspecific residues as 

described above. 

II.5.3 Ka and Ks calculation 

To calculate the rate of synonymous (or nonsynonymous) substitution, Ks (or Ka), we 

calculated the number of synonymous (or nonsynonymous) substitutions and divided by the 

number of synonymous (or nonsynonymous) sites. This calculation was done either on 

individual columns of alignments or on the ‘site’ and ‘flank’. To calculate the number of 

substitutions, we used the maximum parsimony algorithm (Durbin et al. 1998) with no 

weighting on the amino acid sequence, and to calculate the number of synonymous or 

nonsynonymous sites, we used the method presented by Nei and Gojobori (Nei and Gojobori 

1986).  

Error bars were obtained by nonparametric bootstrapping of 1000 samples with a 95% 

confidence interval (Nei and Kumar 2000). P-value from bootstrap analysis is obtained by 

counting the number of times the Ka/Ks of the flanking region is slower than the site divided 

by the number of samples. Significance is assessed at P-value < 0.05. 

 

II.5.4 A likelihood ratio test of two rates of substitution against one 

We sought to test the hypothesis that the phosphorylation site evolved at a slower rate than 

its flanking region. To do so, we compared that hypothesis against the null hypothesis that 

the whole region (site and flank) evolved at a constant rate using a likelihood ratio test. 

Formally: 
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Where x is the observed number of substitutions at a given position, and λ is the rate of 

evolution, and where λflank >= λsite. We assumed that substitutions occurred following a 

Poisson process.  

x!

eλ
λ)|f(x

λx 

  

Assuming a single Ks rate over the whole region, the likelihood ratio only depends on the 

amino acid substitution rate, Ka. The maximum likelihood estimate of Ka is simply the 

number of nonsynonymous substitutions divided by the number of nonsynonymous sites.  

After some algebra, the log likelihood ratio is: 

)(λ

λ
logS

)(λ

λ
logS  LR log

site
site

flank
flank   

Where S is the number of nonsynonymous substitutions and λ is the maximum likelihood 

estimate of the rate of amino acid substitution (Ka). 

The LRT statistic is given by 

LRT = -2 log LR	

Under the null hypothesis, this statistic follows the Χ2 distribution with degrees of freedom 

equal to 1. Significance is assessed at P-value < 0.05. 

 

II.5.5 Structure 

To assess if a site was present in a structured or unstructured region, we used the method 

presented by Uvarsky et al.(Uversky et al. 2000; Prilusky et al. 2005), first by removing the 

annotated phosphorylation site from the protein segment, and then using a window of 50 

amino acids centered on the region of the phosphorylation site.  

II.5.6 Turnover rate calculation 
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Turnover rate is defined by both death and birth rate. We defined death rate as the number of 

sites disappearing from the inferred ancestral sequence divided by the number of initial sites 

in the ancestral sequence, and we defined birth rate as the number of sites appearing along 

the lineage leading to S. cerevisiae after the divergence with S. mikatae or S. paradoxus, per 

thousand residues of the ancestral sequence.  

Significance of birth and death rate differences were assessed using a two-tailed Fisher’s 

exact test by summing the probability of more extreme possible observations. A P-value < 

0.05 was assessed as significant. 

Site compensation was defined as a pair of nonconserved phosphorylation site and birth 

within the same lineage, within a local region of the protein. The distance allowed for the site 

birth was halfway until the next predicted site within S. cerevisiae. 

 

II.5.7 Site and target prediction 

For various controls and kinase target prediction, we predicted phosphorylation sites using a 

profile Hidden Markov Model (HMM) obtained from our initial alignments of sites. Profile 

HMMs have been used in the past to predict protein domains and model linear states that 

approximate a consensus sequence (eg. Pfam (Finn et al. 2008)). While this may not be 

needed for kinases such as Mec1p, which follow a strict consensus sequence, other kinases 

such as cyclin-dependent kinase (CDK) have “weak” and “strong” consensus matches that 

offer more leeway in their recognition signal. Because HMMbuild (Eddy 1998) was found to 

be more reliable for longer sequences than most phosphorylation recognition signal, we built 

a similar model using a single Dirichlet prior that fitted most with one of the Dirichlet 

mixture for pseudocount (Sjölander et al. 1996). We then used the posterior algorithm and a 

threshold that validated most of our annotated sites to predict putative sites. 

For CDK, kinase target prediction was assessed using the proteins identified as substrates by 

Ubersax et al. (Ubersax et al. 2003) as positives and the remaining proteins tested by 

Ubsersax et al. as negatives (nontargets). We calculated the positive predictive power by 
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counting the number of positive proteins above a LRT threshold divided by the total number 

of proteins above the same threshold among the two sets. For Mec1, kinase target prediction 

was assessed using the proteins with at least one characterized Mec1 phosphorylation site as 

positives and all proteins with characterized phosphorylation sites for other kinases, but not 

Mec1, as negatives.  Although some of these proteins may indeed be targets of Mec1, we 

hoped that by using this set as negatives, we would reduce the effect of the bias that is 

induced by researchers when they choose which proteins to study. 

II.6 Acknowledgements and funding information 

AMM and ANNB are supported by NSERC. AMM is supported by an infrastructure grant 

from the CFI. We thank Dr. Nicholas Provart for providing us with a web server to store our 

data. We also thank Dr. Philip M. Kim for comments on the manuscript. 

II.7 Author contribution 

ANNB designed and performed the experiments and wrote the paper. AMM designed the 

experiments and wrote the paper. 

II.8 Supplementary Data 

Supplementary figures are included in Appendix I, and supplementary tables are included in 

the supplementary data file. 



49 

Chapter	III	

Proteome‐Wide	Discovery	of	Evolutionary	Conserved	Sequences	in	

Disordered	Protein	Regions	

This is an author-produced PDF of an article accepted for publication in Science Signaling 

following peer review. The version of record: Proteome-Wide Discovery of Evolutionary 

Conserved Sequences in Disordered Regions 

Sci Signal. 2012 Mar 13;5(215):rs1. doi: 10.1126/scisignal.2002515. 

Alex N Nguyen Ba1,2, Brian J Yeh3, Dewald van Dyk4,5, Alan R Davidson6, Brenda J 

Andrews4,5, Eric L Weiss3, Alan M Moses1,2,¥ 

is available online at: http://stke.sciencemag.org/content/5/215/rs1.abstract 

1. Department of Cell & Systems Biology, University of Toronto, Toronto, Canada 

2. Centre for the Analysis of Genome Evolution and Function, University of Toronto, 

Toronto, Canada 

3. Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United 

States of America. 

4. The Terrence Donnelly Centre for Cellular and Biomolecular Research, University of 

Toronto, Toronto, Ontario, Canada; 

5. Banting and Best Department of Medical Research, University of Toronto, Toronto, 

Ontario, Canada 

6. Department of Biochemistry, University of Toronto, Toronto, Canada 



Chapter III. Discovery of short conserved sequences in disordered regions 50 

 

III.1 Abstract  

At least 30% of human proteins are thought to contain intrinsically disordered regions, which 

lack stable structural conformation. Despite lacking enzymatic functions and having few 

protein domains, disordered regions are functionally important for protein regulation and 

contain short linear motifs (short peptide sequences involved in protein-protein interactions), 

but in most disordered regions, the functional amino acid residues remain unknown. We 

searched for evolutionarily conserved sequences within disordered regions according to the 

hypothesis that conservation would indicate functional residues. Using a phylogenetic hidden 

Markov model (phylo-HMM), we made accurate, specific predictions of functional elements 

in disordered regions even when these elements are only two or three amino acids long. 

Among the conserved sequences that we identified were previously known and newly 

identified short linear motifs, and we experimentally verified key examples, including a 

motif that may mediate interaction between protein kinase Cbk1 and its substrates. We also 

observed that hub proteins, which interact with many partners in a protein interaction 

network, are highly enriched in these conserved sequences. Our analysis enabled the 

systematic identification of the functional residues in disordered regions and suggested that 

at least 5% of amino acids in disordered regions are important for function. 
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III.2 Introduction 

Intrinsically disordered regions are regions that lack stable secondary or tertiary 

conformation, and 30% of the human proteins are thought to contain large contiguous 

disordered regions (J J Ward et al. 2004). These regions are found in many disease-

associated proteins, such as the tumor suppressor and transcriptional regulator p53, the DNA 

repair protein BRCA1, and the chloride channel cystic fibrosis transmembrane conductance 

regulator (CFTR) (Ostedgaard et al. 2000; Uversky et al. 2008; Wells et al. 2008).  Although 

some of these regions contain recognizable domains or become ordered upon binding 

(Wright and Dyson 1999; Fong et al. 2009), most of these regions apparently lack enzymatic 

activity or conserved protein domains that adopt regular structures (Sigalov et al. 2007). 

Several models have been proposed for their function, including that they are important for 

(i) protein-protein interactions (Dunker et al. 2001), (ii) protein degradation (Brocca et al. 

2009), or (iii) posttranslational modifications that control protein function (Dunker et al. 

2002). Indeed, disordered (or unstructured) regions are particularly prevalent in proteins that 

exhibit many physical interactions (Dunker et al. 2005) and have been associated with the 

sites of posttranslational modifications (Iakoucheva et al. 2004) [reviewed in (Dyson and 

Wright 2005)]. Despite the importance of these disordered regions, it is currently difficult to 

accurately identify which residues within a disordered region might be important.  

Many of the proposed functions of disordered regions are mediated by short linear motifs 

(Gould et al. 2010), which are specific peptides of 2-10 amino acid that physically contact 

modifying enzymes or binding partners. We tested whether we could systematically identify 

short linear motifs in disordered regions by using the guiding principle of “comparative 

genomics” - that critical functional sequences would be preferentially preserved over 

evolution (Ureta-Vidal et al. 2003; Beltrao and Serrano 2005). One approach to 

systematically identifying short linear motifs is to combine in vitro peptide binding data, 

protein interaction data, and bioinformatic searches (Linding et al. 2007; Tonikian et al. 

2009; Mok et al. 2010). Another approach is to search for matches to a motif pattern derived 

from sets of co-regulated proteins (Neduva et al. 2005; Lieber et al. 2010). Despite their wide 

applicability, many of these systematic approaches cannot provide evidence regarding the 
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functional importance of a particular short peptide in vivo. On the other hand, the 

comparative genomics approach can provide evidence that a particular short sequence is 

important to the organism. Comparative approaches that use only evolutionary conservation 

are unbiased in that they do not require information about protein function or whether the 

short linear motif has been previously associated with a specific function. This is in contrast 

to other approaches (Neduva et al. 2005; Linding et al. 2007; Tonikian et al. 2009; Lieber et 

al. 2010; Mok et al. 2010) that take advantage of high-throughput in vitro and in vivo 

experimental information. 

We applied a comparative genomic approach based on a phylogenetic hidden Markov model 

(phylo-HMM; (Siepel et al. 2005)) to identify short protein sequences in the proteome of the 

yeast Saccharomyces cerevisiae.  The phylo-HMM approach has been used previously to 

discover conserved elements in DNA (Siepel et al. 2005) by exploiting the pattern of 

nucleotide substitutions. We modified this phylo-HMM approach to include the pattern of 

insertion and deletion events, as well as substitutions, within a protein sequence, and with 

this method, we identified on average 1.44 short sequences per protein that were highly 

conserved and found within intrinsically disordered regions – these included 30% of 

previously identified short linear motifs in disordered regions.  

When our highly conserved sequences matched known consensuses of short linear motifs, 

such as the FG motif for interaction with karyopherins, the cyclin-dependent kinase (CDK) 

consensus phosphorylation site motif,  and the KEN box for ubiquitin-mediated protein 

degradation, we found statistically significant enrichment of proteins known to be regulated 

by these short linear motifs. We experimentally verified a previously unknown KEN box in 

the yeast protein Spt21. Furthermore, unsupervised clustering of our conserved sequences on 

the basis of sequence similarity identified hundreds of motif clusters, many of which were 

enriched for functional annotations. Of the top clusters we examined, about 60% 

corresponded to known patterns of short linear motifs, whereas the others represent putative 

newly identified patterns.  We identified one such cluster that was enriched for interacting 

proteins of the kinase Cbk1, which is a member of the nuclear dumbbell forming 2 (Dbf2)-

related (NDR) subfamily of the large tumor suppressor (LATS) family of kinases, and 

showed that the predicted motif mediated a physical interaction with that kinase. Finally, we 
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analyzed hub proteins and showed that they contain a higher density of short conserved 

sequences when compared to the rest of the genome, suggesting that their centrality in 

protein interaction networks may be facilitated by an overabundance of short linear motifs. 

 

III.3 Results 

III.3.1 A phylo-HMM approach can identify short conserved sequences in proteins 

Posttranslational regulation of protein activity is often mediated through short linear motifs 

that are often present within disordered regions (Linding et al. 2003; Iakoucheva et al. 2004). 

Although these motifs share a common pattern or consensus that is important for their 

function, they are frequently short and may contain positions that have highly flexible amino 

acid preference. Thus, pattern matches are expected to occur frequently in random protein 

sequences, with most matches not corresponding to biologically relevant motifs. It has been 

suggested that correspondence with biological function can be improved by searching for 

motifs that are also conserved over evolution (Chica et al. 2008; Nguyen Ba and Moses 

2010). For our analysis of the S. cerevisiae proteome, we chose related species that have 

syntenic gene orthologs and are thought to have diverged 100 million to 200 million years 

ago (Gordon et al. 2009). 

We developed a phylo-HMM-based computational framework to systematically detect 

conserved short linear motifs in unstructured regions in multiple sequence alignments 

(Figure III-1A). We hypothesize that functionally important short linear motifs will be 

preferentially conserved such that substitutions and insertions or deletions will occur more 

frequently adjacent to the motif than within it (Ren et al. 2008). It therefore follows that the 

amino acids in each multiple sequence alignment column fall into two classes: the conserved 

class and the background class. The conserved class represents those amino acids with a slow 

rate of evolution corresponding to the preferentially conserved motif (Figure III-1B; 

Appendix Figure II-1 “Conserved”, rate = αc), and the background class represents those 

with a faster rate of evolution, corresponding to divergent, functionally less important 
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sequences (Figure III-1B; Appendix Figure II-1 “Background”, rate = αW). We compared the 

substitution and insertion or deletion rate in each column with the overall rate in a window of 

surrounding amino acids (Figure III-1B). We then used a statistical approach based on a 

phylo-HMM to compute the probability (the posterior probability) that each multiple 

sequence alignment column (Figure III-1B, framed in green) is within the preferentially 

conserved class. The posterior probability approaches 1 as segments increase in relative 

conservation or as the number of consecutively conserved residues increases. When the 

phylo-HMM approach was previously applied to analyze DNA conservation, only 

substitutions were considered. Because insertion and deletion events are common in 

disordered regions, we have modified the phylo-HMM approach to include these events as 

well (Figure III-1B, vertical black bars separating grey highlights, see Methods).  
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Figure III-1. Schematic of the phylo-HMM approach.  A) Flowchart of the computational 

framework to detect conserved short linear motifs in disordered regions of multiple sequence 

alignments. B) The rate of evolution for an alignment column (framed in green) is compared to a rate 

of evolution over a window (w) adjacent to the column. The probability that the column is within the 

preferentially conserved class is computed. The framework takes advantage of the amino acid 

substitutions inferred in columns of the alignment and the pattern of insertions and deletions 

(illustrated as grey highlights) in blocks of the multiple sequence alignment (separated by vertical 

black lines). C) A posterior probability trace of the region 1 to 110 in the alignment of Sic1 

(corresponding to amino acid position 1 to 100 in S.cerevisiae). Four strongly conserved segments are 

detected by the phylo-HMM approach and these overlap with experimentally reported 

phosphorylation sites in Sic1 (indicated by stars), which are required for Cdc4 binding. The intensity 

of the red color represents the posterior probability of the conserved state. 
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To illustrate this method, we plotted the posterior probability as a function of alignment 

position (a “probability trace”)  for the disordered N terminus of Sic1, which contains 

experimentally verified phosphorylation sites necessary for binding to the E3 ubiquitin ligase 

adaptor protein Cdc4 (Nash et al. 2001; Mittag et al. 2008). The probability trace showed 

clear and specific peaks in the N terminus of Sic1 (Figure III-1C) and these peaks 

corresponded to five of the six known phosphorylation sites (Nash et al. 2001). In sequences 

lacking known motifs, such as a segment of the transcription factor Swi5, the posterior trace 

often was flat, despite variation in the local rate of protein evolution (Appendix Figure II-2). 

III.3.2 Short conserved sequences predicted by the phylo-HMM contain known motifs 

Using the phylo-HMM, we performed a proteome-wide prediction of short conserved 

sequences in S. cerevisiae and identified on average 1.44 short conserved sequences passing 

our threshold per protein (see Materials and Methods, Figure III-1A, Supplementary data 

table III-S1). To assess whether these short conserved sequences were biologically relevant, 

we analyzed a set of 352 literature-curated short linear motifs found in disordered regions 

(Supplementary data table III-S2, see Materials and Methods for criteria). Although the 

phylo-HMM predicted short conserved sequences for only ~5% of residues in disordered 

regions, 104 (30%) of the literature-curated short linear motifs were among the predictions.  

We searched our conserved sequences for matches to known patterns of short linear motifs. 

In an in-vitro kinase assay, of the 695 proteins with at least one Cdc28 phosphorylation site 

matching the consensus sequence ([ST]Px[RK]), only 185 were phosphorylated by an 

analog-sensitive mutant of Cdc28, a CDK (Ubersax et al. 2003). (Note that in motif 

sequences, letters in brackets represent preferred residues for a particular position, and x 

represents any amino acids.) Thus, simply having a consensus phosphorylation site is not 

sufficient to predict Cdc28 substrates. Our phylo-HMM identified 40 proteins containing a 

short conserved sequence that matched the Cdc28 consensus pattern, and 32 of these were 

positive in the in vitro kinase assay (Ubersax et al. 2003), which is a significant enrichment 

(32/40 vs. 185/695, P-value = 1.4 * 10-11, Fisher’s test, Supplementary data table III-S3). Of 

the 8 remaining proteins identified by the phylo-HMM, 1 of those (Cdc15) includes 

consensus sites phosphorylated in vivo (Jaspersen and Morgan 2000), and 2 are targets of 
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kinases that can phosphorylate the canonical Cdc28 consensus sequence - Rim15 

phosphorylated by Pho85 (Wanke et al. 2005) and Fus2 phosphorylated by Fus3 (Ydenberg 

and Rose 2009). Thus, 80% of the proteins identified by the phylo-HMM as containing 

conserved sequences matching the canonical Cdc28 consensus pattern are likely to be 

substrates of this kinase or other kinases that recognize the same or similar consensus 

sequences.  

The FG motif pattern (Phe-Gly), which is a canonical motif of common in nuclear pore 

complex (NPC) proteins and may be important for trafficking of proteins through the nuclear 

pore (Denning et al. 2003), is found in unstructured regions of these proteins (Denning et al. 

2003). Thirteen components of the NPC have been reported to contain FG repeats (Denning 

et al. 2003), seven of which can be further classified into variants including the FxFG and 

GLFG motifs (Denning et al. 2003). Using the phylo-HMM, we found 59 proteins in the 

yeast proteome with at least one conserved FG dipeptide. These included 12 of the 

previously known FG-containing NPC proteins. Because FG consensus matches are found in 

3438 yeast proteins, this is an extremely significant enrichment (12/59 vs. 13/3438, P-value 

= 7.21 * 10-16, Fisher’s test, supplementary table III-S3).  Searches in the yeast proteome for 

the more specific variants (FxFG and GLFG) yielded six of seven nucleoporins that contain 

these variant FG motifs.  

Of the 59 proteins identified as having a conserved FG dipepetide by phylo-HMM,  one of 

these was Ndc1, which is localized to the nuclear envelope and required for nuclear pore 

assembly (Chial et al. 1998; Lau et al. 2004), but had not previously been recognized as 

having an FG motif. The remaining 46 proteins identified by phylo-HMM analysis are not 

components of the NPC but nevertheless contain a short conserved sequence that matches the 

minimal FG motif pattern. Because the motif occurred either within known repeat sequences 

or in proteins that have roles in protein transport and sorting, we believe that the conserved 

sequences containing an FG dipeptide in the remaining 46 proteins are likely functional. For 

example, we identified both Sla1 and Pan1, members of the actin cytoskeleton-regulatory 

complex, as having the FG motif, and the motif in Sla1 is within the functionally important 

C-terminal repeat region (Warren et al. 2002). Other proteins related to protein transport and 

sorting that we identified as having the conserved FG dipeptide included Vps15, Ede1, Ent3, 
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Ent5, Pga2, and Glo3. Thus, rather than being limited to nuclear transport, the FG dipeptide 

motif may function more broadly in protein transport.  

We also identified proteins in the S. cerevisiae proteome with a conserved KEN box [a 

degradation signal that is recognized by the anaphase-promoting complex/cyclosome 

(APC/C)] (Buschhorn and Peters 2006). The KEN box acts as a binding site for the APC/C 

and marks target proteins for degradation in different phases of the cell cycle. The 

phylo-HMM analysis identified only 10 proteins with a conserved KEN sequence. Eight of 

those contained an experimentally verified KEN degradation signal (King et al. 2007; Choi et 

al. 2008), were characterized targets of the APC/C (Cohen-Fix et al. 1996; Juang et al. 1997), 

or were cyclins, including Clb2 which contains a verified KEN sequence (Hendrickson et al. 

2001). The two remaining motifs matching the KEN signal are found in Spt21 and Sgd1, 

neither of which have been associated with the APC or reported to exhibit cell cycle-

regulated degradation (supplementary data table III-S3). We noticed that the conserved KEN 

box in Spt21 was followed by a conserved proline, which is also found conserved following 

the KEN motif in Clb2 (Figure III-2A) and Mad3 (King et al. 2007), suggesting that the 

proline may confer additional binding specificity beyond the KEN residues. The presence of 

a proline after the KEN motif has been reported to mediate more efficient APC/C-mediated 

degradation of mammalian proteins with KEN boxes (Feine et al. 2007). 

To confirm the in silico analyses, we experimentally tested whether the identified KEN 

sequence in Spt21 served as a degradation signal (Figure III-2A). Spt21 is a protein that 

promotes transcription of the genes encoding the HTA2 and HTB2 histones, and 

transcription of the gene encoding Spt21 is cell cycle-regulated (Chang and Winston 2011). 

We found that the amount of Spt21 coincided with the amount of Clb2, a protein that 

exhibits changes in abundance during the cell cycle, (Figure III-2B), which indicated that, as 

at the level of mRNA (Spellman et al. 1998), Spt21 protein abundance varied over the cell 

cycle.  
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Figure III-2. A KEN box identified by the phylo-HMM approach in Spt21 mediates 
protein degradation.  A) Alignments of the previously characterized Clb2 KEN box degradation 

signal alongside the predicted KEN box in Spt21. Numbers indicate residue position within the S. 

cerevisiae protein sequence. B) Left panel is a Western blot showing that amount of SPT21-TAP 

varies within the cell-cycle and, like Clb2, is absent in G1. Endogenous hexokinase (HK) served as 

the loading control. Pearson correlation coefficient between the normalized amount of Spt21 and the 

normalized amount of Clb2 was 0.89 and 0.87 in two independent experiments.  Right panel shows 

FACS analysis as additional validation of cell cycle progression. C) Spotted serial dilutions of strains 

overexpressing protA-tagged wild-type (SPT21) or KEN box mutant (SPT21ken) show a stronger 

fitness defect with overexpression of the KEN box mutant. D) Western blot analysis shows that 

mutation of the KEN box stabilizes Spt21. Wild-type (SPT21) and KEN box mutant (SPT21ken) 

expression was induced in galactose medium for 4 hours. Glucose was added to attenuate protein 

expression, and protein synthesis was abolished through the addition of cyclohexamide. HK was used 

as a loading control. Results shown are a representative blot from three independent experiments (two 

with protA-tag and one with the GST-tag).  The time-points after 60 minutes had P-values < 0.05 (t 

test; n=3) when comparing the normalized abundance of the wild-type to the KEN box mutant. 
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Many proteins have multiple means of regulation, and degradation by the APC/C may act as 

an additional layer of control, especially because overexpression of Spt21 is deleterious 

(Sopko et al. 2006). Given this cell cycle regulation and the toxicity of overexpression, we 

reasoned that if the KEN sequence is a biologically relevant degradation signal, then 

overexpression of a KEN mutant form of Spt21 would be more toxic than a wild-type form. 

We mutated the three consecutive KEN amino acids to alanines (Spt21ken) and performed 

serial spot dilution assay to assess growth fitness. Growth was more severely impaired by 

Spt21ken overexpression than by overexpression of the corresponding Spt21 control (Figure 

III-2C). To confirm that the KEN box served as a degradation signal, we assayed changes in 

protein abundance of Spt21 and Spt21ken through the cell cycle by overexpressing the 

proteins with the GAL promoter followed by shutting off both transcription and translation 

(see Materials and Methods). The abundance of the KEN mutant form remained high, 

whereas the abundance of wild-type Spt1 decreased over time (Figure III-2D). These results 

suggested that the conserved KEN sequence in Spt21 is important for the cell cycle-

dependent degradation of this protein. 

The evaluation of the KEN box, FG motif, and Cdc28 phosphorylation consensus sites 

provided evidence that the phylo-HMM approach can predict biologically relevant, short 

conserved sequences. However, it is possible that the many of the remaining predicted motifs 

in the yeast proteome were identified by the phylo-HMM because they have not sufficiently 

diverged, or because alignment errors lead to overestimation of the conservation of residues. 

To address the possibility of these computational artifacts, we performed extensive 

simulations of protein evolution (see Chapter III, Materials and Methods), which indicated 

that such artifacts occurred in alignments of disordered regions at a rate of 1 in 9000 amino 

acids (fewer than 1 in every 50 proteins examined). Another possible source of error in our 

classification of disordered regions may be the inclusion of larger protein domains within our 

disordered regions. However, 63% of the predicted short conserved sequences are within 

regions of at least 50 disordered amino acids, which are unlikely to be protein domains. 

Along with the strong enrichment of functional Cdc28 consensus sites, FG motifs, and KEN 

boxes, this low rate of computational artifacts indicated that short conserved sequences 

identified by the phylo-HMM likely represent functional elements within unstructured 

regions. 
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III.3.3 Known and previously unknown sequence patterns are uncovered by clustering 

the short conserved segments by sequence similarity 

We found that many proteins contained short conserved segments that did not match any 

known sequence patterns, and, thus, these may represent previously unknown short linear 

motifs.  Conservation in distantly related species would support the biological relevance of 

these previously unknown motifs and would indicate that these are not computational 

artifacts and are biologically important.  

For example, we found a previously unknown motif in the C terminus of the Dbp6 putative 

adenosine triphosphate (ATP)-dependent DEAD box RNA helicase (Kressler et al. 1998) 

that is conserved in plants, yeast, and human (Figure III-3A). If this short conserved 

sequence is part of biologically relevant, previously unidentified motif pattern, we reasoned 

that similar short conserved sequences should also be found in other proteins, possibly with 

shared functions. Dbp6 is required for ribosome biogenesis, and we identified a similar 

highly conserved short segment in the yeast protein Utp25, which is a DEAD box RNA 

helicase-like protein also related to ribosome biogenesis (Charette and Baserga 2010). These 

sequences all match the pattern YxxxLxxL, and the motif is conserved in distant orthologs 

for these proteins (Figure III-3B); therefore, we speculate that YxxxLxxL may represent an 

essential short linear motif pattern found in the unstructured regions of proteins involved in 

ribosome biogenesis.  
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Figure III-3. Predicted motifs are conserved in distant species.  A) Alignment region of the 

predicted YxxxLxxL motif in Dbp6 shows conservation of the motif amongst eukaryotic orthologs. 

Distant species comparison is shown with a phylogenetic tree. Branch lengths are not to scale. B) 

Alignment of the predicted YxxxLxxL motif in Utp25 with its human ortholog.  

To determine whether other previously unknown patterns were identifiable  in our data set, 

we used an unsupervised graph-clustering algorithm [MCODE (Bader and Hogue 2003)] to 

group conserved sequences into motif patterns on the basis of their sequence similarity 

without regard as to which protein contained these motifs (see Materials and Methods). This 

type of analysis can be visualized by a graph in which conserved sequences are represented 
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as nodes, edges correspond to sequence distance, and groups of highly interconnected nodes 

(detected by the graph-clustering algorithm) correspond to motif patterns (Figure III-4A). 
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Figure III-4. Known short linear motif patterns are recovered by cluster analysis.  A) 

Distribution of cluster sizes (black bars) and examples of highly interconnected motifs identified in 

the cluster analysis that represent known sequence patterns (green clusters). Beside each cluster is a 

graphical representation of the specificity of the motif. B) A close-up representation of the FG motif 

cluster shows interconnection between known FG motifs in nuclear pore proteins (highlighted in 

yellow) and a uncharacterized FG motif in Ndc1 (highlighted in blue) . C) A close-up representation 

of the P-rich motif cluster shows interconnection between a putative SH3-binding peptide (in Mkk1, 

highlighted in blue) and known SH3-binding peptides (in Las17 and Bnr1, highlighted in yellow). D) 

A close-up representation of the KEN motif cluster shows connection between the previously 

uncharacterized KEN motif in Spt21 (highlighted in blue) and an experimentally verified KEN motif 

in Clb2 (highlighted in yellow). See Supplementary data table III-S4 for a complete list of the 

proteins identified in each highlighted cluster. 
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For one set of clustering parameters, this procedure yielded 282 clusters covering 41% of the 

predicted sequences, with 38 large clusters containing at least 20 short conserved sequences, 

representing 21% of the predicted sequences, and 45 smaller clusters containing between 10 

and 20 conserved sequences, each representing ~9% of the predicted sequences (Figure III-4, 

Supplementary data table III-S4 and Supplementary data table III-S5). As expected, this 

uncovered previously described consensus sequences for short linear motifs, such as an 

SP/TP cluster (proline-directed kinase consensus), a GLFG cluster, and a KEN cluster 

(Figure III-4). These three motifs corresponded to the patterns described above, and the 

proteins containing these motifs were enriched in the expected function (see Materials and 

Methods). For example, the GLFG cluster was enriched in proteins having a nuclear pore 

subcellular localization (9 nuclear pore localized proteins/16 proteins in cluster vs. 46 

nuclear pore localized proteins/5884 proteins in the yeast proteome, P-value = 2.9 * 10-15, 

Fisher’s test), whereas the proteins in the SP cluster were enriched for cell cycle process 

(32/88 vs. 520/5884, P-value = 2.4 * 10-12, Fisher’s test). The SP cluster was the largest 

identified in our analysis (Figure III-4A, Supplementary data table III-S4), likely containing 

phosphorylation sites for many different proline-directed kinases (including the cell-cycle 

kinases Cdc28 and Pho85), which suggested that the most frequently observed conserved 

short sequences in disordered regions in yeast are consensus phosphorylation sites. 

Other clusters matching known consensus sequences included the NPF cluster, a motif found 

in EH domain interacting proteins (de Beer et al. 2000), which was enriched in endocytosis-

related proteins (7/20 vs. 59/5884, P-value = 1.09 * 10-9, Fisher’s test),  a KR cluster, which 

is a signature of nuclear localization signals (Lange et al. 2007; Nguyen Ba et al. 2009) and 

was enriched in proteins identified in the nuclear compartment (70/88 vs. 2077/5884, P-value 

= 4.3 * 10-17, Fisher’s test), and  a cluster of proline-rich sequences that resemble binding 

sites for peptide-binding domains, such as SH3 (Src homology 3) and WW (Macias et al. 

2002). This cluster contained known SH3-binding proteins, such as Las17 (Rodal et al. 

2003), and predicted the presence of an uncharacterized proline-rich binding site in the 

mitogen-activated protein kinase kinase Mkk1. 

We repeated the cluster analysis with different parameter settings (see Materials and 

Methods, Supplementary data table III-S4 and Appendix table II-5) and searched for clusters 



Chapter III. Discovery of short conserved sequences in disordered regions 66 

 

representing motif patterns that to our knowledge are uncharacterized, but had strong 

enrichment in functional annotations (Figure III-5A-C). With this analysis, we identified  an 

NPY cluster, which may be related to the NPF motif and was enriched in vesicle and nuclear 

membrane proteins and enriched in proteins associated with protein transport process (7/12 

vs. 419/5884,  P-value = 5.64 * 10-6, Fisher’s test). We also identified an FxDSF[RK]R 

motif, which was present in many amino acid permeases (6/8 vs. 36/5884,  P-value = 2.5 * 

10-12, Fisher’s test), and those permeases that contained this motif also had a C-terminal 

palmitoylation motif, FWC (Roth et al. 2006). Finally, we identified a [YF][KQ]FP motif 

(also referred to as FxFP), which was found in Cbk1-interacting proteins (Ho et al. 2002; 

Breitkreutz et al. 2010) (4/6 vs. 27/5884,  P-value = 9.4 * 10-9, Fisher’s test).  
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Figure III-5. Previously unknown short linear motif patterns are predicted by cluster 
analysis. This figure shows representative examples of highly interconnected motifs that represent 

uncharacterized sequence patterns. A) The NPY motif cluster consists of proteins enriched in vesicle 

and nuclear membrane proteins related to protein transport. We show an example aligned segment 

from Sec9 at position 231 to 234. B) The FxDSF[KR]R motif cluster consists of proteins enriched in 

amino acid permease function. We show an example aligned segment from Bap3 at position 56 to 61. 

C) The FxFP motif cluster consists of proteins enriched in Cbk1 kinase targets. We show an example 

aligned segment from Fir1 at position 416 to 419.  See Supplementary data table III-S4 for a 

complete list of the proteins identified in each cluster. 
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Of these uncharacterized putative consensus sequences, we focused on the [YF][KQ]FP 

motif (Figure III-5C). This cluster was enriched for proteins that interact with the kinase 

Cbk1 (Ho et al. 2002; Breitkreutz et al. 2010) and contained two known Cbk1 substrates, 

Ssd1 and Ace2 (Mazanka et al. 2008; Jansen et al. 2009), Table 1. The [YF][KQ]FP pattern 

is not similar to the known Cbk1 phosphorylation site consensus (Mazanka et al. 2008) but is 

similar to the reported kinase docking motif (FxFP) for the extracellular signal-regulated 

kinases (ERKs) in mammals (Jacobs et al. 1999). This docking motif facilitates kinase-

substrate recognition by specific binding of the substrate to a docking site on the kinase 

domain that is distinct from the catalytic site (Reményi et al. 2006). Therefore, we 

hypothesized that this motif was important for the physical interaction of the kinase with its 

substrates. To test this, we fused fragments containing the conserved sequences to maltose-

binding protein (MBP) and assayed binding to Cbk1 in a pull-down assay (see Materials and 

Methods). We detected reproducible binding with five of six tested peptides (Figure III-6), 

indicating that that the peptide fragments containing the newly identified [YF][KQ]FP motif 

interacted with Cbk1. 
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Table III-1. Members of the FxFP cluster. Unsupervised clustering of the conserved sequences 

revealed a cluster enriched for Cbk1 interactors and contained two known Cbk1 kinase targets 

(underlined). 

ORF Gene 

Name 
Start Stop Sequence 

YLR131C ACE2 280 288 NGGYQFPPP 

YNL042W BOP3 152 159 PSPYKFPA 

YER075C PTP3 371 375 NFQFP 

YDR293C SSD1 231 239 SPPSFKFPP 

YER032W FIR1 410 419 DKLDMSFKFP 

YIL129C TAO3 1 9 MASRFTFPP 
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Figure III-6. [YF][KQ]FP peptides interact with the Cbk1 kinase domain.  Fragments 

from proteins identified in the [YF][KQ]FP cluster  were expressed as MBP fusions and immobilized 

on amylose resin. The beads were assayed for binding to GST-tagged Cbk1 (Cbk1∆1-351) in a 

pulldown assay. Binding was detected by Western blot for all six protein fragments tested, while 

MBP alone could not pull down Cbk1 (lower panel). Shown is a representative blot from three 

independent experiments. See Appendix Figure II-6 for a shorter exposure of the blot that shows the 

loading control. 

III.3.4 Protein hubs show higher motif density 

One hypothesis for the existence of unstructured regions is that they serve as regulatory hubs 

where multiple regulatory motifs can act in a concerted way to finely regulate function and 

interaction (Iakoucheva et al. 2004; Dunker et al. 2005). This model is consistent with the 

idea that unstructured regions can undergo multiple different transient structural 

configurations to accommodate the multiple regulatory sequences (Wright and Dyson 1999). 

Proteome-wide analyses of protein-protein interactions (Uetz et al. 2000; Ito et al. 2001) 

have revealed a small number of “hub” proteins that interact with many partners (Jeong et al. 

2001). Because protein-protein interactions are often mediated by short linear motifs, we 

analyzed the short conserved sequences in a high-confidence set of hub proteins (Bertin et al. 

2007).  
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Using our definition of unstructured regions, we found, consistent with previous studies 

(Dunker et al. 2005; Haynes et al. 2006), that hub proteins had significantly more large 

segments (>=30 amino acids) of disordered amino acids (13% increase, P-value = 0.0009, 

Poisson distribution, Figure III-7A). Thus, relative to the entire proteome, hub proteins 

should contain more predicted short linear motifs per protein because they have more 

disordered regions. Indeed, hub proteins contained significantly more predicted short 

conserved sequences per protein (46% increase, P-value = 2.8 * 10-12, Poisson distribution). 

However, the increase in short conserved sequences was not due only to the fact that hub 

proteins contained more large segments of disordered amino acids: We found that hub 

proteins had a significantly higher density of short conserved sequences per amino acid (29% 

increase in disordered regions of >=30, P-value = 1.83 * 10-12, Poisson distribution, Figure 

III-7B), indicating that these short conserved sequences may mediate their high degree of 

connectivity. Thus, the centrality of hub proteins to interaction networks may, in part, be due 

to their high prevalence of short linear motifs. 
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Figure III-7. Hub proteins are enriched in short conserved sequences.  A) The frequency 

of long regions of disordered amino acids (>=30) for hub proteins is higher than for the rest of the 

genome. B) The number of predicted conserved sequences per amino acid that are present in long 

regions of disordered amino acids (>=30) is higher for hubs than the genome. Error bars represent the 

95% confidence interval obtained by non-parametric bootstrapping. 

III.4 Discussion 

Although unstructured regions are ubiquitous in eukaryotic proteomes, it is difficult to 

identify the critical functional residues within them. For example, despite detailed 

characterization of Utp25 (Charette and Baserga 2010), using the phylo-HMM approach we 

identified a short sequence in disordered regions of this protein. This sequence was 

conserved in all eukaryotes but had not been previously characterized. Systematic application 

of the phylo-HMM approach to the yeast proteome identified on average 1.44 short 

conserved sequences per proteins, totalling about 5% of the unstructured amino acids. 

Proteins containing known sequences showed strong functional enrichment, suggesting that 

the conserved sequences are involved in specific biological functions. Because the false-

positive rate was 1 in 9000 unstructured amino acids, we only expect about <1% or 70 of the 

thousands of identified short sequences to be false positives, resulting from computational 
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artifacts. However, in many individual cases, we are confident that the identified sequences 

are important, because the motif is conserved across divergent species, representing a long 

evolutionary period. For example, the previously uncharacterized KEN motif in Spt21 is 

conserved in its orthologs within the Candida clade; and the Cbk1-interacting motifs in Ssd1 

are conserved even further within the Ascomycetes (Appendix Figure II-3). Although many 

short linear motifs are well conserved, other functional sequence segments may be species-

specific, or they may not have been captured by our analysis (for example, the phylo-HMM 

approach that we used does not detect motifs embedded in large conserved protein fragments 

because these large regions are excluded from the analysis). Consequently, the short linear 

motifs predicted in this study only provide a lower bound of the number and frequency of 

these motifs in unstructured regions. Because 30% of the known characterized short linear 

motifs in disordered regions in our data set were predicted by the phylo-HMM, and because 

our phylo-HMM identified short conserved sequences totalling about 5% of the unstructured 

amino acids, we estimate that short linear motifs correspond to roughly 17% of the 

unstructured amino acids in yeast proteins.  

Our approach for identifying short linear motifs is different than other computational 

methods designed for this goal (Davey et al. 2010). Two other bioinformatic approaches 

involve either the classification of matches to a known consensus (Obenauer et al. 2003) or 

the prediction of a consensus given known co-regulation (Bailey and Elkan 1994; Davey et 

al. 2006; Neduva and Russell 2006; Edwards et al. 2007; Lieber et al. 2010), both of which 

rely on previously obtained experimental data. Other structure-based methods, such as 

ANCHOR (Mészáros et al. 2009), identify disordered regions that have the propensity to 

become ordered upon binding. Our phylo-HMM approach requires only the underlying 

evolutionary relationship between genes and that regulatory function is preserved in most of 

the species considered. Therefore, our study is complementary to previous methods and 

opens the framework of phylogenetic footprinting (Tagle et al. 1988; Cliften et al. 2003) (a 

method to identify functional elements in noncoding DNA by exploiting evolutionary 

conservation) to protein sequences. Because this analysis requires only sequence information 

from orthologous proteins, it can be applied in many clades for which these data are now 

available (Kent et al. 2002; Flicek et al. 2011). However, the success of the phylo-HMM 

approach is directly related to the choice of species and their evolutionary distance. 
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Computational artifacts increase at short evolutionary distances (Appendix Figure II-4D), 

whereas biologically relevant motifs may no longer be conserved at the same position at very 

long evolutionary distances and, therefore, will not be detected (Appendix Figure II-5). In 

general, the performance of the phylo-HMM approach can be assessed by simulations of 

molecular evolution where conserved motifs have been inserted and by analysis of 

previously characterized short linear motifs. Another important issue concerning the 

performance of the phylo-HMM approach is that the posterior probability output depends on 

both the length of the conserved segment and on its relative conservation compared with the 

background evolutionary rate. Therefore, the predictions with the highest posterior 

probability tend to be longer regions (more than five amino acids), which we speculate may 

be high-specificity biomolecular binding sites. Equally important short linear motifs are very 

short (about two amino acids) and will tend to have lower posterior probabilities. 

Because our analysis is independent of functional data, it led to the discovery of important 

elements from the sequence data without attaching any specific function to the results. 

Although we could propose functions for some previously unknown motif patterns through 

enrichment analysis for biological processes, in other cases we also observed clusters that 

matched known sequence patterns but were not present in proteins enriched in the expected 

function. For example, we identified the well-characterized acidic dileucine ([DE]xxxL[LI]) 

motif (Supplementary data table III-S5) found in transmembrane proteins of endosomes and 

lysosomes in metazoans or in yeast vacuolar proteins (Bonifacino and Traub 2003)  in one of 

our clusters. However, the proteins forming this cluster were not significantly enriched for 

any particular compartment even though it includes the experimentally verified acidic 

dileucine motif from Vam3, a vacuolar t-SNARE (Darsow et al. 1998). We speculate that the 

conserved motifs in this cluster likely serve other functions. Even when functional 

enrichment of a cluster can be found, the function of the motif cannot always be ascertained. 

Despite these potential difficulties in assigning functional relationships, our unbiased 

methods (prediction of conserved sequences and the clustering analysis) were successful in 

discovering an interaction motif for the NDR/LATS kinase member Cbk1. We speculate that 

some sequence patterns, such as the newly identified motif for Cbk1 interaction, are 

associated with only one function, whereas others such as the acidic dileucine motif and the 

FG dipeptide are involved in multiple processes.  
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Our analysis suggested that intrinsically disordered regions contain large numbers of 

functional sequences that are involved in protein regulation and interaction, and this may 

partly explain the prevalence of disordered regions. Consistent with the hypothesis that the 

functional sequences may contribute to protein interactions, we observed a higher density of 

predicted short linear motifs in hub proteins, which is consistent with previous reports that 

the disordered regions in hub proteins are particularly important for their interactions (11, 

66). The observation that the increase in conserved sequence density (29%) (Figure III-7b) is 

greater than the increase in disordered segments (13%) (Figure III-7A) suggests that the 

conserved sequences identified by the phylo-HMM approach are more indicative of hub 

functions than the presence of disordered regions alone. We found no differences in the types 

of conserved motifs in disordered regions of hub proteins when compared to the rest of the 

genome, indicating that there are no specific “hub motifs”, nor any differences in conserved 

sequence density between “date” vs “party” hubs (Bertin et al. 2007) (date hubs 1.535; party 

hubs 1.520, per 100 amino acids in disordered regions >=30 amino acids). Instead, these 

highly connected proteins simply have more functional sequences within their disordered 

regions than do proteins that are not hubs. Given the importance of protein regulation and 

interaction to cellular physiology (Gould et al. 2010) and an increasing appreciation of its 

importance in evolution (Jensen et al. 2006; Moses and Landry 2010), disordered regions 

seem poised to play a critical role in these contexts. 

III.5 Materials and Methods 

III.5.1 Alignment of related species of yeasts 

Protein sequences from 13 related species of yeasts [S. cerevisiae, Saccharomyces 

paradoxus, Saccharomyces mikatae, Saccharomyces bayanus, Candida glabrata, 

Saccharomyces castellii (now renamed to Naumovia castellii), Kluyveromyces polysporus 

(now renamed to Vanderwaltozyma polyspora), Zygosaccharomyces rouxii, Kluyveromyces 

lactis, Ashbya gossypii, Kluyveromyces waltii (now renamed Lachancea waltii), 

Kluyveromyces thermotolerans (now renamed Lachancea thermotolerans) and 

Saccharomyces kluyveri (now renamed Lachancea kluyveri)] were obtained from the SGD 

(SGD Project 2011) and the Yeast Genome Order Browser (Gordon et al. 2009). These 
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species were chosen because of the high quality of the sequence information and of the 

annotation associated with each gene or protein. Orthologous genes were aligned using 

MAFFT (Katoh et al. 2002) at automatic settings. Branch lengths for the species tree 

(Gordon et al. 2009) were obtained by 10 replicates of 50 random concatenations of 

orthologous genes and analyzed using PAML v3.15 (Yang 2007). Analysis showed that the 

expected substitution per site for these alignments was 3.189. We aligned 5121 proteins from 

S. cerevisiae to at least one of the related species. 

Conservation of motifs over more distantly related orthologs was performed with sequences 

from the Fungal Orthogroup Repository (Wapinski et al. 2007) and the Princeton Protein 

Orthology Database (Heinicke et al. 2007) or by using BLASTP (Altschul et al. 1997) on the 

uniref90 database (Suzek et al. 2007). Other species analyzed were Candida lusitaniae, 

Debaryomyces hansenii, Candida guillermondii, Candida tropicalis, Candida albicans, 

Candida parapsilosis, Lodderomyces elongisporus, Pichia stipitis, Yarrowia lipolytica, 

Uncinocarpus reesii, Aspergillus niger, Penicillium chrysogenum, Sclerotinia sclerotiorum, 

Schizosaccharomyces pombe, Caenorhabditis elegans, Drosophila melanogaster, Danio 

rerio, Gallus gallus, Mus musculus, Rattus rattus, Homo sapiens, Dictyostelium discoideum 

and Arabidopsis thaliana.  

III.5.2 Creation of a two-state phylogenetic hidden Markov model 

Our two-state phylo-HMM (Appendix Figure II-1) has a rate parameter associated with each 

state: one for the background (αw = background rate of evolution) and one for the conserved 

segment (αC = conserved rate). The local rate of evolution is the maximum likelihood 

estimate within a window (w = 21), which was obtained by gradient ascent. The conserved 

rate of evolution was set to be the smaller of (i) one third of the local rate of evolution or (ii) 

the maximum likelihood rate estimate at that column. These rates are then used to obtain the 

likelihood of the data under specific models of protein evolution, and the phylo-HMM then 

outputs a posterior probability of the conserved state at a particular column.  

We used Felsenstein’s algorithm (Felsenstein 1981; Durbin et al. 1998) to calculate the 

likelihood of the data [P(data|tree)] with an empirical amino acid substitution matrix obtained 

from the four closest related species of yeasts: S.cerevisiae, S. paradoxus, S. mikatae and S. 
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bayanus. The tree used was the species tree described above (Appendix Figure II-7), where 

the branch lengths were scaled by the rate of evolution for each HMM state. The likelihood 

of the substitution process is therefore: 
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Where m is the number of alignment columns and the tree indicates the phylogenetic 

relationship between species (Appendix Figure II-7). α is the rate of evolution, which scales 

the branch lengths, and x•
 represents the amino acid sequences in the alignment. 

One of the assumptions of the traditional probabilistic approaches to protein evolution (such 

as the phylo-HMM) is that every amino acid column in an alignment can be treated as 

independent (Durbin et al. 1998). Because insertions or deletions do not follow this 

assumption (they can span multiple residues), most current phylogenetic models only 

account for residue substitutions (Durbin et al. 1998; Rivas and Eddy 2008). Gaps are usually 

ignored in phylogenetic analyses. Because short linear motifs occur often in unstructured 

regions that tend to create gapped regions in alignments, ignoring gaps would be a 

considerable problem in our analysis. Probabilistic models accounting for gaps have been 

proposed (Rivas and Eddy 2008), but their complexity and incompleteness have motivated us 

to create another simpler model. In our protein evolution model, blocks of gaps (illustrated as 

vertical black lines in Figure III-1B) are treated as insertion or deletion events. We consider a 

gap process that operates on one block at a time, contrasting with the substitution process 

that operates on one column of an amino acid alignment at a time. The two processes are 

considered independently and combined at the end. Having assigned each insertion or 

deletion as a contiguous block, we can obtain the likelihood of the gap process: 
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Where b is the number of blocks and k the length of each block, which follows an 

empirically derived power law distribution (Cartwright 2006). In this likelihood, the 

substitution matrix consists of only two characters (gap or amino acids) and is calculated 

similarly as before (Appendix Figure II-1). Therefore yj
• represents the pattern of gap 

characters and amino acid characters of the jth block in the alignment.  

The total likelihood of an alignment can then be written as: 

GS LLL   

The HMM requires a likelihood for each alignment column. Therefore, we distributed 

uniformly the gap likelihood of each block to its alignment columns (xi is within yj). The 

likelihood of a single alignment column is therefore: 

k
jii ktreeyPtreexPL /1),,|(),|(    

To find regions in alignments that are conserved, we then computed the posterior probability 

of the conserved state with the likelihood of single columns and the forward and backward 

algorithm (Durbin et al. 1998). Because the insertion or deletion lengths do not depend on 

the evolutionary rate, the likelihoods given by the empirically derived power law distribution 

get canceled in the calculation of the posterior probability. This means that, for our method, 

the appearance and disappearance of insertions and deletions over the phylogenetic tree 

modeled as “blocks” are the sole contributor of insertion and deletion likelihoods in the final 

posterior probability. Transition frequencies between states were obtained with the 

expectation-maximization procedure described by Baum-Welch (Durbin et al. 1998).  

We used multiple heuristics on the posterior probability to find peaks corresponding to short 

conserved residues. First, the analysis ignored the first three residues of the alignment, 

because the conserved methionine is usually aligned by MAFFT. Second, peaks were found 

by initially finding regions above a threshold of 0.2. These peaks were later pruned if the 

maximal posterior threshold within the region was lower than 0.6, or if they did not fit the 

desired size (2 to 20 amino acids). Although peaks longer than 20 amino acids were rare 
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because we calculated the local rate of evolution using a window of size 21, we excluded 

these signals because we did not consider them representative of typical short linear motifs. 

We visualized the alignments with Jalview (Waterhouse et al. 2009) and red color intensity 

represented the posterior probability with full color intensity indicating  a posterior 

probability of 1. 

III.5.3 Defining unstructured regions 

To find functional segments in unstructured regions of proteins, we used several filters to 

select regions of interest (unstructured regions) and to remove regions that may be conserved 

due to chance or as a property of the alignment program. We used DISOPRED2 (Jonathan J 

Ward et al. 2004) to remove structured regions from proteins, as well as pFilt (Jones et al. 

1994) for coiled-coils. Large repetitive regions were removed using the SEG algorithm 

(Wootton and Federhen 1993). If long domains were interspersed with short highly 

degenerate sequences, these were not captured by any of the above filters, so we also 

removed regions of high conservation that were longer than 20 amino acids. Overall, of the 

total length of yeast proteins with orthologs, 24% of the amino acids passed all our filters.  

III.5.4 Analysis of literature-curated short linear motifs  

To estimate the effectiveness of our approach in identifying previously known short linear 

motifs, we identified 526 characterized short linear motifs in budding yeast by performing 

literature searches for known posttranslational regulatory proteins and detailed reading of the 

primary literature and determined how many of these were correctly identified by the phylo-

HMM. The modifications were mostly phosphorylation sites but also included degradation 

signals, localization signals, interaction motifs, and SUMOylation sites (supplementary data 

table III-S2). Of these, 352 were found in regions that passed our filters for classification as 

disordered and of these 352 (346 that did not overlap with another motif), we considered 123 

(119 that did not overlap with another motif) conserved, such that they could be identified 

(by consensus sequences within a window of six amino acids or by eye for localization 

signals) in at least 90% of the orthologous proteins.  
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Our phylo-HMM approach predicted 104 (or 30% of the 346 motifs that were classified as 

disordered) of the motifs present in disordered regions. However, because the underlying 

assumption of the phylo-HMM is that the motifs are fully conserved, we do not expect this 

method to find a large portion of the regulatory elements that may diverge over long 

evolutionary distances. Consistent with this, the phylo-HMM predicts 75 (or 63% of the 119 

motifs that were classified as disordered and conserved) of the conserved motifs 

(Supplementary data table III-S2, Appendix Figure II-5).  

III.5.5 Simulations of protein evolution 

To address the issue of computational artifacts from misalignment in distant species and to 

low sequence divergence, we performed simulations of protein evolution. In our simulations,  

an ancestral protein is randomly generated and evolved through point mutations, insertions, 

and deletions according to the desired phylogenetic tree. Proteins contained three regions 

(see Appendix Figure II-4A for an example): the first region (on average 75 amino acids) and 

third region (on average 87.5 amino acids) evolved at a “background” rate (the average rate 

of yeast proteins) or at 70% or 130% of this rate. The first region contained a single 

simulated short sequence (two to nine amino acids) that evolved at a slow rate that we varied 

between 2.5% and 100% of the background rate. The second region (on average 75 amino 

acids) evolved slowly to simulate a conserved protein domain. Because unstructured regions 

often include gaps from insertions and deletions, we modeled the simulations such that the 

evolved proteins also evolved insertions or deletions of various sizes (k) following an 

empirically derived power-law distribution with z = 1.5 (Cartwright 2006) in: 
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We aligned the simulated protein sequences  with MAFFT (Katoh et al. 2002) (Appendix 

Figure II-4A). We performed 100 simulations per data point. 

We assessed alignment and prediction accuracy with simulations performed with different 

background rates of evolution. We plotted the accuracy of the alignment (Appendix Figure 
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II-4B, fraction of simulated motifs with correct motif alignment), sensitivity of the phylo-

HMM (Appendix Figure II-4C, fraction of simulated motifs that were predicted by the phylo-

HMM), and rate of computational artifacts (Appendix Figure II-4D, number of predictions 

that do not correspond to a simulated motif per 100 unstructured amino acids)  

To estimate the rate at which the phylo-HMM identified motifs that were truly conserved, we 

compared the number of simulated motifs that were correctly aligned with the number of 

simulated motifs identified by the phylo-HMM. We found that 95% of the simulated 

artificial motifs were correctly aligned even when the surrounding region had minimal 

sequence similarity (at motif rate 10% of the background rate, Appendix Figure II-4B). At 

the same motif evolution rate, 93% of the simulated motifs were correctly identified and the 

fraction of simulated motifs that were predicted by the phylo-HMM was dependent on the 

relative rate of evolution of the motif to the background (Appendix Figure II-4C). The 

difference of the simulation results (93% correct predictions) with results from literature-

curated conserved motifs (63% correct predictions) is likely due to an oversimplification of 

the evolution of disordered regions in our simulations. We also addressed the prediction of 

computational artifacts using the simulations. Because we know the location of the true 

motifs in the simulations, any other motifs identified by the phylo-HMM are false 

predictions. For yeast proteins evolving at the background rate, the phylo-HMM predicted 

about 1 false conserved motif every 9000 rapidly evolving amino acids; however this was 

dependent on the background rate of evolution (Appendix Figure II-4D).  

To calculate the proportion of unstructured regions that contain short functional sequences, 

we first estimated the fraction of our predicted conserved sequences that are computational 

artifacts (1/9000 times 636409 unstructured amino acids divided by 7361 predicted motifs = 

~0.95%). To estimate the fraction of unstructured amino acids that are biologically 

important, we divided the number of amino acids in predicted conserved sequences by the 

total number of unstructured amino acids in the yeast proteome (33626 divided by 636904 = 

5.3%) and multiplied by 99.05% (100% - 0.95%) to take into account the expected number 

of predicted computational artifacts, which yields our estimate of 5.2%. 

III.5.6 Motif clustering, alignment, and enrichment 
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We performed an all-by-all pairwise comparison and alignment of each sequence alignment 

to another using the Smith-Waterman algorithm (Smith and Waterman 1981; Durbin et al. 

1998). In the initial distance metric, we divided the alignment score by the square root of the 

length of the alignment and corrected for the initial length of the sequence. This was done so 

that poor but long alignments would not score as well as short but strong alignments. We 

also performed another clustering with the same distance metric, but first the sequences were 

extended by five amino acids on each side, and the positions with an information content 

lower than 1 (positions with high sequence diversity) were eliminated from the beginning 

and end of the extended sequences. To easily identify subclusters, we tried clustering by 

finding the top 10 “partners” of each sequence, removing hits between paralogs and within 

the same gene. For this final cluster, we first extended the sequences by five amino acids; 

however, we did not divide by the square root of the length of the alignment. Alignments that 

passed a threshold (as described in Supplementary data table III-S5) were then plotted as an 

interaction network using Cytoscape (Shannon et al. 2003), and we used the MCODE’s 

(Bader and Hogue 2003) k-core clustering algorithm to form similarity clusters. MCODE 

often links multiple clusters by a single node and therefore forms “subclusters”. We either 

analyzed the whole clusters or these subclusters by creating sequence logos and functional 

enrichment as described below (see Supplementary data table III-S5 for the top 20 

predictions of each clustering analysis with annotation and more details).  

Enrichment in protein function or interaction was performed with data from the MIPS 

functional catalog using FunSpec (Robinson et al. 2002), , and with data from the Gene 

Ontology (GO) Slim Mapper at the SGD (SGD Project 2011) for GO. Statistical significance 

was assessed at a P-value < 0.05. 

Motif patterns are represented as sequence logos (Schneider and Stephens 1990; Crooks et al. 

2004), which were obtained with a heuristic multiple alignment of the S. cerevisiae 

representative of each motif. 

III.5.7 Strains, plasmids, and primers 

We used an endogenously tagged SPT21 strain from the TAP-fusion library 

(Ghaemmaghami et al. 2003) to assess Spt21 stability throughout the cell cycle. SPT21 
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overexpression plasmids were obtained from the MORF (Gelperin et al. 2005) and GAL-

ORF-GST (Zhu et al. 2001) libraries. Mutagenesis was performed with the QuikChangeTM 

Site-Directed Mutagenesis System developed by Strategene (La Jolla, CA). For the KEN 

box, all three codons were mutated to the alanine coding GCT with oligos SPT21kenbox1-FP 

5’-GATATCTTTAACTAGTGAAAATGATGCTGCTGCTATTCCACCCCAAAGCATAA

CTAGTA and SPT21kenbox1-RP 5’-

TACTAGTTATGCTTTGGGGTGGAATAGCAGCAGCATCATTTTCACTAGTTAAAGA

TATC. The desired mutations were confirmed by sequence analysis. BY4741 or isogenic 

derivatives were used for all of our experiments.  

III.5.8 Cell-cycle induction of SPT21 

Yeast cells expressing Spt21-TAP from its endogenous promoter were grown to early log 

phase in YEPD (1% yeast extract, 2% bactopeptone, 2% glucose) and then arrested in G1 

with α-factor. After 2 hours (>95% cells arrested), the cells were washed twice with fresh 

media and samples were taken every 15 minutes. Both fluorescence-activated cell sorting 

(FACS) analysis and the amount of Clb2 protein were used to follow cell cycle progression. 

Hexokinase was used as the loading control for the Western blot. Spt21 or Clb2 abundance 

was quantified, and significance was assessed by Pearson correlation coefficient.  

III.5.9 Pulse-chase assay 

Cells carrying galactose-inducible overexpression plasmids were grown in synthetic dextrose 

medium lacking uracil overnight. Spt21 and Spt21ken expression was induced by culturing 

cells in galactose-containing medium (2% concentration) for 4 hours. Glucose was 

subsequently added to a final concentration of 2% to attenuate protein expression, and 

protein synthesis was abolished through the addition of cyclohexamide (100 mg/ml final). 

Cells were collected at 20-min time intervals. To ensure reproducibility, we performed pulse-

chase experiments on both the glutathione S-transferase (GST)-tagged and the protA-tagged 

version of the Spt21 and corresponding KEN box mutant. Protein abundance was quantified 

and analyzed for significant changes in abundance by t test.   

III.5.10 Protein extracts and Western blotting 
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Protein extracts were prepared by trichloroacetic acid and separated by SDS-polyacrylamide 

gel electrophoresis (SDS-PAGE) on 8% polyacrylamide gels. Western blotting was 

performed with anti-protA antibody (peroxidase anti-peroxidase soluble complex Sigma, 

P1291) for detection of SPT21-protA. Clb2 and hexokinase detection was performed using 

α-Clb2 [Santa Cruz Biotechnology, Clb2 (y-180) sc-9071], and α-hexokinase (yeast) 

(Rockland Immunochemicals, Inc., 200-4359), respectively. For data requiring 

quantification, we quantified the amount of protein with images of the Western blots 

obtained from the VersaDoc MP System (Bio-Rad Laboratories, Inc.). Mean band intensities 

of the relevant proteins were normalized to the mean intensity of the hexokinase band with 

ImageJ (Abramoff et al. 2004). 

III.5.11 In vitro pull-down assays 

A GST-tagged Cbk1 fragment containing the kinase domain and the C-terminal extension 

(~76 kD) was expressed in Escherichia  coli Rosetta(DE3)pLysS; purified on Ni-NTA resin 

(Qiagen) and glutathione-Sepharose (GE Biosciences), and dialyzed into 20 mM Tris, 150 

mM NaCl, 2 mM dithiothreitol (DTT) (pH 8.0). Purified Cbk1 was flash-frozen in liquid 

nitrogen and stored at -80°C. Fragments containing putative interaction motifs were 

expressed as MBP fusions in BL21(DE3)RIL. Cell lysates containing the interaction motif 

constructs were incubated with amylose resin (New England Biolabs) on a rotator at 4°C for 

15 min, and the beads were washed with phosphate-buffered saline [137 mM NaCl, 2.7 mM 

KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4 (pH 7.3)] + 2 mM DTT. Washed amylose beads 

(approximately 50 µg of MBP fusions) were incubated with 1 µM purified Cbk1 (~3.8µg) 

for 15 min at 4°C (total volume 50 µL) and then washed with TBST [50 mM Tris, 150 mM 

NaCl, 0.1% Tween 20 (pH 7.5)] and resuspended in SDS-PAGE loading buffer. A third of 

the reactions were loaded on SDS-PAGE gels, which were directly stained by GelCode Blue 

(Pierce) or transferred to nitrocellulose for Western blotting. Cbk1 was detected with a GST 

primary antibody (Santa Cruz Biotechnology), followed by an IRDye800 anti-mouse 

(Rockland) secondary antibodies. Blots were visualized using a Li-Cor Odyssey system.  
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IV.1 Abstract 

Gene duplication is an important evolutionary mechanism that can result in functional 

divergence in paralogs due to neo-functionalization or sub-functionalization. Consistent with 

functional divergence after gene duplication, recent studies have shown accelerated evolution 

in retained paralogs. However, little is known in general about the impact of this accelerated 

evolution on the molecular functions of retained paralogs. For example, do new functions 

typically involve changes in enzymatic activities, or changes in protein regulation? Here we 

study the evolution of posttranslational regulation by examining the evolution of important 

regulatory sequences (short linear motifs) in retained duplicates created by the whole-

genome duplication in budding yeast. To do so, we identified short linear motifs whose 

constraint has relaxed after gene duplication with a likelihood-ratio test that can account for 

heterogeneity in the evolutionary process by using a non-central chi-squared null 

distribution. We find that short linear motifs are more likely to show changes in evolutionary 

constraints in retained duplicates compared to single-copy genes. We examine changes in 

constraints on known regulatory sequences and show that for the Rck1/Rck2, Fkh1/Fkh2, 

Ace2/Swi5 paralogs, they are associated with changes in posttranslational regulation. Finally, 

we experimentally confirm our prediction that for the Ace2/Swi5 paralogs, Cbk1 regulation 

was lost along the lineage leading to SWI5 after gene duplication. Our analysis suggests that 

changes in posttranslational regulation mediated by short regulatory motifs systematically 

contribute to functional divergence after gene duplication.  
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IV.2 Introduction 

Gene duplication is thought to be one of the major sources of evolutionary innovation 

(reviewed in (Conant and Wolfe 2008)). Several molecular mechanisms of functional change 

have been proposed: 1) changes at the transcriptional level can alter the expression of the 

paralogous copy (Force et al. 1999; Levine and Tjian 2003; Hittinger and Carroll 2007; 

Gagnon-Arsenault et al. 2013) , 2) changes at the enzymatic level can alter the activity or 

specificity of the protein (Conant and Wolfe 2008; Voordeckers et al. 2012), 3) changes at 

the posttranslational level can modify the regulation or localization of the protein (Marques 

et al. 2008; Amoutzias et al. 2010), and 4) changes within the splicing sites can change the 

isoforms produced at each loci (Su et al. 2006; Marshall et al. 2013). Studies on genome-

wide mRNA expression patterns have established that transcriptional changes are one of the 

major contributors of functional differences within duplicated genes (Gu et al. 2004; 

Huminiecki and Wolfe 2004; Gu et al. 2005). However, the relative roles of functional 

divergence by gene regulation and changes within the amino acid coding sequence of the 

proteins are still unclear (Li et al. 2005).  

Coding sequences of paralogous genes show increased evolutionary rates after duplication 

(Byrne and Wolfe 2007; Scannell and Wolfe 2008), consistent with the hypothesis that 

changes within the amino acid coding sequences are also important contributors to functional 

divergence. However, because some functional features in proteins comprise a small number 

of amino acids, statistical studies comparing evolutionary rates of whole proteins do not 

provide mechanistic explanations for changes in function (Dean and Thornton 2007). For 

example, many proteins contain short linear motifs such as phosphorylation sites, 

localization signals and interaction motifs, and these motifs are only 2-15 amino acids long 

(Gould et al. 2010). For instance, the cell-cycle regulator Sic1 is a disordered protein with 

several phosphorylation and binding sites that comprise less than 20% of the protein 

(Kõivomägi, Valk, Venta, Iofik, Lepiku, Balog, et al. 2011). Computational identification of 

short linear motifs is an important challenge, often relying on experimental data (Neduva et 

al. 2005; Lieber et al. 2010). However, because they are short and are frequently found in 

fast evolving disordered regions, it is still difficult to accurately and systematically identify 
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them; indeed, most short linear motifs in disordered regions probably remain uncharacterized 

(Nguyen Ba et al. 2012). Therefore, analyses on whole proteins may underestimate the level 

of functional divergence after gene duplication because changes in constraints in short linear 

motifs may lead to regulatory changes and therefore functional divergence (Amoutzias et al. 

2010). Recently, several studies have investigated specific types of posttranslational 

regulatory changes (Beltrao et al. 2009; Lim and Pawson 2010; Sun et al. 2012) (reviewed in 

(Beltrao et al. 2013)), such as differences in patterns of phosphorylation between paralogs 

(Freschi et al. 2011) or differences in localization in paralogous proteins (Marques et al. 

2008), and have shown that regulatory changes can also contribute to functional divergence. 

However, these regulatory changes can also be attributed in part to trans-regulatory changes 

(changes in proteins that control posttranslational regulation). Identification of changes in the 

protein regulatory sequences would allow us to determine cis-regulatory divergence (changes 

within duplicated proteins), and provide amino acid level mechanistic explanations for 

protein regulatory changes after duplication (Moses and Landry 2010).  

Formally, functional divergence in amino acid sequences after gene duplication has been 

divided into two types of evolution (Gu 1999). The first (type I) describes so-called “changes 

in constraint” where the rate of evolution in a site or region changes after duplication, and 

remains different in one of the paralogous clades.  The second (type II) describes a burst of 

rapid evolution immediately after gene duplication, and then a restoration of similar levels of 

constraint in the two paralogous lineages.  Several statistical methodologies have been 

developed to identify sites or regions in proteins that fall into these classes (Huang and 

Golding 2012; Gu et al. 2013).  These approaches have largely focused on identifying sites in 

globular regions of proteins for which large numbers of homologues can be accurately 

aligned (Abhiman and Sonnhammer 2005). These approaches often use likelihood-ratio tests 

based on advanced probabilistic models of phylogeny and amino acid substitution to 

compare the rates of evolution in individual sites (Knudsen and Miyamoto 2001) or groups 

of sites (Huang and Golding 2012; Gu et al. 2013) to the rest of the protein. For example, 

previous applications of these methods have identified possible positions in the globular 

domain of carbonic anhydrase III that are responsible for posttranslational addition of 

glutathione (Knudsen et al. 2003). In principle, these methods could be applied to identify 

changes in short linear motifs within disordered regions that contribute to posttranslational 
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regulatory change. However, because real protein evolution can be more complicated than 

even the most sophisticated models (Pond et al. 2005) and real protein alignments include 

non-biological sources of heterogeneity (such as alignment errors and missing data), the 

likelihood-ratio test can falsely identify type I functional divergence (Gu et al. 2013). One 

strategy to tackle these issues is to estimate the rejection rate of the likelihood-ratio test using 

empirical data, for example using permutation tests (Lanfear 2011). However, the 

distribution of the likelihood-ratio test statistic must be obtained through permutations 

performed for every protein and therefore may be too laborious for genome-wide studies. 

We set out to study the change in selective constraints in short linear motifs within 

disordered regions after the whole-genome duplication (WGD) in budding yeast by asking 

whether the rates of evolution of these segments significantly differed after the whole-

genome duplication event. We first developed a statistical method to correct the p-value 

distributions of likelihood-ratio tests in the presence of a heterogeneous background 

evolution process that violates the models assumed by the test, but where the background can 

be “fit” to some extent by the alternative hypothesis. We show how this approach can be 

applied to predicted short linear motifs and to protein sequences simulated under various 

complex evolutionary processes to eliminate false rejections. We then show that the turnover 

of predicted motifs within retained paralogs is faster than in genes whose paralogs were lost 

after duplication (which we refer to as single-copy genes or proteins) and that, for these 

putative short linear motifs, correlated loss of selective constraints appear to be common, 

consistent with changes in function specific to one of the two paralogs. 

Finally, we identify examples of experimentally verified motifs present in one paralog that 

are unlikely to be present in the other copy, and verify our prediction for one of these 

examples (Ace2 and Swi5). Our results show that a view of molecular evolution with amino 

acid resolving power can allow us to propose specific hypotheses about the functional 

divergences between paralogs. 

IV.3 Results 
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IV.3.1 Detection of type I functional divergence after gene duplication using a non-

central chi-squared null distribution for likelihood-ratio tests 

We have previously shown that short linear motifs can be predicted based on their 

conservation relative to their surrounding regions (Nguyen Ba et al. 2012). We sought to 

detect regulatory divergence in proteins by looking for statistical signals of lineage-specific 

changes in rate of evolution in predicted short linear motifs in multiple sequence alignments, 

which would indicate changes in function. Likelihood-ratio tests have previously been used 

to detect differences in rate of evolution of full-length yeast proteins after the whole-genome 

duplication (Byrne and Wolfe 2007). We sought to perform essentially the same test to 

identify short linear motifs whose rate of evolution changed significantly after gene 

duplication. To do so, we first predicted short linear motifs within proteins of species that 

have diverged prior to the yeast whole-genome duplication (see Methods). Because this 

procedure does not involve the post-WGD clade (which therefore allows us to detect changes 

in constraints), we then mapped the location of the predicted short linear motifs to the genes 

post-duplication (Figure IV-1). Using a likelihood-ratio test (Yoder and Yang 2000), we 

tested whether two rates of evolution (one for the post-duplication clade and one for the 

remainder of the phylogenetic tree) explain the data significantly better than one single rate 

of evolution common to the whole tree (see Methods). This test is performed once for genes 

that reverted to single-copy, and twice in retained duplicates (one for each post-WGD 

protein). 
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Figure IV-1. Schematic of the motif-specific likelihood-ratio test.  Rates of evolution are computed for 

each motif before (αpre-WGD) and after (αWGD) gene duplication and compared with the rates that were 

observed for the whole protein (see Methods). Red double arrow illustrates the duplication event. 

Bolded clades are clades with significant changes in constraints. Striped patterned boxes indicate 

short linear motifs with significantly different change in rate of evolution. DKL indicates the expected 

deviation of the likelihood-ratio test from the whole protein. 

Previous efforts to identify changes in evolutionary rate have showed that the likelihood-ratio 

test statistic often deviates from the expected chi-squared null distribution even when there is 

truly no change in rate of evolution (Fletcher and Yang 2010; Lanfear 2011). Indeed, when 

we performed simulations of molecular evolution with no changes in rate of evolution 

specific to the short linear motifs (Figure IV-2, see Methods), but included realistic aspects 

of the evolutionary process (such as rate heterogeneity, insertions and deletions, etc.), we 

found that the likelihood ratio test falsely identified increased rates of evolution after gene 

duplication (Figure IV-3, black circles, Appendix III). 
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Figure IV-2. Simulation of protein evolution.  A) Alignment of the N-terminus of the Dbp1/Ded1 

homologs illustrates the rate heterogeneity amongst columns and highlights the short length of a 

putative motif (black rectangle zoom). Blue shade represents the percentage identity. B) Alignment of 

the N-terminus of a simulated set of proteins based on Dbp1/Ded1 using our ‘realistic’ simulation of 

evolution (see Methods). 
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Figure IV-3. Likelihood-ratio test on short linear motifs after gene duplication.  Protein sequences were 

evolved as in Figure IV-2B). Grey shaded area indicates the expected proportion of tests. Circles 

indicate the distribution of p-values obtained from the likelihood-ratio test described in Figure IV-1) 

when the test statistic is assumed to be chi-squared distributed (black circles) or non-central chi-

squared distributed (white circles, “corrected”).  

We hypothesized that the increased rate of false rejections was because to the additional 

evolutionary rate parameter in the alternative hypothesis (that is supposed to capture the 

change in selective constraints) can also model some of the background heterogeneity in 

evolutionary rate (due to alignment errors, non-stationary and non-homogeneous evolution, 

etc.). 

Under assumptions that 1) the majority of the tests performed are truly null, and that 2) the 

deviation of the real data from the models assumed by the test is consistent over the columns 

of the multiple sequence alignment, the distribution of the likelihood-ratio test follows a non-

central chi-squared distribution with a data-dependent non-central parameter (see Methods). 

This non-central parameter (the expected increase in the test statistic from ‘fitting’ some of 

the heterogeneous background process using the likelihood ratio test) is the product of the 
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Kullback-Leibler (KL) divergence DKL, which is the “fit” or the expected log-likelihood ratio 

of the alternative hypothesis over the null hypothesis given the data (see Methods) and the 

number of data points used to compute the likelihood-ratio test. Larger KL divergence means 

larger deviation of the background distribution from the null model assumed by the test. To 

use this in practice, we first estimate a non-central parameter using sequence data generated 

by a background heterogeneous evolution process and then use the non-central chi-squared 

distribution to obtain p-values for our test (see Methods). Extensive simulations on large 

proteins with non-stationary and non-homogeneous evolution, including alignment errors, 

showed that this approach works as expected and yields uniform p-values (see Appendix III). 

We applied this approach to our ‘realistic’ simulation (Figure IV-2 for an example protein) 

by calculating a KL divergence parameter for each protein (see Methods) and obtained p-

values for each likelihood-ratio test (for each short linear motif) in that protein. This 

procedure reduced the false-rejection rate (Figure IV-3, white circles) and p-values were 

nearly uniform.  

IV.3.2 Frequent post-duplication changes in constraints in motifs 

Having confirmed that our approach to detect type I functional divergence could be applied 

on short linear motifs, we then analyzed our set of protein alignments. After correction for 

multiple testing, we identified 159 short linear motifs with significantly different rates of 

evolution after gene duplication at a false discovery rate of 5% (see Methods, Supplementary 

data table IV-S1). This corresponds to 1.2% of the motifs identified in single-copy genes 

(Figure IV-4A) and 9.8% of the identified motifs in retained duplicates (Figure IV-4B). 

Changes in constraints are approximately 4.5 times more frequent in retained duplicates 

versus single-copy proteins (5.26% vs 1.15% of LRTs, p-value < 10-20, Fisher’s exact test).  
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Figure IV-4. Regulatory turnover after gene duplication. A-B) The proportion of motifs with changes 

in constraints at a 5% false-discovery rate is significantly larger than in genes with retained duplicates 

(B) than in single-copy genes (A). Error bars represent the 95% confidence interval of the estimated 

proportion (binomial distribution). Bolded clades are clades with significant changes in constraints.  α 

is the rate of evolution. 

Our previous ‘realistic’ simulation had no intended site-specific changes in constraints. 

Despite this, our pipeline (including the non-central correction) identified 0.059% and 0.55% 

of the motifs in simulated single-copy genes and retained paralogs respectively to have 

significantly different rates of evolution after false-discovery rate correction. Using these 

values as our estimate of false positives due to possible computational artifacts (such as 

misalignments) or due to incorrect non-central parameter estimation for the null distribution 

of the likelihood-ratio test statistic, we expect that 5 motifs in duplicates and 3 motifs in 
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single-copy genes are artifacts. Therefore, although the false positive rate due to artifacts in 

retained duplicates is higher than in single-copy genes, the increased proportion of motifs 

identified with changes in constraints in duplicates cannot be explained by these 

computational artifacts. 

As another negative control, we also looked at whether the flanking regions of the putative 

short linear motifs (five amino acids on each side of the motifs) showed changes in 

constraints after gene duplication. After correction for multiple testing, only two flanking 

regions were identified as having significantly different rates of evolution after gene 

duplication. Given that these identified changes in constraints on the flanking regions are 

consistent with our false positive rate, this result indicates that the type I functional 

divergence we identify in predicted short linear motifs is specific to the motifs and not due to 

some local change in constraint. 

Most of the motifs with changes in constraints in duplicates only occurred in one of the two 

copies (85/92 motifs retained in duplicates), consistent with the idea of sub-/neo-

functionalization after gene duplication through posttranslational regulatory changes 

(Amoutzias et al. 2010) (Figure IV-4B). 

IV.3.3 Lineage bias in post-duplication changes in constraints 

One hypothesis as to the fate of paralogous proteins is the duplication-degeneration-

complementation (DDC) model (Force et al. 1999) which explains the preservation of 

paralogous proteins by the neutral generation of sub-functionalized copies of proteins. Under 

this hypothesis, one might therefore expect that both paralogous proteins would show signs 

of relaxed evolution, but that specific functional regions of each protein showing relaxation 

in selective constraints would be complementary, such that they partition the functional 

regions in the ancestral protein. We sought to test whether signs of the DDC model could be 

detected at the posttranslational regulatory level and found 20 paralog pairs where more than 

one short sequence was detected as having different rate of evolution after gene duplication 

(see Methods). Of these, seven showed reciprocal changes in constraints on their motifs, 

which is consistent with degeneration and complementarity at the posttranslational regulatory 

level as predicted by the DDC model.  
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Despite some evidence for complementarity, the majority of paralogs (13/20) with more than 

a single change in constraints appeared to have a lineage bias in their posttranslational 

regulatory changes. We tested this using the set of 20 paralog pairs described above and 

asked whether the motifs were more likely to have correlated evolution than expected by 

chance. To do so, we randomly permutated the changes in constraints across paralogous pairs 

to establish the null expectation of random assortment and counted the lineage differences in 

changes in constraints (see Methods). This analysis revealed a lineage bias in changes in 

constraints for regulatory sequences (p-value = 0.01106, one-tailed non-parametric 

permutation test, Figure IV-5). Therefore, proteins that change function after duplication may 

typically change multiple short linear motifs in concert, consistent with the idea that multiple 

regulatory mechanisms often work together to control protein function. For example, 

multisite phosphorylation from individual or multiple kinases can form intricate regulatory 

modules on single proteins (reviewed in (Cohen 2000)) and these clusters of phosphorylation 

sites have been found to be frequently conserved through evolution (Holt et al. 2009; Lai et 

al. 2012) and have been shown to turnover (Moses, Liku, et al. 2007).  
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Figure IV-5. Correlated evolution of short linear motifs. Top panel shows the procedure to obtain the 

number of lineage specific changes in constraints in a single protein. Red double arrow illustrates the 

duplication event. Stars represent significant changes in constraints along the lineage. Significant 

changes in constraints detected on short linear motifs are shown in dotted red boxes. Bottom panel 

shows the distribution of the total cumulated number of lineage specific changes in constraints from a 

non-parametric permutation test. Arrow shows the observed total difference for all 20 paralog pairs. 

IV.3.4 Amino acid level resolving power allows detection of additional changes after 

gene duplication 

The increase in resolving power obtained by analysing short linear motifs allowed us to 

determine whether specific regions within the paralogous proteins differed in their selective 

constraints. We wanted to test if this amino acid level analysis could also allow us to detect 

signatures of functional divergence even when the rate of evolution of the whole protein after 

duplication did not appear to be different than the pre-WGD clade. 
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Using similar methodologies as previous studies (Byrne and Wolfe 2007), we found that 

57% of the paralog pairs showed no evidence of significant increase in rate of evolution of 

the whole protein in either of the two lineages. This value is slightly higher than that 

obtained previously (44% (Byrne and Wolfe 2007)), which we attribute to either a different 

gene set or methodology, or to the non-central correction that we applied. Nevertheless, we 

then searched within these proteins for motifs with significant changes in constraints. Doing 

so, we identified 37 motifs in 28 paralogous pairs, and 46 motifs in 43 single-copy proteins. 

This indicates that an analysis of evolutionary rate differences using higher resolving power 

of functional sequences within proteins can identify additional sources of functional 

divergences than analyses at the whole protein level. 

IV.3.5 Post-duplication changes in constraints are associated with changes in regulation 

If changes in posttranslational regulation are important for functional divergence after gene 

duplication, we expect the changes in constraints in short linear motifs that we detected to 

point to functional differences between paralogous proteins. A previous study investigated 

changes in localization after gene duplication by taking advantage of the systematic green 

fluorescently-tagged protein collection in budding yeast (Huh et al. 2003; Marques et al. 

2008) and categorized paralog pairs as having different or similar subcellular localization. 

We sought to test if motifs present in paralog pairs with different subcellular localizations 

were more likely to turnover after gene duplication. Motifs with changes in constraints were 

more than twice as likely to appear in proteins with detected changes in localization (26/209 

motifs with changes in constraints in proteins with different localization vs 12/197 in 

proteins with similar localization, p-value = 0.032, permutation test), providing evidence that 

proteins with changes in localization are more likely to have evolved differences in short 

linear motifs. 

We also tested if the changes in constraints we predicted corresponded to interpretable 

differences in posttranslational regulation by analyzing experimentally characterized motifs 

(same set as in (Nguyen Ba et al. 2012)) identified in the paralogous protein that overlapped 

with segments predicted to have a change in constraint. 
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Of these, the paralog pair Rck1/Rck2 contained two predicted motifs that were found to have 

significant changes in constraints in the Rck1 protein. Interestingly, both motifs are involved 

in Hog1 signaling (Bilsland-Marchesan et al. 2000; Teige et al. 2001). Consistent with our 

predictions, Rck2 is known to be regulated by Hog1, while Rck1 is thought not to be 

regulated by Hog1 (Teige et al. 2001). However, while our algorithm identified that the motif 

required for Hog1 binding in Rck2 was evolving more rapidly in Rck1, it is clear that Rck1 

preserved some of the critical residues required for binding to Hog1, yet its binding activity 

to Hog1 has been shown to be poor (Teige et al. 2001). This suggests that: 1) the protein 

ancestral to Rck1/Rck2 is likely to also be regulated by Hog1, and 2) that Rck1 is likely to be 

regulated in a different manner, having lost or changed critical regulatory sequences after the 

duplication event (Figure IV-6).  
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Figure IV-6. Known regulatory motifs with changes in constraints in Rck2/Rck1. Alignment of the short 

linear motifs with known function (indicated with arrows) and significant changes in constraints (red 

boxes) after gene duplication from representative species. The Rck2 protein is known to bind and be 

phosphorylated by Hog1 kinase at two motifs that have significant changes in constraints after gene 

duplication. Numbers indicate residue position within the S. cerevisiae Rck2 protein. The two 

identified motifs occur at aa519-538 and aa577-591 for Rck2, and changed constraints within the 

aligned region aa439-456 and aa492-506 in Rck1. These overlap with the known phosphorylation site 

in Rck2 (aa520) and the MAP kinase binding site (aa492-506) in Rck2. Both Rck2 and Rck1 retain 

kinase function. 
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Another clear example where experimentally characterized regulation of one paralog appears 

to have been lost in the other following gene duplication is in the Fkh2/Fkh1 paralogous pair 

of transcription factors. While both proteins play a role in cell-cycle progression, they are 

known to have non-redundant functions (Hollenhorst et al. 2000). For example, Fkh2, but not 

Fkh1, associates with Mcm1 (Hollenhorst et al. 2001). Another important function of the 

Fkh2 protein that is absent in Fkh1 is its ability to recruit the transcriptional co-activator 

Ndd1. This interaction is mediated by at least two adjacent Cdk1 phosphorylation sites (Pic-

Taylor et al. 2004), one of which is found to have significant changes in constraints in the 

Fkh1 lineage. The other phosphorylation site is not predicted by our motif prediction 

algorithm but is also likely to have changed constraints. We speculate that the ancestral 

protein to Fkh1/Fkh2 may also have bound Ndd1 in a Cdk1-dependent manner, but Fkh1’s 

regulation appears to have changed, possibly to accommodate new functional roles (Figure 

IV-7). 
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Figure IV-7. Known regulatory motifs with changes in constraints in Fkh2/Fkh1. Alignment of the short 

linear motifs with known function (indicated with arrows) and significant changes in constraints (red 

boxes) after gene duplication from representative species. The Fkh2 protein is known to be 

phosphorylated by Cdk1 at two phosphorylation sites on a region shown to have significant changes 

in constraints after gene duplication. Numbers indicate residue position within the S. cerevisiae Fkh2 

protein.  The identified motif occurs at region aa692-702 in Fkh2 and has changed constraint in the 

aligned region aa459-469 in Fkh1. One of the known phosphorylation site in Fkh2 occurs within this 

region at aa697. Fkh2 and Fkh1 retain their forkhead-associated domain (FHA) and DNA binding 

domain (DBD).  

A third example could be found in the Ace2/Swi5 paralog pair, important cell-cycle 

regulated proteins known to localize differently in budding yeast (Sbia et al. 2008). These 

two proteins have been extensively characterized, with several major posttranslational 

regulatory sequences identified (Mazanka et al. 2008). Two of these have significant p-

values in our analysis, suggesting that changes in constraints occurred within the Swi5 

lineage. One of these is the Cbk1-regulated nuclear export signal, known to give Ace2 its 

daughter-cell specific nuclear localization (Mazanka et al. 2008), and another other is a 

putative Cbk1-binding motif (Nguyen Ba et al. 2012) (Figure IV-8). In Ace2, Cbk1 

phosphorylation prevents nuclear export and Cbk1 is only active in daughter cells (Mazanka 

et al. 2008). Therefore, we hypothesize that the ancestral protein to the Ace2/Swi5 paralog 

pair was also regulated by Cbk1 to provide daughter-cell specific nuclear localization, but 
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that loss of these important signals allowed Swi5 to localize to both mother and daughter 

cells’ nuclei.  
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Figure IV-8. Known regulatory motifs with changes in constraints in Ace2/Swi5. Alignment of the short 

linear motifs with known function (indicated with arrows) and significant changes in constraints (red 

boxes) after gene duplication from representative species. The Ace2 protein is known to bind and be 

phosphorylated by Cbk1 kinase at two motifs that have significant changes in constraints after gene 

duplication. Numbers indicate residue position within the S. cerevisiae Ace2 protein.  The two 

identified motifs occur at aa121-134 and aa283-287 in Ace2, and changed constraints within the 

aligned region aa115-128 and aa247-248 (it is a gap) in Swi5. These overlap with the known 

phosphorylation site in Ace2 (aa122) and the Cbk1 binding site (aa283-286) in Ace2. Both Ace2 and 

Swi5 retain their DNA binding domain (DBD). Stars represent significant changes in constraints 

along the lineage. Red double arrow illustrates the duplication event. aa: amino acid position. Scer: S. 

cerevisiae, Ncas: N. castellii, Zrou: Z. rouxii, Calb: C. albicans. 

IV.3.6 Pre-WGD Ace2 localizes asymmetrically 

To confirm our sequence-based predictions about evolutionary divergence, we focused on 

the Swi5/Ace2 paralog pair. Because the ancestral protein likely contained critical regulatory 

motifs, we hypothesized that it was also regulated by Cbk1, and localized asymmetrically in 

the daughter cell (Figure IV-8). To test this, we cloned and replaced the S. cerevisiae 

endogenous SWI5 gene with GFP-tagged Swi5/Ace2 homologs from species before and after 

the whole-genome duplication and quantitatively assayed their localization pattern using 

fluorescence microscopy (Figure IV-9A, see Methods).  
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Figure IV-9. Posttranslational change in regulation after gene duplication in Swi5 and Ace2. A) 

Schematic of the gene tree relating the Ace2/Swi5 paralog pair with diagram of protein features 

found in proteins from different yeast species. Bolded species name indicate cloned genes assayed for 

localization in S. cerevisiae. The nuclear localization signal characterized in Swi5 is putatively altered 

and may not be functionally homologous in Candida and Ace2, but this difference was not predicted 

in our analysis (see Discussion and Appendix Figure III-3). B) Green-fluorescent protein tagged 

genes cloned from the labeled species were assayed for their localization in unsynchronized S. 

cerevisiae cells. Two representatives of each pre-/post-WGD genes were assayed. Orange and blue 

arrows indicate representative bud and mother nucleus pairs. C) The fluorescence intensity of the 

nucleus in cells expressing the labeled proteins was quantified, and mean difference of the intensity 

(bud-mother) is used as the measure of asymmetry (unfilled bars). Error bars show 95% confidence 

interval of the mean. Stars indicate 5% statistical significance. Red double arrow illustrates the 

duplication event. Scer: S. cerevisiae, Cgla: C. glabrata, Zrou: Z. rouxii, Lwal: L. waltii, Lklu: L. 

kluyveri, Calb: C. albicans. 
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Upon visual inspection, consistent with our predictions, both single-copy genes localized in 

an Ace2-like pattern with clear daughter specific localization (Figure IV-9B). To 

quantitatively compare the localization asymmetry of the retained duplicates and the single-

copy proteins, we manually quantified the nuclear fluorescence (see Methods) and computed 

the difference between fluorescence intensity in bud and mother cells, and used this as 

measure of asymmetry. While we could not reject the null hypothesis of symmetry in bud 

and mother cell localization for Swi5, the single-copy proteins and Ace2 showed statistically 

significant asymmetry, consistent with our visual inspections (Figure IV-9C, p-value < 0.05). 

The most parsimonious explanation for these results is that the ancestral protein also showed 

asymmetrical nuclear localization. 

Interestingly, we noted that the quantitative measure of asymmetry for the single-copy 

proteins was not as extreme as the post-duplicate Ace2 (Figure IV-9C). We also observed 

several cells with clear mother cell GFP localization just as observed for Swi5 (data not 

shown). Because cells in our assay were not synchronized, and the localization of Ace2 and 

Swi5 are cell-cycle dependent, we suggests that the localization of the single-copy proteins 

may actually represent a mixture of the Ace2 and Swi5 localization patterns, and may be 

more consistent with sub-functionalization of the ancestral function, as opposed to the simple 

lineage specific losses predicted based on sequence analysis alone (see Discussion). 

To confirm our prediction that the changes in regulation were not specific to the S. cerevisiae 

lineage and occurred during the period of rapid diversification immediately following the 

whole-genome duplication, we also examined the corresponding genes from C. glabrata (a 

budding yeast species that diverged from S. cerevisiae after the whole genome duplication) 

and found similar patterns of localization to S. cerevisiae. This supports our prediction that 

the change in localization in the two paralogs most likely occurred shortly after the gene 

duplication event (Figure IV-9B,C) and rules out the possibility that the changes we observe 

are simply due to a problem with expressing foreign proteins in S. cerevisiae. Although we 

cannot rule out more complicated artifacts due to the expression of heterologous proteins, 

because we observe consistent localization in two proteins that diverged before and two 

proteins that diverged after the gene duplication, we consider such artifacts unlikely.  
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Taken together, these experiments support our prediction that the asymmetric localization 

pattern of Ace2 was present in the single-copy ancestral protein, and this asymmetry was lost 

after the gene duplication in Swi5 due to losses of specific posttranslational regulatory 

sequences. 

IV.4 Discussion 

In this study, we have analyzed the evolution of short linear motifs in protein disordered 

regions after gene duplication and found that regulatory change is likely to contribute to 

functional divergence in paralogous genes. An important outstanding question in this 

analysis is whether the functional changes we identify are adaptive. Previous studies have 

shown adaptation due to specific changes in posttranslational regulation (Rosso et al. 2008), 

however general molecular mechanisms for these adaptive posttranslational regulatory 

change are still under study. The resolution of adaptive conflicts has been suggested as a 

model for adaptation of paralogous copies of  multifunctional genes after duplication 

(Hittinger and Carroll 2007) and differential patterns of posttranslational regulation could be 

an example of resolved ‘multifunctionality’. For example, in our analysis of the Ace2 and 

Swi5 paralogous pair, we observed that the asymmetry of the single-copy proteins was 

reduced when compared to the post-duplicate Ace2 (Figure IV-9C). Although we cannot rule 

out that these single-copy proteins have other mechanisms within these species that confer 

daughter specific localization (as we use a heterologous system to test for their localization), 

we believe that this observation may instead be due to a Swi5-specific motif. Indeed, the 

characterized nuclear localization signal (NLS) of Swi5 (Moll et al. 1991) was not predicted 

in our analysis, most likely due to its proximity to the DNA-binding domain, or to the weak 

conservation of the residues associated with the NLS in the Candida species. This NLS of 20 

amino acids spans 50 alignment columns within our alignment, and upon close inspection 

appears to show that the single-copy protein contains high sequence similarity to the Swi5 

NLS and that the Ace2 protein and proteins from Candida have a more dissimilar one, 

suggesting that they might not be functionally homologous (Appendix Figure III-3). This 

hypothesis is consistent with the predominantly Ace2-like localization pattern of the 

orthologous protein in the Candida clade (Kelly et al. 2004). We speculate that this NLS is 

responsible for the Swi5-like pattern of localization in both Swi5 and the single-copy protein. 
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Given that Swi5 is known to enter the nucleus slightly before Ace2 and becomes degraded 

before Ace2 exits the daughter-cell nucleus (Sbia et al. 2008; Di Talia et al. 2009), the 

observed pattern for the single-copy protein is consistent with first localizing to both mother 

and bud nucleus as Swi5, and subsequent nuclear export from the mother cell as Ace2. We 

therefore propose that the differential localization pattern of the Ace2/Swi5 paralogs is a 

repartitioning of localization of the ancestral protein due to sub-functionalization of the short 

linear motifs present in the ancestral protein. 

In this study, we have identified several putative motifs that have changed constraints within 

proteins after the whole-genome duplication in budding yeasts. Our methodology to identify 

changes in evolutionary rate in very small motifs relies on a correction to the distribution of 

the likelihood-ratio test statistic to control for possible ‘protein level’ background 

heterogeneous evolution that can be encountered. These ‘protein level’ effects, such as 

changes in protein expression levels (Guan et al. 2007) and divergence due to changes in 

essentiality or gene function (van Hoof 2005; DeLuna et al. 2008), have been shown to be 

major issues in evaluating correlated changes in evolutionary rates between interacting 

proteins (Agrafioti et al. 2005; Swapna et al. 2012). These effects are likely to be 

encountered in our set of paralogous proteins. Therefore, we ensured that the identification of 

divergent short linear motifs is unlikely to be caused by these “protein level” effects by 

correcting the null distribution of the likelihood-ratio test to take account of the whole 

protein’s deviation to the null model assumed by the test. Other methodologies have been 

previously proposed to empirically obtain the distribution of the likelihood-ratio test statistic 

(Lanfear 2011). Our approach is similar; however we only estimate one parameter (the non-

central parameter) because in our case it sufficiently describes the null distribution. Both 

approaches (empirically-derived null distribution and estimation of the non-central 

parameter) have the caveat that they rely on having several data points (in our case alignment 

columns) that are assumed to be null distributed. An additional constraint of our approach is 

that it requires that the null distributed data evolves under a shared and constant background 

heterogeneous evolutionary process to obtain the KL divergence. Therefore, it cannot 

accurately produce an adequate null distribution under cases where recombination has 

occurred in a gene, for example. Nevertheless, this approach can be simpler and faster than 

the permutation tests when performed on genome-wide data where we expect a small 
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proportion of tests to reveal functional divergence. We believe that the non-central chi-

squared null-distribution can be applied to other important tests in molecular evolution where 

genome-scale data are available and where the assumptions of the chi-squared distribution of 

the likelihood-ratio test statistic are violated; however this is still under study. 

Our study on short linear motifs reveals that posttranslational regulatory evolution is 

widespread after gene duplication. However, an important limitation of our study is that it 

cannot identify novel regulatory sequences that have appeared along any lineage or that 

occur within structured regions, in part due to the way motifs are predicted. Additional 

genomic sequences such as population data or from additional post-WGD species may allow 

further analyses of functional changes in the budding yeast after gene-duplication. These 

types of analyses are likely to uncover even more functional variations between paralogous 

proteins than were suggested by protein-wide and motif-wide analyses.  

Nevertheless, our results are consistent with several results suggested by other studies 

(Amoutzias et al. 2010): posttranslational regulatory change may underlie an important 

number of observed functional differences between paralogous proteins. This appears 

analogous to the models of functional divergence after gene duplication due to transcriptional 

regulatory change (Force et al. 1999). These parallels between transcriptional and post-

translational regulatory evolution (Moses and Landry 2010) suggest that transcription factor 

binding sites in non-coding DNA are analogous to short linear motifs in proteins. In the 

former, the rapid transcriptional regulatory evolution is facilitated by the rapid evolution and 

lack of strong constraints on non-coding DNA. In the case of post-translational regulatory 

evolution, because short linear motifs are typically found in protein disordered regions which 

evolve rapidly due to lack of structural constraints, changes in motifs in disordered regions 

may be a general means to facilitate functional evolution (Neduva and Russell 2005). 

IV.5 Materials and Methods 

IV.5.1 Alignment of related species of yeasts 

We based the orthology assignment on the data from the Fungal Orthogroups Repository  

(Wapinski et al. 2007) because it contained both sequences from Candida species and 
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budding yeasts. Protein sequences and orthology assignment from six Candida yeast species 

[Candida tropicalis, Candida albicans, Candida parapsilosis, Candida lusitaniae, Candida 

guilliermondii, Debaryomyces hansenii] were obtained from the Fungal Orthogroups 

Repository. When several protein sequences form the Fungal Orthogroups Repository were 

mapped to a single budding yeast orthology group, only the most similar sequence as 

assessed by blast scores was chosen. The six Candida genes, along with the Saccharomyces 

cerevisiae gene, were supplemented with protein sequences and orthology assignment from 

19 additional related budding yeast species [Saccharomyces mikatae, Saccharomyces 

bayanus var. uvarum, Saccharomyces kudriavzevii, Candida glabrata, Kazachstania 

Africana, Kazachstania naganishii, Naumovozyma castellii, Naumovozyma dairenensis, 

Tetrapisispora blattae, Tetrapisispora phaffii, Vanderwaltozyma polyspora, 

Zygosaccharomyces rouxii, Torulaspora delbrueckii, Kluyveroymces lactis, Eremothecium 

gossypii, Eremothecium cymbalariae, Lachancea kluyveri, Lachancea thermotolerans, 

Lachancea waltii] that were obtained from the Yeast Gene Order Browser (Byrne and Wolfe 

2005). 452 alignments of retained duplicates and 3566 alignments of single-copy proteins 

were used in our analysis. 

Protein sequences were then aligned using MAFFT v6.864b with the --auto flag at default 

settings (Katoh et al. 2002). 

IV.5.2 Conserved segment prediction 

We sought to predict small functional regions that could be labeled as short linear motifs. 

Because we were interested in functional segments that could be identified before the whole-

genome duplication (Kellis et al. 2004), we first removed from the multiple sequence 

alignment the sets of proteins from species that had undergone the whole-genome duplication 

and predicted short linear motifs within the remaining species (which we refer to as the ‘pre-

WGD clade’). To identify short linear motifs, we used a phylogenetic hidden Markov model 

(phylo-HMM) (Nguyen Ba et al. 2012). Briefly, this method identifies highly conserved 

short amino acid sequences within disordered regions of proteins. The unstructured regions 

are predicted by DISOPRED2 (Jonathan J Ward et al. 2004), filtered for coiled coils using 

pFilt (Jones et al. 1994) and for repetitive regions using the SEG algorithm (Wootton and 
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Federhen 1993). We also use the phylo-HMM to filter out large conserved regions as we 

consider them likely to be structural regions. In a previous study, the phylo-HMM approach 

identified 104 of 352 known motifs with a false positive rate of 1 in 9000 amino acids 

(Nguyen Ba et al. 2012). 

In addition to the heuristics used in (Nguyen Ba et al. 2012), we now also assume that a 

scaling factor of rates of evolution within the conserved state is sampled from a discretized 

Gamma distribution with eight categories (Yang 1994) with a fixed alpha and beta parameter 

of 0.6, which was chosen as a heuristic that allowed predictions of large conserved regions 

(>35aa) interspersed by a few fast evolving columns. We now obtain the rates of evolution 

through a Newton-Raphson procedure, and used a window size of 31 alignment columns for 

the calculation of the background rate. 

Because the phylo-HMM tends to classify single insertion/deletion events as slow evolving 

regions, motifs are trimmed on either ends to remove regions that are over 50% gaps or is 

filtered out if the prediction itself contains over 50% gaps.  

Flanking regions of the predicted conserved segments consisted of five alignment columns 

on each side. 

IV.5.3 Likelihood-ratio test of multiple rates of evolution  

We sought to systematically identify short linear motifs that evolve at a different rate after 

the whole-genome duplication. To do so, each predicted motif from the pre-WGD clade was 

mapped back into the complete alignment.  

Each predicted motif was then analyzed using the PAML package (Yang 2007) by a 

likelihood-ratio test that compares the null hypothesis (H0) that motifs before and after the 

whole-genome duplication are evolving at the same rate, to a model (H1) with two distinct 

rates (Yoder and Yang 2000) (PAML program: AAML, clock=2, cleandata=0, fix_omega=0, 

ncatG=8). Likelihood-ratio tests have been previously used to study the evolution of the 

yeast paralogs generated in the WGD (Byrne and Wolfe 2007). Our test differs from this 

previous application of the likelihood-ratio test, because we compared the evolutionary rate 
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on each paralogous clade (post-WGD_1 and post-WGD_2) to the evolutionary rate on the 

lineages that diverged before the whole-genome duplication (pre-WGD) one at a time. 

Formally, the likelihood-ratio test (LRT) is: 

ܴܶܮ ൌ 2 log ܴܮ ൌ 2	 log
ܲሺ݀ܽܪ|ܽݐଵ෢ሻ

ܳሺ݀ܽܪ|ܽݐ଴෢ሻ
ൌ 2	 log

ܲሺ݀ܽ1|ܽݐ ൌ ,௣௥௘ିௐீ஽ߙ ො௣௢௦௧ିௐீ஽ሻߙ
ܲሺ݀ܽ1|ܽݐ ൌ ௣௥௘ିௐீ஽ߙ ൌ ௣௢௦௧ିௐீ஽ሻߙ

 

where the data corresponds to the motif segment within the multiple sequence alignment, and 

αclade represents the rate for corresponding clades. In this model (Yoder and Yang 2000), α is 

a scaling factor by which the estimated branch lengths are multiplied, and one of the rates 

always defaults to 1. Therefore, under the null hypothesis H0, the single rate is equal to 1, 

while the alternative hypothesis H1 allows one of the two rates to be different than 1 and it is 

estimated by maximum likelihood. Because these models are nested, under the null 

hypothesis H0, the distribution of the likelihood-ratio test statistic (LRT) follows the chi-

squared distribution with degrees of freedom equal to 1 (Wilks 1938) (see the next Methods 

section for the correction to the chi-squared distribution performed when assumptions of the 

test are violated). Although it is in principle possible using this test to find short linear motifs 

that evolve either slower or faster than the proteins in which they are found, because short 

linear motifs are predicted on the basis of their conservation in the pre-WGD clade, we only 

expect to identify motifs with faster rates of evolution after the whole-genome duplication. 

We estimated the false discovery rate using a slight modification of the procedure described 

in (Storey and Tibshirani 2003) to obtain a threshold for significant p-values. We modified 

this approach because when applying the LRT described above to our alignments of the yeast 

proteome, we observed a large number of tests resulting in LRTs of exactly zero (thus having 

a p-value of 1, e.g. Figure IV-3), many of which correspond to motifs where no information 

can be inferred about their rate of evolution. For example, in our real data, for 284/498 of 

these LRTs of exactly zero, we observed no amino acid differences in the multiple 

alignments and therefore have no power to estimate a change in evolutionary rate. Because 

we observed that p-values between 0.6 and 0.95 appeared uniform as expected for the 

distribution of truly null p-values, we used this range only to estimate the false discovery rate 

(FDR). We counted 1836 p-values between 0.6 and 0.95 out of a total of 7709 tests. If we 
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assume that all these p-values correspond to truly null hypotheses, then we can estimate the 

proportion of null tests (π0) by 1836/(7709*(0.95-0.6)) = 0.6804. The FDR at p-value 

threshold t is therefore estimated as: 

ሻݐሺܴܦܨ ൌ
ݐ଴7709ߨ
#ሼ݌௜ ൑ ሽݐ

 

We considered p-values as significant where this FDR is lower than 0.05. 

IV.5.4 Correction for data heterogeneity due to violations of model assumptions about 

protein evolution 

Increased evolutionary rate after gene duplication is frequently observed in entire proteins 

(Scannell and Wolfe 2008). We reasoned that short linear motifs within these proteins may 

also show the same changes in protein-level selective constraints. Furthermore, because 

mutations may not be homogeneous over the phylogeny (e.g., due to lineage specific changes 

in GC content), proteins might show biases in their substitution process that are not 

accounted for by the models assumed in the LRT. Because we were interested in short linear 

motif evolution, we wished to test for additional changes in motifs using the heterogeneity of 

protein evolution as the “background”. In this case, we can still compute the LRT statistic, 

but the test statistic no longer follows the standard chi-squared null distribution because the 

heterogeneity in rates and patterns of protein evolution can be ‘fit’ using the additional 

parameter in the alternative hypothesis. This biases the test to reject the null hypothesis and 

leads to detection of false positives. A permutation test has been proposed for this case 

(Lanfear 2011) however, in our case, this test must be performed for each individual 

predicted motif, and these permutation tests may lack power for genome-wide analyses. We 

therefore devised another strategy by which we can approximate the distribution of the LRT 

statistic under a heterogeneous background process in protein evolution.  

We assume that evolution of each alignment column is independent and is possibly evolving 

under a heterogeneous background process after the whole genome duplication event. This 

heterogeneity that affects the whole protein could be due, for example, to changes in 

expression level, lineage-specific changes in GC content or alignment errors. The likelihood 
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of the data generated under this scenario can be computed under the alternative hypothesis 

H1 where there has been a change in constraints P(data|H1), or under the ‘null hypothesis’ 

where evolutionary rate has remained constant, Q(data|H0). We note that H1 can capture only 

some of the true heterogeneity in the data using the additional rate parameter, and the null 

model H0 captures even less. If θ is a parameter space and β the possible values of those 

parameters, then there may exist sets of values β* in the parameter space of the alternative 

hypothesis θH1 that captures some of this heterogeneity and that cannot be captured by the 

values β0 in the parameter space of the null hypothesis (θH0). Although this heterogeneous 

background process does not produce data following a generative process with parameters 

and values β*, we only seek the extra ‘fit’ obtained from the parameter space θH1 that cannot 

be captured by the parameter space θH0.  

This fit can be summarized by the expectation of the log-likelihood-ratio of the two models, 

where the expectation is taken using the probabilities P, which is the Kullback-Leibler (KL) 

divergence DKL(P||Q). This measures the additional amount of deviation of the possibly 

heterogeneous background captured by the alternative hypothesis relative to the null 

hypothesis.  

න log
ܲ൫݀ܽܽݐหߠுభ ൌ ൯∗ߚ

ܳ൫݀ܽܽݐหߠுబ ൌ ଴൯ߚ
ܲ൫݀ܽܽݐหߠுభ ൌ ൯∗ߚ ൌ  ௄௅ሺܲ||ܳሻܦ

In practice, we cannot necessarily parameterize the heterogeneity in the background 

evolutionary process, for example if it is due to alignment errors (i.e. it is difficult to estimate 

β* or how data is generated from this heterogeneous process). Nevertheless, the distribution 

of the likelihood-ratio test statistic (LRT) when we test the alternative hypothesis H1 vs H0 

(by maximizing the ‘fit’), is related to the KL divergence as follows. Given that the data used 

to compute the LRT are truly drawn from P, the distribution of the likelihood-ratio test 

statistic converges to a data-dependent non-central chi-squared distribution, χ2(k,λ), 

parametrized by the  “non-centrality parameter” λ and the degrees of freedom k. The non-

centrality parameter is given by λ = 2 L DKL(P||Q), where L is the number of data points used 

in the LRT (van der Hoeven 2005). To estimate DKL(P||Q), we note that the mean of the LRT 
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when data is drawn from P must be equal to the mean of the non-central chi-squared, which 

is given by k + λ. Therefore, 

ሿܴܶܮሾܧ ൌ
2
ܮ
෍log

ܲ൫ ௜ܺหܪଵ෢൯

ܳ൫ ௜ܺหܪ଴෢൯

௅

௜ୀଵ

ൌ ݇ ൅  ௄௅ሺܲ||ܳሻܦܮ2

where Xi is the data at an alignment column i, k is 1 in our case and L in our case is the 

number of alignment columns. 

Under the assumption of independence between alignment columns, DKL can be estimated 

from the whole alignment using a single likelihood-ratio test, which we believe is reliable 

since L is the number of alignment columns in the whole protein and is typically large, and 

we assume that the background process operates uniformly over the alignment columns. 

Therefore, we let ܧሾܴܶܮሿ ൌ ܴܮ ௣ܶ௥௢௧௘௜௡ and use:  

௄௅ሺܲ||ܳሻܦ ൎ
ܴܮ ௣ܶ௥௢௧௘௜௡ െ ݇

ܮ2
 

We note that because the motif is small in comparison to the whole protein (which we use to 

estimate P), its contribution to the calculation of DKL is small and unlikely to affect the 

results. 

While the expectation of the likelihood-ratio test statistic (E[LRT]) is always greater or equal 

to the degrees of freedom k, the obtained likelihood-ratio test statistic for a single protein 

LRTprotein may be smaller than k, especially when DKL is small. In these cases, we assume that 

DKL is equal to the parameter estimated for proteome-wide (species) evolution (see below).  

We note that P = Q implies β* = β0, which indicates that the data has no source of 

background heterogeneity that is better captured by the alternative hypothesis than by the 

null hypothesis. In that case, DKL is zero and this approach simplifies to the standard chi-

squared distribution. Further, although it is possible to formulate a likelihood-ratio test with 

estimated β* as the values of the parameters of the null hypothesis (akin to modeling more 

complex evolutionary processes in the test), there are several advantages of modeling the 
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extra ‘fit’ instead. First, it is a single value, and second, it is directional (such that rejection of 

the null hypothesis occurs when values of the parameters are farther from β0 than from β*). 

This estimate of the non-centrality parameter gives us a new null distribution for the LRT 

statistic for the predicted motifs in each protein. Since these motifs are short segments 

chosen from the entire alignment, we can compute the probability of having observed an 

LRT statistic as extreme (or more) in a short segment, given the length of the motif and the 

null distribution estimate for that protein. Therefore, the p-value for each motif, m, is given 

by the non-central chi-squared with 1 degree of freedom and non-centrality λm. 

௠ߣ ൌ ௄௅ܦ	௠ܮ	2 ൌ ௠ܮ	
ܴܮ ௣ܶ௥௢௧௘௜௡ െ 1

ܮ
 

where Lm is the length of the short linear motif. A closed-form solution exists, which we 

used, for the cumulative distribution of the non-central chi-squared with one degree of 

freedom: 

ܲሺܴܶܮ ൑ ܴܮ ௠ܶ|ߣ௠ሻ ൌ
erf ቆ

ඥܴܮ ௠ܶ െ ඥߣ௠
√2

ቇ െ erf ቆ
െඥܴܮ ௠ܶ െ ඥߣ௠

√2
ቇ

2
 

Where erf is the error function, LRTm is the LRT statistic computed (by PAML) for the motif 

m, and λm is as above. In more general cases (i.e. k > 1), this computation can be performed 

using several algorithms (see e.g. (Benton and Krishnamoorthy 2003)).  

We also noticed that the species used in our study appeared to evolve in a manner that 

differed from the single rate of evolution null hypothesis (H0), even for single-copy proteins. 

To correct for this additional source of heterogeneity, we estimated another DKL parameter 

using the whole proteome to rule out any effect on the short linear motifs that could be 

explained simply by species-level evolution. This DKL parameter was estimated to be 

0.014552523. We therefore obtained two DKL parameters for each motif, and because we 

wanted to correct for rate differences which could be explained by genome-wide deviation or 

the individual protein’s deviation, we chose the larger parameter while computing the p-

values. This chooses the larger p-value, for which we believe no additional multiple-testing 
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correction needs to be performed (in that we believe we are still performing only one test per 

motif) and allows us to perform a likelihood-ratio test using the standard tools for molecular 

clock hypothesis testing. Importantly, this global correction means our p-values are always 

more conservative than the significance values obtained using the standard central chi-

squared distribution. 

IV.5.5 Simulation of protein evolution 

To simulate more ‘realistic’ protein evolution (Figure IV-2), we use a similar simulation 

program as in (Nguyen Ba et al. 2012). We evolve sequences to closely mirror our protein 

alignments by using every protein in our analysis as a template for a simulated protein. First, 

AAML is used on every protein alignment to obtain protein-specific branch lengths for the 

phylogenetic tree (we use the species tree for all proteins). The root sequence is one of the 

sequences of the alignment (we chose the protein sequence of median length), and a site-

specific rate of evolution for each amino acid is inferred by the phylogenetic hidden Markov 

model, which we use as a scaling factor to evolve the root according to the branch lengths 

obtained by AAML. Indels are generated as in (Nguyen Ba et al. 2012) but site specific rates 

are propagated to indels, such that insertions have the same rate of evolution as the amino 

acid positions that created it. To ensure that the sequences were as realistic as possible, we 

also use two amino acid substitution models: one for ordered regions, and one for disordered 

regions. These two models differ by their equilibrium, or stationary frequencies, of the 20 

amino acids, which is estimated based on DISOPRED2 predictions on the S. cerevisiae 

proteome. The exchangeabilities of amino acid pairs was estimated as a whole on closely 

related species as in (Nguyen Ba et al. 2012). Because the rate matrix is a product of the 

stationary frequencies with the exchangeabilities of amino acids (Whelan and Goldman 

2001), the substitution matrix for disordered and ordered regions will tend to create amino 

acids found in disordered and ordered regions, respectively. These stationary frequencies of 

amino acids are also used in the production of insertions. 

We assigned ordered or disordered regions in the root sequence, and propagated them across 

the phylogenetic tree. Finally, to ensure that some motifs can be predicted, we do not allow 

indels within regions that have been predicted as motifs in the ancestor. Therefore, no site 
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specific changes in constraints are ever simulated but our simulated proteins are evolved 

according to estimated phylogenetic trees with two different substitution processes (and 

therefore two different stationary frequencies of amino acids), and with indels. After 

alignment by MAFFT, the full pipeline used to predict short linear motifs and calculate the 

likelihood-ratio test is then used on the full set of simulated proteins. In principle, none of the 

motifs are intended to have lineage-specific changes in constraints. However, in practice, 

computational artifacts may occur during the simulation (such as misalignments, deletions of 

motifs within a clade, mispredictions of short linear motifs) and these can cause signatures of 

type I functional divergence. Deletions causing a motif to be removed in one of the lineage 

are computational artifacts of the simulation because they are unintended; however they also 

would represent genuine changes in constraints on the motif. However, misalignments and 

mispredictions of short linear motifs are actual computational artifacts that can also occur 

within our data. Using this set of simulated proteins, it is therefore possible to conservatively 

assess how many of the predicted changes in constraint can be explained by these 

computational artifacts or by incorrect non-central parameter estimation for the null 

distribution of the likelihood-ratio test statistic. 

IV.5.6 Test of correlated evolution 

We define correlated evolution to be a tendency for changes in constraints on several 

functional sequences to occur within only one of the two paralogous proteins. Our test for 

correlated evolution cumulated the number of conserved segments with changes in 

constraints within each of the paralogs and asked whether the changes occurred more in a 

particular direction than expected by chance. Under the null hypothesis, the expected 

difference in the number of motifs changing in one direction minus the other on one protein 

should be zero. The sum of all the differences is used as the final test statistic, for which a p-

value was obtained by a non-parametric permutation test. 

To correct for the possibility that the phylo-HMM mistakenly separated a functional 

fragment as two motifs due to rapid evolution between the regions, we counted multiple 

motifs that were close to each other (within 35aa) and that had accelerated evolution on the 

same lineage as a single motif for the purpose of this test.  
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IV.5.7 Strains and plasmids 

BY4741 or isogenic derivatives were used for all of our experiments. Single-copy genes 

were PCR amplified from purified genomic DNA (Fermentas, #K0512) of L. kluyveri 

(NRRL Y-12651) and L. waltii (UCD 72-13), and Ace2/Swi5 orthologs were PCR amplified 

from purified DNA from C. glabrata (CBS 138). Allele replacement for single-copy genes 

was performed using a modification of the method as in (Li et al. 2011) with single-copy 

genes replacing the SWI5 gene. Briefly, the 3’UTR of ACE2 or SWI5 was cloned into pFA6a 

(Wach et al. 1994) (PCR primers P7/P8 and P9/P10 respectively), after which genes of 

interests were cloned upstream (Ace2(L.klu) – PCR primers P34/P35; and Ace2(L.wal) – 

PCR primers P36/P37). Two PCR fragments were then transformed to target the SWI5 locus 

(PCR primers CaURA3MX: P29/P44, ∆swi5::ACE2(L.klu) P32/P31, ∆swi5::ACE2(L.wal) 

P46/P31). The selection marker used for our experiments was the CaURA3MX cassette, 

which allowed subsequent marker removal using 5-FOA (Boeke et al. 1987). Once the 

marker was removed, all strains contained precise gene replacement of SWI5 and these were 

then tagged with monomeric yeast-enhanced GFP using the same method as in (Huh et al. 

2003) with either the CaURA3MX or KanMX4 resistance marker instead of the HIS3MX4 

(Ace2(S.cer) [YBS31] – PCR primers P5/P41, Swi5(S.cer) [YBS32] – PCR primers P2/P44, 

Ace2(L.klu) [YBS14] – PCR primers P12/P44 and Ace2(L.wal) [YBS13] – PCR primers 

P11/P44). For the C. glabrata orthologous genes, gene tagging and allele replacement was 

performed in a single step by transforming two fragments: one containing the gene with 

homology to the S288C genome on the 5’ end and to the GFP cassette on the 3’ end, and one 

containing the GFP with homology to the S288C genome on the 3’ end  

(∆ace2::ACE2(C.gla) [YBS17] – PCR primers P38/P40 and P40/P41, and 

∆swi5::SWI5(C.gla) [YBS18] – PCR primers P42/P43 and P40/P41). All strains were 

verified using genomic PCR and sequencing of the homologous recombination junctions. 

Aberrant cell morphology was observed for ∆swi5::SWI5(C.gla) (the cells appeared larger 

than normal and this phenotype did not appear to be due to the  ∆swi5 deletion based on 

comparison to ∆swi5 deletion mutants (data not shown)). 

All primer sequences and strains used for these experiments are included in Supplementary 

data table IV-S2. 
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Strains were then imaged by growing the cells to log-phase in minimal defined media with 

appropriate auxotrophic requirements and imaged with a standard 491nm blue laser on a 

Leica spinning-disc confocal microscope. 

IV.5.8 Localization analysis 

We wished to test that the localization of Ace2/Swi5 homologous proteins differed by 

quantifying the intensity of the green fluorescent protein with respect to bud or mother 

nuclei. We chose to quantify solely the nuclear intensity as these proteins are transcription 

factors known to shuttle to the nucleus during the cell cycle, and show distinct patterns of 

nuclear localization (Sbia et al. 2008). To obtain normalized fluorescence intensity, images 

were analyzed by manually quantifying the cell and nuclear median green fluorescence. Cell 

size in pixel count was also quantified in this manner and was used to identify the daughter 

cells. The difference in fluorescence intensity between the bud and mother cell was used as 

the index of asymmetry. Cells where the median fluorescence intensity observed was over 

240 were discarded as they were potentially too saturated to obtain reliable measures. 

Statistical significance was calculated using a Z-test. 

To determine statistical significance when testing for association between changes in 

constraints and localization differences as determined by (Marques et al. 2008), we asked 

whether the observed fold increase in rate of motif changes in constraints was higher than 

random permutations of the ‘different’ and ‘similar’ labels of localization. 
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V.1 Abstract 

Cellular processes are frequently conserved across multiple domains of life, yet the 

individual components, and the circuits regulating them, often change over evolution. These 

circuits can increase in complexity over evolution though gene duplication and divergence of 

regulatory genes, and there are two models for how this happens: 1) adaptive changes after 

gene duplication, such as resolution of adaptive conflicts, and 2) non-adaptive processes such 

as duplication, degeneration and complementation. Both of these models predict 

complementary changes in the retained duplicates, but they can be distinguished by direct 

fitness measurements in organisms with short generation times. Previously, it has been 

demonstrated that repeated sub-functionalization of an essential protein in the spindle 

checkpoint pathway has occurred multiple times over the eukaryotic tree of life. Here, we use 

comparative genomics approaches to guide the reconstruction of the ancestral spindle 

checkpoint network and perform high-throughput and systematic quantitative fitness 

measurements of evolutionary intermediates during gene network rewiring after gene 

duplication. We show that, at the resolution of our assay, no fitness advantage of the rewired 

network can be detected when compared to the ancestral network. We also find stepwise 

mutational paths from the simpler to more complex network with no fitness defects. Our 

results indicate that, even in cases of parallel evolution which has been taken as strong 

evidence for natural selection, increase in network complexity after gene duplication may be 

explained by neutral processes.  
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V.2 Introduction 

The molecular details of well-conserved cellular processes often differ surprisingly between 

distant organisms. For example, kinetochore assembly in eukaryotes is divided into two 

types: monocentric attachment and holocentric attachment (Dernburg 2001) and it is 

currently unclear whether one is more advantageous than the other. As with the kinetochore 

assembly process, the spindle-checkpoint pathway is divided into two distinct molecular 

mechanisms (Suijkerbuijk et al. 2012). In most laboratory studied organisms, the spindle 

checkpoint pathway consists of the paralogous Bub1 and Mad3 proteins. However, other 

organisms have a single protein that presumably can perform both Bub1 and Mad3 function. 

Gene duplication and sub-/neo-functionalization are processes that, not only increase 

genomic complexity, but are thought to be the major sources of genetic novelty in organisms 

(Conant and Wolfe 2008). Particularly interesting are cases of repeated, parallel evolution of 

genes that has been taken to be strong evidence for natural selection (several examples 

reviewed in (Gompel and Prud’homme 2009)). Most striking is that this single protein that 

performs both Bub1 and Mad3 function in the spindle checkpoint pathway has been observed 

to duplicate at least nine times throughout the tree of life, always leading to Bub1 and Mad3 

functional homologs. This increase in complexity has therefore been thought to be adaptive 

(Murray 2012; Suijkerbuijk et al. 2012). However, theoretical work suggests that a causal 

link between increased genetic complexity and adaptation may not be as prevalent as 

commonly assumed (Lynch 2007a; Lynch 2007b). For example, if degeneration and 

complementation of the ancestral bi-functional protein must always lead to Bub1 and Mad3 

functional homology, then our repeated observation of Bub1 and Mad3 might be due to a rate 

of degeneration that is higher than the rate of reconstitution. 

Whether sub-functionalization of a bi-functional protein is adaptive or neutral cannot be 

easily distinguished by sequence analysis alone. However, precise quantitative fitness 

measurements in organisms with short generation time, such as yeasts, can be used to address 

questions about these two models of sequence evolution (adaptive vs neutral). Using 

comparative approaches that delineate functional regions of proteins, we found that this gene 

duplication leads to sequence signatures that indicate repartitioning of the ancestral function 
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in the extant paralogs. To test whether the increase in genome complexity is adaptive, we 

employ high-throughput quantitative fitness measurements and we systematically dissect the 

evolutionary trajectory of an ancestral bi-functional gene. To our surprise, we could not 

detect any increase in fitness for the stepwise increase in complexity (duplication, 

degeneration and complementation) from a simpler ancestral spindle checkpoint pathway.  

Our results provide evidence for neutral evolution of a simpler to a more complex regulatory 

network, even in the case of parallel evolution. 

V.3 Results 

V.3.1 Subfunctionalization in the spindle checkpoint network 

Preservation of duplicate genes as explained by the duplication-degeneration-

complementation model is a neutral process by which repartitioning of the functions of the 

ancestral protein occurs within the two extant duplicates (Force et al. 1999). Although sub-

functionalization is a neutral process, it can lead to adaptation in the case of adaptive 

conflicts: mutations that are precluded from occurring in the ‘ancestral’ gene but are adaptive 

when the functions of the ancestral gene are separated, such as in the case of mutations that 

‘specialize’ multifunctional proteins (Hittinger and Carroll 2007). Even in the cases where 

mutations leading to neo-functionalization have occurred, we would still expect at least that 

one of the duplicate genes retain protein sequences that are responsible for the functional 

roles of the ancestral protein, whether or not they are repartitioned. 

It has previously been shown that Bub1 and Mad3 sub-functionalization had occurred several 

times over the eukaryotic tree of life, leading to similar sequence profiles (Figure V-

1A,(Suijkerbuijk et al. 2012)). To obtain an amino acid resolution of the evolution of the 

paralogous genes, we performed sequence analysis of the duplication that occurred in the 

whole-genome duplication of budding yeasts (see Methods). This analysis revealed several 

protein regions, in addition to the KEN boxes and kinase domain identified in previous 

studies (Suijkerbuijk et al. 2012))., that have repartitioned from the ancestral sequence to the 

paralogs (Figure V-1B).  
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Figure V-1. Sequence analysis of the Mad3/Bub1 paralog. A) Independent duplication events in the bi-

functional gene lead to similar domain arrangements. Red line on the phylogenetic tree indicates an 

inferred duplication event (species highlighted in dark grey). Several species retain the bi-functional 

gene (species highlighted in light grey). Schematics are not to scale. B) Amino-acid resolution 

analysis reveals several regions with changes in constraints in both Bub1 and Mad3 proteins. KEN: 

KEN-box, TPR: Tetratricopeptide-domain, KxxIFxD: Unknown motif, GLEBS: Gle2-binding-

sequence-domain (binds Bub3), MAD1B: Mad1-binding region, Kinase: Kinase-domain. Numbers 

indicate the amino acid size of each segments of L. kluyveri. The whole protein is 982 amino acids. 

This more detailed view of the changes in constraints allowed us to propose why some of the 

changes were correlated (Figure V-2A for an example). For example, according to 3D 

structural information of Mad3 (Figure V-2B), specific residues in the TPR domain (shown 

in yellow in Figure V-2B) appear to contact the KEN box (shown in red in Figure V-2B) and 

may stabilize the interaction of Mad3 with Cdc20 (Figure V-2C). This indicates that the 

degeneration of residues in the TPR domain or the KEN box will disrupt the same function 
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(binding to Cdc20) and that loss of selection constraints on that function will lead to 

degeneration of both. Indeed, the same correlated changes in constraints as exemplified is 

also observed in the mammalian Bub1 and Mad3, which occurred through independent gene 

duplication event (results not shown). We speculate that the second pair of motif losses (the 

first KxxIFxD motif and the second KEN box) is also structurally related: the KxxIFxD 

sequence may orient the KEN box to the WD40 repeat containing Cdc20 (Tian et al. 2012). 

This is consistent with the conservation of the second KxxIFxD motif next to the GLEBS 

domain as it may help orient the GLEBS domain to the WD40 repeat containing Bub3 

(Larsen and Harrison 2004). Therefore, the KxxIFxD motif may be a general WD40 repeat 

binding motif or it may be used to kink the disordered region in a specific orientation for the 

adjacent short linear motif. 
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Figure V-2. Amino acid resolving power of changes in constraints are biologically relevant.  A) 

Alignment of an example change in constraint in the Bub1 lineage. Numbers indicate residue position 

within the S. cerevisiae Bub1 protein. B) Structural alignment of the region shown in A). The TPR 

domain of Bub1 (green) and Mad3 (cyan) are shown, along with the N-terminal tail of Mad3. 

Regions highlighted in red, orange and yellow are the same as shown in A). C) Schematic 

representation of the binding interaction of Mad3 with Cdc20 can help elucidate why the regions 

shown in A) have correlated evolution. 

Consistent with important functions for the domains identified in the ancestral protein, there 

were no conserved regions that had changes in constraints in both paralogs. However, the 

repartitioning of function suggests that the duplication lead to sub-functionalization. We 

therefore sought to experimentally verify that sub-functionalization had occurred in the 

paralog pair. As a proxy for the ‘ancestral gene’, we used the gene from Lachancea kluyveri 

(which we refer to as the “single-copy protein”), which diverged prior to the whole-genome 

duplication event, and integrated the gene within S. cerevisiae. We first assessed the 

localization of the ancestral protein because it was known that Bub1 and Mad3 localize to 
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different subcellular compartment: Bub1 is localized to the kinetochores in a Mps1 

dependent manner during specific phases of the cell-cycle (London et al. 2012) and Mad3 is 

constitutively localized in the nucleus (Hardwick et al. 2000). If Bub1 and Mad3 were 

products of a sub-functionalization event, we would also expect the L. kluyveri protein to 

localize to both subcellular compartments. Consistent with this, we observed that the L. 

kluyveri protein localized constitutively to the nucleus, with distinct re-localization of a 

subset of proteins to the kinetochore during the cell-cycle (Figure V-3). 
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Figure V-3. Localization of the Bub1/Mad3 paralogs. Green-fluorescent protein tagged genes cloned 

from L. kluyveri (SCP) localizes as a mixture of Bub1 and Mad3 protein from S. cerevisiae. Bub1 is 

clearly visible as a puncta in S/G2 phase of the cell cycle, presumably when it localizes to the 

kinetochores, while Mad3 is seen as nuclear throughout the cell-cycle. The single-copy protein is also 

seen as nuclear throughout the cell-cycle, however is also seen as a puncta in S/G2. 

 

We next sought to functionally verify if the single-copy protein could rescue the cell-cycle 

functions of Bub1 and Mad3. Cells lacking Bub1 or Mad3 are highly sensitive to benomyl, a 

microtubule destabilizing drug (Fernius and Hardwick 2007), because cells cannot detect that 

their chromosomes are not attached to the mitotic spindles. If the single-copy protein can 

perform the functions of both Bub1 and Mad3, we expect that the single-copy protein would 

rescue the fitness defect of cells lacking Bub1 or Mad3. If the phenotype is not fully rescued, 

it may indicate neo-functionalization and adaptation in the Bub1 or Mad3 protein or it may 

be due to an artifact of expressing a heterologous gene. We performed spot dilution assays 
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and our results indicate that cells lacking Bub1 and Mad3 can grow adequately in the 

presence of benomyl if rescued by the single-copy protein with similar growth characteristics 

to wild-type S. cerevisiae cells (Figure V-4). We could not simply test the function of the 

spindle checkpoint in other species as we observed that other yeasts other than S. cerevisiae 

were highly resistant to benomyl, irrespective of whether they had duplicated the Bub1/Mad3 

gene (Appendix Figure IV-3). 

WT

YPD YPD + 30ug/mL Benomyl

∆bub1

∆mad3

∆bub1, ∆mad3

∆bub1::SCP, ∆mad3

 

Figure V-4. Spot dilution assays showing phenotype rescue of the spindle checkpoint mutants. Yeast 

cells expressing the single-copy protein (SCP) at the BUB1 locus can grow on YPD plates with 

30ug/mL benomyl even in the absence of Mad3, as assessed by a 10-fold spot dilution assay. YPD 

plate was imaged after 2 days. YPD plate containing benomyl was imaged after 3 days. 

In principle, it may be possible to quantify fitness effects from plate dilution assays; however 

we found that this assay was unreliable in assessing small differences (we estimate that 

differences higher than 10% are required if plating exactly the same amount of cells at each 

dilution). At the limits of the resolution of this plate assay, and taken together with the 

localization data, these results suggest that the ancestral protein can rescue Bub1 and Mad3 

function in S. cerevisiae and that, consistent with the DDC model, the sub-functionalization 

of Bub1 and Mad3 may confer no fitness advantage to S. cerevisiae. 

V.3.2 A precise and rapid quantitative fitness assay for gene network rewiring 
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However, to further support that the gene duplication confers no fitness advantage, we also 

expect that the step-wise degeneration of the ancestral gene would be neutral. Alternatively it 

is possible that the spot dilution assay did not have enough resolution to detect the fitness 

advantage of the gene duplication. To address this, we designed a method to more precisely 

quantify the relative selection coefficients (sn, see Methods) of intermediates during gene 

network rewiring after gene duplication to assess whether a neutral (or adaptive) path could 

exist between the ancestral network and the current extant network. We first show how the 

strains are made and then show an analysis describing the resolution limit of our fitness 

assay. 

Because we do not know the order of mutations, we created all strains with the genetic make-

up of the evolutionary intermediates. The evolutionary paths assayed occur on multiple loci 

and we therefore took advantage of the SGA cloning strategy (Tong et al. 2001) to combine 

alleles at multiple loci into single strains (see Methods). Briefly, libraries of mutations were 

cloned into different starting strains (Figure V-5A). Query strains carrying the SGA markers 

and different fluorophores (shown to have no fitness effects (Figure V-5A)) were crossed to 

the library in an ordered array and selected such that the final products of several rounds of 

mating were otherwise genetically identical haploid spores carrying different marked alleles 

(Figure V-5B). Diploids can also be generated by a slight extension of the procedure (see 

Appendix IV). 
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Figure V-5. Synthetic genetic array (SGA) design. A) A library of MATa strains (blue) all contain a 

single mutation. MATα SGA query strains (pink) contain a fluorophore (red or green rectangle) and 

SGA marker. Strains carrying the library of alleles have marked mutations. B) The SGA process 

allows the recombination of alleles from one strain to a query strain using a series of simple replica-

pinning procedure on selective media. In contrast with previously described SGA designs (Tong et al. 

2001), the product of a single SGA process is the same genotype as the query strain except that it now 

contains the marked allele taken from the ordered array of libraries. The process is reiterated for 

every locus with marked alleles. 

 

Having described how the strains are cloned, we now turn to our assay for quantitative 

fitness measurements. Briefly, our assay is a competitive fitness assay that takes advantage 

of flow-cytometry to provide relative counts of fluorescently labeled cells within a growing 
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population (Breslow et al. 2008) and this assay can be performed in high-throughput (see 

Methods). Because of the sensitive nature of the competitive fitness assay, we first 

performed an analysis of the resolution of the assay. This was found to be important because 

BY4741 and BY4742 cells differ from each other at several loci with at least 20 non-

synonymous single-nucleotide polymorphisms (SNPs) (SGD Project 2011). Therefore, 

haploids created by SGA may have the same marked alleles but different background genetic 

make-up and are therefore mosaics of the BY4741 and BY4742 starting strains. Presumably, 

the most important SNP found in the whole-genome sequences of BY4741 and BY4742 is a 

SNP causing an early stop-codon in the WHI2 gene of BY4742. WHI2 is a stress response 

gene that becomes frequently mutated in laboratory S. cerevisiae strains (Lang et al. 2013), 

with a large portion (>25%) of strains in the yeast-deletion collection having independent 

mutations causing loss of Whi2 function (Teng et al. 2013). Loss of Whi2 causes several 

phenotypes where strains grow more rapidly under starvation conditions, but this causes 

aberrant mitochondrial function (tubular to large punctae morphology) and ultimately 

promotes cell-death upon prolonged growth after diauxic shift (Leadsham et al. 2009). This 

phenotype is not seen on plates (Cheng et al. 2008) where yeast cells have more space to 

grow, but can be problematic under conditions of growth that are required by the high-

throughput assay (96-well plates) where oxygen is more limiting and the media quickly 

accumulates fermentation by-products that require mitochondrial function for growth 

(Goldring et al. 1970). We first confirmed that, contrary to the whole-genome sequence of 

BY4742, none of our query strains had a WHI2 mutation. We also discovered that the mad3 

deletion strain from the yeast deletion collection (Giaever et al. 2002) contained an 

undocumented Y104X mutation in WHI2 (causing sn = -0.08 in our hands) and subsequently 

remade the strain. Although we cannot be certain that new mutations would not arise again, 

or that there are no additional mutations causing large effects on phenotypes, we nevertheless 

assessed the resolution of our assay by selecting eight spores carrying the green fluorescent 

protein with the wild-type Bub1 allele marked with CaURA3, and eight spores carrying the 

red fluorescent protein with the wild-type Bub1 allele marked with CaURA3. These cells 

were competed to form 64 competitions. We reasoned that if any additional SNP in the 

BY4741/BY4742 background had detectable fitness effect (but masked due to epistasis 

within their respective backgrounds), that they would be uncovered within these 16 spores. 
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We compared the relative proportions of cells expressing the green fluorescent protein and 

red fluorescent protein at the 20th generation to the 40th generation and we calculated the 

selection coefficient for each competition. Because our strains are supposedly genetically 

identical except for the non-shared SNPs, we expect an average selection coefficient of zero 

and the standard deviation obtained from this test can be used to estimate the resolution of 

our assay (deviations due to growth conditions or to the SNPs). Doing this, we observed a 

mean estimated selection coefficient of 0.00069, and a standard deviation of 0.0017 (Figure 

V-6). This indicates that the resolution of our assay is in the order of sn = 0.0033 and we 

believe this represents the difference in growth rate that we can detect. To account for other 

possible variations that may occur during the course of the study (changes in media, etc) we 

therefore chose to report as deleterious/beneficial any differences in fitness where both 

replicates of a competition exceeded a selection coefficient with an absolute value of 0.005 

or greater while remaining consistent with all other competitions. See Appendix IV for 

another analysis on the reproducibility in selection coefficient measurements. 
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Figure V-6. High-throughput fitness assay on genetically identical strains. Spores from the SGA process 

carrying identical marked alleles form a mosaic of BY4741/BY4742 parental background and are 

assayed using our high-throughput fitness assay. Results show low calculated fitness effect 

(background colors of the grid) with median of s=0.00069 and a standard deviation of 0.0017. A 

quantile plot of the calculated fitness effects is shown on the right.  

V.3.3 Subfunctionalization of the Bub1/Mad3 ancestral protein is neutral 

We then performed fitness measurements on the strains created by our high-throughput 

procedure. Each screen competes 8 genotypes against the others (64 wells), with an 

additional 16 wells used as contamination control. We use the diagonal of the competitions 

as additional negative control as these should be competing genetically identical strains 

constructed independently with different fluorophores. 

To assay possible paths to sub-functionalization, we first divided all of our strains into two 

categories (‘functional genotypes’ and ‘non-functional genotypes’ corresponding to whether 

or not the degenerations are complementary) and confirmed that paths leading to genotypes 

lacking important sequence elements would be deleterious (Figure V-7).   
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Figure V-7. Degeneration without complementation is deleterious. Functional genotypes (1-10) are 

genotypes where the degenerations are complemented in the duplicates. Non-functional genotypes are 

non-complementary degenerations. When the compared genotypes are separated by a single 

degeneration of a functional element, a colour scale is used to indicate the measured normalized 

selection coefficient of the competition. Black squares indicate compared genotypes that would 

require more than a single degeneration of a functional element and are excluded from the analysis of 

putative evolutionary paths. Figure shows the results of reciprocal experiments where the fluorescent 

proteins are swapped.  
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We then focused on the genotypes where the degenerations are complementary. Although in 

principle it is possible for a non-functional genotype to revert, we have not considered them 

in the next described analysis for simplicity. Given a current genotype, we considered that an 

evolutionary path towards a future genotype was possible if it involved a single molecular 

event (such as a deletion of a whole functional element). The results of our analysis are 

displayed in Figure V-8 where all possible current genotype have multiple paths and are less 

likely to occur when the steps are deleterious. Our results show that several possible 

evolutionary intermediates have slight defects when compared with the extant network and 

we also observed clearly that the single-copy protein could not fully rescue the spindle-

checkpoint defects when placed at the MAD3 locus, but that the protein could still perform 

some function (compare Figure V-8, genotype 3 vs 14, and Figure V-8 genotype 1 vs 3, see 

Discussion). Interestingly, we were able to find at least one neutral path consisting of three 

degenerations (Figure V-8, blue arrow). 

Although we have not tested all the possible mutations that may have occurred during the 

yeast evolutionary history, the fact that we can find at least one neutral evolutionary path 

strongly supports the DDC hypothesis that, at the resolution of our assay, the increased 

complexity of the spindle checkpoint pathway can be explained by simple degenerative 

mutations. 
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Figure V-8. Evolutionary paths during network rewiring. Schematic of the intermediates we have 

assayed in our experiment if we assume changes in the MAD3 promoter occurred first following the 

gene duplication event. When the compared genotypes are separated by a single mutational event 

(such as a degeneration of a functional element), the accessible evolutionary paths are shown 

horizontally and a colour scale is used to indicate the measured normalized selection coefficient such 

that a redder square indicates a deleterious step. Black squares indicate compared genotypes that 

would require more than a single mutational event and are excluded from the analysis of putative 

evolutionary paths. The schematic shows a putative neutral path through the fitness surface from the 

ancestral genotype (1) to the extant genotype (10). 
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V.4 Discussion 

Neutral processes, such as described by the DDC model (Force et al. 1999), have been shown 

to be important in increasing genomic complexity (see (Fernández and Lynch 2011) for a 

study on non-adaptive increase in interactome complexity). At the limit of the resolution of 

our assay (discussed below), we find no evidence that the Bub1/Mad3 sub-functionalization 

in budding yeast provides a fitness advantage over a single-copy protein in the spindle 

checkpoint pathway.  

Consistent with the DDC model, none of the evolutionary intermediates that we consider 

functional through the comparative genomics analysis showed a fitness defect when driven 

by the BUB1 promoter. However, the resolution of our assay meant that we could only detect 

fitness effects in the range of sn = 0.005. Because of the population size of budding yeasts in 

nature (Lynch and Conery 2003) and our estimated effective population size during the 

experiment (see Methods), selection could be efficient even on undetected differences in 

fitness. Therefore, it is possible that the sub-functionalization to Bub1/Mad3 is truly 

adaptive. However, even if we assume a very small beneficial effect that was not detected, 

because we performed our assay in the presence of high concentration of benomyl which had 

been used to characterize all the components of the spindle checkpoint pathway (Straight and 

Murray 1997), it is likely that under ideal conditions the adaptive effect of this sub-

functionalization would be even smaller. It is not possible to know the environmental 

context, nor the genetic context, of the ancestral yeast. However, the spindle checkpoint 

pathway is activated every cell division to ensure proper chromosomal attachment prior to 

anaphase so we believe that any significant large effect would have been captured even in the 

laboratory environment. 

Although in our study all functional evolutionary paths lead to the same genotype through 

the same number of degenerations, the probability that a path is taken is dependent on the 

rate of mutation, the selection coefficient of the intermediates and the effective population 

size (Weissman et al. 2009). We here discuss only the scenario of large population size (as 

discussed above), because small population sizes would allow all genotypes, including the 

sub-functionalization, to be effectively neutral. When population size is large and mutation 
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rate is low, then crossing a fitness valley (as measured by our quantitative fitness assay) 

requires the population to fix each intermediate genotypes (this is the deleterious sequential 

fixation regime discussed in (Weissman et al. 2009)). In this large population size and low 

mutation rate regime, paths through deeper fitness valleys are essentially never taken because 

selection is very effective. In this regime, the relative frequencies of the effectively neutral 

states are entirely dependent on the mutational rate between these states (Force et al. 1999). 

Because the mutational rate to degenerate is likely to be higher than the mutational rate to re-

create a functional element, the evolutionary path of Bub1/Mad3 homologs after sub-

functionalization could be nearly deterministic. Therefore, the relative probability of 

observing Bub1/Mad3 functional homologs is equal to the rate of sub-functionalization 

divided by the rate of non-functionalization. We propose that the rate of sub-

functionalization can be high due to the very small number and mechanistically simple 

degenerations: we showed here that sub-functionalization and degeneration of the 

Bub1/Mad3 protein can occur within only two mutations following the gene duplication 

(generation of stop codon to remove the kinase function in Mad3, and a shift in start position 

to remove the first KEN box in Bub1), both of which have been observed frequently over 

evolution in other genes (Kellis et al. 2004; Main et al. 2013). If this sub-functionalization is 

truly neutral, we propose that the repeated observation of the Bub1/Mad3 functional 

homologs may be due to the fact that no other possible outcome of the duplication can be 

easily observed (fitness valleys or reversion to single-copy protein) and that further 

degeneration would be unfit. We note that we have identified at least one phylogenetic clade 

where the gene duplication reverted back to the single-copy functional homolog in the clade 

leading to Vanderwaltozyma polysporus (Appendix Figure IV-4). It is estimated that the 

ancestor to the lineages leading to V. polysporus and S. cerevisiae had already non-

functionalized ~20% of the duplicates (Scannell et al. 2007) suggesting that both sub-

functionalization of Bub1/Mad3 and non-functionalization were not rapid. In the absence of 

data confirming how often the gene has duplicated and reverted back, it is difficult to 

determine if the sub-functionalization truly occurred more than expected under neutral 

evolution. 

Unlike other similar studies (Finnigan et al. 2012; Baker et al. 2013), we have not performed 

ancestral gene resurrection via gene synthesis, but instead we have chosen a gene from 
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another species which we believe is representative of the ancestral allele. Our approach has 

several advantages. First, it is more likely that the gene is functional in at least one genetic 

environment. Second, the reconstruction of the ancestral gene might not be accurate in 

proteins with disordered regions. Finally, the gene has evolved for the same period of time as 

the duplicate genes, providing a direct test of whether adaptation from the ancestral allele is 

due to the resolution of an adaptive conflict. 

Transcriptional evolution has been shown to be an important aspect of functional divergence 

after gene duplication (Gu et al. 2004; Huminiecki and Wolfe 2004; Gu et al. 2005). An 

important caveat of our study is that we have not explicitly tested the evolution at the 

promoter, due to the difficulty in finding the functional elements of the promoter region 

(Siepel et al. 2005). However, we have evidence that the Mad3 promoter and the Bub1 

promoter are not functionally equivalent as the ancestral protein does not fully rescue the 

spindle-checkpoint defects when placed at the MAD3 locus. Although there is clear evidence 

that the promoters of Mad3 and Bub1 have diverged, we do not yet understand the effect of 

these changes. That differences also exist at the transcriptional level is interesting but not 

within the scope of our study because we aimed to address whether the repeated 

repartitioning of functional elements that were observed at the protein level (Suijkerbuijk et 

al. 2012) were adaptive. Our study shows otherwise and that there is no evidence for the 

acquisition of novel functions or mutations to escape an ‘adaptive conflict’ for the spindle 

checkpoint pathway in mitotic cells. Our data is consistent with the DDC model and our 

study suggests that parallel evolution through degenerative processes do not have to be rare 

or adaptive.  

Interestingly, although the core spindle checkpoint pathway is conserved in all eukaryotic 

life, several other differences exist between them (Vleugel et al. 2012). These differences 

include non-conserved proteins important for spindle checkpoint function (such as p31) or 

different copy number of paralogous proteins (such as Cdc20 in human). Our study provides 

experimental techniques to test the step-wise effects of evolutionary changes that have been 

detected through comparative genomics on multiple loci (such as the ones in the spindle 

checkpoint). We anticipate that these sensitive quantitative measurements will be useful in 

the computational modeling of sequence and protein evolution within the context of a 
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complete regulatory network (Hasty et al. 2001), as has been performed on other important 

regulatory networks (Hao et al. 2007; Josephides and Moses 2011).  

V.5 Materials and Methods 

V.5.1 Yeast strains and culturing 

All strains were derived from either BY4741 or BY4742 using standard yeast genetic 

techniques or synthetic gene arrays (see next method subsection). The ‘ancestral’ gene was 

PCR amplified from purified genomic DNA (Fermentas, #K0512) of L. kluyveri (NRRL Y-

12651) 

Strain construction for the library of alleles was performed using the same method as 

previously described in Chapter IV and in (Li et al. 2011). SGA query strains were created 

by transferring the Ste3pr_LEU2 marker from Y8205 into the CAN1 locus of BY4742. 

Fluorophores with the Ste2pr_LkHIS3 were cloned into the pAN200a plasmid (based on 

pFA6a (Wach et al. 1994)) using standard cloning techniques and transformed into the 

CAN1pr locus using delitto perfetto (Storici et al. 2001). 

Cells are grown according to slight modifications to the protocols outlined in (Tong and 

Boone 2006). Specifically, the protocol was modified to allow selection of uracil auxotrophy 

instead of nourseothricin antibiotics resistance and lysine auxotrophic MATα haploid cells 

are selected after each round of mating. Additional modifications will be outlined below.  

Benomyl (10mg/mL DMSO stock) is used at outlined concentrations and added to boiling-

hot media until completely dissolved. 5-fluoroanthranilic acid (5-FAA, 70mg/mL DMSO 

stock) was used to select against tryptophan biosynthesis prototrophs (Toyn et al. 2000) and 

plates were poured at 0.7g/L 5-FAA final concentration (supplemented with all amino acids, 

including 72ug/mL tryptophan). This concentration was found to allow adequate growth of 

Δtrp1 cells while preventing growth of TRP1 and TRP1/Δtrp1 cells. However, 

concentrations above 0.8g/L were toxic even to Δtrp1 cells. 5-fluoroorotic acid (5-FOA, 

100mg/mL DMSO stock) was used to select against uracil biosynthesis prototrophs (Boeke 

et al. 1987) and plates were poured at 1g/L 5-FOA final concentration (supplemented with all 
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amino acids, including 72ug/mL uracil). Geneticin (G418) was used at 200ug/mL to select 

for geneticin resistance. 

V.5.2 Synthetic genetic arrays 

Synthetic genetic arrays (SGA) were performed with several modifications to the procedure 

used in (Tong and Boone 2006). We modified our query strains to have the following 

cassette integrated at the CAN1 locus: RPL39pr_fluorophore_Ste2pr_LkHIS3_Ste3pr_LEU2. 

Fluorophores used for our study were yeast-enhanced monomeric green fluorescent protein 

(ymEGFP) and yeast-mCherry (ymCherry). For the general construction of our strains, a 

query strain is first crossed with all the desired alleles at a particular locus. Diploid selection 

is performed by selecting for complementary auxotrophies. Overnight diploid cells from 

plate patches are then scraped into liquid sporulation media (1% Potassium acetate, 0.005% 

Zinc acetate) and supplemented with amino acid requirements for diploid strains at 25% of 

the normal usage and incubated on a roller wheel for three days at room temperature. 

Usually, about 30% sporulation is observed and 5ul of the mixture is spread or spotted on 

selection plates that select for MATα and other selection markers.  

Interestingly, we found that modifications to the germination and outgrowth procedure were 

necessary in our hands to obtain colonies after the SGA procedure. In our hands, S/MSG 

media was adequate for germination of Ste3pr_LEU2 MATα cells. However, S/MSG media 

did not allow robust growth for Ste2pr_SkHIS3 and any form of growth for Ste2pr_LkLYS2 

following germination (this media is recommended in the random-spore analysis but not in 

the standard SGA protocol).We speculate that either the nitrogen source is too low for 

adequate germination in the presence of histidine or lysine selection, or that the Ste2 

promoter behaves with different dynamics and molecular control than the Ste3 promoter 

(except for the mating type exclusivity). Further, we found that adding lysine to the media 

greatly enhances the initial outgrowth of spores for all strains that were constructed using our 

query strains (even the ones that did not express a fluorophore). Spore outgrowth was normal 

for standard SGA query strains, indicating that heterozygous lys2 deletion strains or 

homozygous LYP1 affected the outgrowth of our strains (LYS2/∆lys2 LYP1/LYP1 compared 

with LYS2/LYS2 LYP1/∆lyp1). Therefore, to select for lysine prototrophs, the colonies are 
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replicated to media lacking lysine after the initial growth. To select for lysine auxotrophy, 

replica plating was used to isolate colonies that did not grow on media lacking lysine, 

however alpha-aminoadipate could be used instead (Chattoo et al. 1979). We have since 

created a BY4741 strain with ∆lys2, which bypasses the need to select for lysine auxotrophs. 

A schematic of constructs that were used for assaying fitness is included in Appendix Figure 

IV-5. 

V.5.3 Genomic sequences and comparative analyses 

Protein sequences used for the comparative analyses were from the Yeast Gene Order 

Browser (Byrne and Wolfe 2005). These proteins were then aligned with MAFFT (Katoh et 

al. 2002). Genomic sequences for BY4741 and BY4742 were obtained from the 

Saccharomyces Genome Database (SGD Project 2011).  

To perform our comparative analyses, protein sequences were analyzed using methods 

described in Chapter IV and by visual inspection. Briefly, regions under purifying selection 

in the clade that diverged prior to the whole-genome duplication in yeast are analyzed for 

relaxation of these constraints after the whole-genome duplication. Partitioning of these 

losses in selection constraints in the two paralogs is an indication of sub-functionalization. 

X-ray crystallography files (3ESL: Bub1 (Bolanos-Garcia et al. 2009) and 4AEZ: Mad3 

(Chao et al. 2012)) were obtained from the Protein Data Bank (Berman et al. 2000) and 

analyzed using PyMOL (Schrödinger 2010).  

V.5.4 Quantitative fitness assay 

Quantitative fitness assays were performed using the MACSQuant VYB (Miltenyi Biotec 

Inc.). Briefly, strains are grown for 48 hours in 5mL of cultures on a rolling wheel. The 

competitive fitness experiment is setup by mixing relatively equal proportion of green cells 

and red cells in 96-well blocks (100ul of a single ymCherry expressing strain and 100ul of a 

single ymEGFP expressing strain into 600ul distilled water) at a 4-fold dilution. 20ul of this 

mixture is transferred into 100ul water that is distributed on a 96-well plate and analyzed by 

flow cytometry. To continue growth of the competition mixture, 20ul of the competition is 
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also diluted into 300ul distilled water to form a 16 fold dilution, then 20ul of this dilution is 

diluted into 300ul of defined media supplemented with amino acids and 100ug/mL ampicillin 

to form a final 16-fold dilution. The cells are therefore diluted 1024-fold every 24 hours. 

Given a conservative estimate of 2*108 yeast cells per mL at saturation, we estimate an 

effective population size (Ne) of approximately 3.44 * 105. 

In total, 50 000 cells are counted for each competition experiment and well-defined 

proportions of green and red cells are gated to remove doublets and relative cell counts was 

obtained from each competition (Lang et al. 2009; Frenkel et al. 2014). We define the 

relative selection coefficient (s) as the increase in logarithmic ratio of red fluorescent cells 

(R) and green fluorescent cells (G) every generation as follows: 
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Where t indicates the number of generation, and s is the selection coefficient. Clearly, if s is 

positive, then the proportion of red cells to green cells increases at the next generation. 

Transforming to log-space: 
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The relative selection coefficient s is not symmetric (s of 0.1 is equal to s of -0.090909 if we 

do the inverse calculation G/R) so we cannot directly compare our control experiments. To 

correct for this, we normalized the selection coefficient (sn) by taking the inverse calculation 

when lnሺ1 ൅ ሻݏ ൏ 0, and multiplied by -1 to indicate a negative effect. The absolute value of 

the normalized selection coefficient is therefore the selective effect of a beneficial allele as in 

(Kimura 1962). For the purpose of this study, we only report the normalized selection 

coefficients sn. 
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The upper limit of detection occurs when we expect fewer than 1 out of 50000 cells of the 

worst genotype at the 40th generation, which occurs at approximately sn = -0.3. In practice, 

some genotypes can no longer be detected at the 20th generation, and we simply report these 

as sn < -0.3. In some other cases, the number of red or green cells is fewer than 50, which 

leads to highly inaccurate estimates of the selection coefficient and we also report these as sn 

< -0.3. When the total number of cells counted was fewer than 50, we reported sn = 0 to 

mean equally lethal. 

In the absence of all pairwise measurements, it is also possible to measure the selection 

coefficients against a reference strain (typically the wild-type strain). This can be done by 

simply using the following relationship: 

௔_௕ݏ ൌ
1 ൅ ௔_௖ݏ
1 ൅ ௕_௖ݏ

െ 1 

Where sx_y is the measured (not normalized) relative selection coefficient of x over y. 

V.5.5 Localization analysis 

Cells were grown in low-fluorescence media with appropriate auxotrophic requirements to 

log-phase and imaged using a standard 491nm blue laser on a Leica spinning-disc confocal 

microscope. 
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VI.1 Summary 

Proteins contain short linear motifs and these short linear motifs are important for protein 

posttranslational regulation. In the past, these short linear motifs have been characterized 

using laborious experiments that were frequently performed using model organisms and 

therefore questions about their evolution could not be simply answered. For example, it was 

difficult to know how prevalent short linear motifs were and whether regulatory evolution 

could lead to functional divergence through evolution. With the advent of large-scale 

genomics data and sequencing, computational approaches to identify functional elements in 

the DNA sequence successfully uncovered sequences responsible for transcriptional 

evolution and allowed the exploration of the properties of transcriptional changes between 

organisms. My thesis work aimed to address similar questions regarding the evolution of 

short linear motifs. 

By studying the evolution of protein regulation from manually curated and characterized 

phosphorylation sites, I showed that phosphorylation sites were highly conserved relative to 

their flanking regions, but that turnover could still be detected across closely related species 

of yeast. Motivated by these findings, I hypothesized that regulatory sequences such as 

localization signals and degradation signals would also show similar evolutionary properties. 

I therefore set out to design state-of-the-art computational and comparative approaches to 

identify short linear motifs in proteins and identified thousands of putative short linear motifs 

in the budding yeast proteome – many of which still remain uncharacterized. Using statistical 

models of protein evolution, I identified motifs that are likely to have changed constraints 

throughout the budding yeast phylogenetic tree. Finally, I developed experimental techniques 

to study the fitness contribution of regulatory changes across a regulatory network. 

VI.2 Discussions and future directions 

VI.2.1 Large scale quantification of birth, death, and compensation rate of short linear 

motifs 
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The quantification of turnover in Chapter II and Chapter IV showed that changes in protein 

regulation are very likely to contribute to functional divergence over evolution. For example, 

we could identify up to 9% of phosphorylation sites as not being conserved over 5-20 million 

years of evolution, which showed a turnover rate that is similar to the turnover rate of 

transcription factor binding sites. Furthermore, our study on very well conserved short linear 

motifs estimated that (after correcting for tests with no power) approximately 28% of the 

conserved short linear motifs have different rates of evolution before and after gene 

duplication, which occurred around 100 million years ago (Wolfe and Shields 1997). This 

suggests that turnover of regulatory sequences may frequently occur through evolution. 

However we observed in Chapter II that about half of the changes in regulatory sequences 

were accompanied by signatures of compensation, which was almost more than expected by 

chance. Therefore, it is possible that natural selection on the regulation of a protein occurs 

through stabilizing selection of the motifs in disordered regions of the protein. This is 

supported by the presence of conserved clusters of phosphorylation sites without 

conservation of any individual sites (Holt et al. 2009; Lai et al. 2012; Freschi et al. 2014). 

Nevertheless, in Chapter IV we also observed clear instances of regulatory turnover in 

duplicate proteins. Whether compensation is more frequently observed in single-copy 

proteins vs. duplicate proteins is an interesting future direction to reconcile changes in 

regulatory turnover of proteins as opposed to regulatory turnover of motifs. Observing a 

lower compensation rate in duplicate proteins would support the idea that regulatory 

evolution of duplicate proteins can be a direct mechanism for neo-/sub-functionalization. On 

the other hand, observing the same compensation rate in duplicate proteins would indicate 

that regulatory evolution affects all genes equally but that accelerated rate of evolution (or 

longer evolutionary time) in duplicate proteins is a more important contributor to the 

observed differences in regulation. 

To obtain an estimate of the birth rate of short linear motifs, additional genomic sequences 

may be used to perform similar analysis by predicting motifs on the post-WGD clades. 

Although current genomic sequences do not cover enough phylogenetic distance in the post-

WGD clade to accurately predict strongly conserved motifs, the rate at which new genomes 

are sequenced (at least 50 fungal genomes per year (Grigoriev et al. 2014)) suggests that this 

approach to study birth of motifs in an unbiased way will soon be possible. 
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VI.2.2 Proposing functions for putative short linear motifs 

Although work presented in Chapter III strongly suggests that the motifs we identified using 

comparative genomics are likely to be functional, no function could be proposed for most of 

the motifs. Therefore, thousands of short linear motifs remain uncharacterized. Interestingly, 

some motifs consist of patterns that appear more than once in the yeast genome. Indeed, this 

lead to the discovery of a novel pattern which we suggest to be the Cbk1 kinase docking 

motif in yeast (Reményi A et al, submitted). Our study identified other patterns that are 

present in multiple proteins with similar cellular function and even more patterns may be 

identified using supervised approaches. 

We also identified a motif pattern that was found to be present in around half of the yeast 

amino acid permeases and that motif was strongly associated with a palmitoylation signal. 

Interestingly, in another study, both the putative pattern and the palmitoylation signal have 

been mutated in GAP1 (one of the amino acid permeases in budding yeast) and the authors 

were unable to identify any defect in Gap1 function related to these specific mutations 

(Merhi et al. 2011). This is not surprising considering the very complex regulation of the 

multifunctional Gap1 permease (Van Zeebroeck et al. 2014). Therefore, the role of this novel 

pattern may not easily be elucidated. However, the pattern can be detected over a wide 

phylogenetic distance, which suggests that it is likely to be important. The pattern, as is the 

terminal cysteine used in palmitoylation, can also be found in several Schizosacchromyces 

and Candida. In addition, the novel pattern can also be detected in basidiomycetes (but not in 

mammals), indicating that the pattern is broadly conserved. The presence of this pattern 

provides an interesting avenue for targeted drug design. For example, the fungal lysine 

biosynthesis via the alpha-aminoadipate pathway has been under extensive study for 

antifungal targets because the pathway is unique to fungi (Xu et al. 2006). However, some 

studies have shown that the lysine concentration in the blood is sufficient for survival of 

Candida albicans and that auxotrophy does not reduce virulence (Kur et al. 2010). There 

have been promising results in targeting the lysine biosynthesis pathway in Aspergillus lung 

infection models (Liebmann et al. 2004; Schöbel et al. 2010), but free lysine rescued 

pathogenicity even in these cases. Encouragingly, at least in budding yeast, lysine 

auxotrophy cannot be rescued by exogenous lysine when lysine permeases are depleted. 
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Although the lysine permease in budding yeast does not contain this pattern, permease 

specificity has been observed to change over evolution. For example, the pattern is present in 

the Schizosaccharomyces’ lysine permease (CAT1, presumably not orthologous to the 

Saccharomyces lysine permease) and it may be present in the lysine permease of important 

fungal pathogens. Understanding the function of the novel pattern, which is not present in 

mammals, could therefore allow the use of antifungal blends targeting both import and 

synthesis of lysine.  

The other pattern we identified appeared to be specific to proteins related to protein 

transport, and is also broadly conserved to Candida. It can also be identified in some genes 

from Schizosaccharomyces but the pattern of conservation is not as clear as in Candida 

species. This pattern, the NPY pattern, is biochemically similar to the NPF pattern which 

interacts with EH-domains and is known to be important in protein transport (de Beer et al. 

2000). It is therefore likely that the NPY pattern interacts with a different EH-domain with 

subtle changes in amino acid specificities (for example, after a gene duplication of an EH-

domain containing protein). If this is the case, then it may be interesting to use the NPY 

pattern to study posttranslational evolution mediated by evolution in trans (discussed below 

in the next section). 

Nevertheless, site-directed mutagenesis of a single motif may not always yield a detectable 

phenotype without prior knowledge of what that phenotype may be. To remedy this, 

systematic deletion of all desired motifs can be rapidly performed using methodologies that 

were used in Chapter V, and fitness assays can be performed on 96-well plates containing 

different environment per wells, as has been used to uncover the phenotypic diversity of wild 

yeast strains (Liti et al. 2009). These high-throughput strategies are likely to help uncovering 

the function of putative motifs that match the same pattern (such as the NPY pattern).  

VI.2.3 Evolution of novel short linear motif patterns 

Novel patterns of short linear motifs appear due to evolution of the regulatory protein 

(evolution in trans). Evolution in trans is thought to be rare because mutations that affect the 

affinity of the regulatory protein to all regulatory sites are likely to be deleterious (and 

slightly equivalent to mutating all regulatory sites at the same time). However, novel motif 
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patterns are partly spared from this effect at the time of their introduction and can therefore 

produce different patterns in different species over the course of evolution (Figure VI-1). 

Even well-established regulatory networks can undergo evolution of regulatory proteins: 

evolution in trans has been observed on the Matα1 transcription factor (Baker et al. 2011), 

even in the absence of a duplication event. This evolution of the Matα1 transcription factor 

along the Candida lineage is particularly interesting because it controls the same set of genes 

in the hemiascomycetes, which is possible because the DNA recognition sites co-evolved 

with the transcription factor. Similar evolution in trans is also likely to occur in protein 

regulators such as protein kinases. 
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Figure VI-1. Model for acquisition of motif patterns.  Evolution of motifs in cis can produce different 

sets of proteins containing the motif over the phylogenetic tree (Top two clades). Evolution in trans 

early in the phylogenetic tree can allow the acquisition of a novel pattern (Bottom clade). Striped 

shape indicates the recognition domain of a regulator. Black shapes indicate distinct domains on 

different proteins. Colored shapes represent motifs that can be recognized by the striped shape. 

Overlaid box show possible molecular events. 
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Studying the evolution of motif patterns instead of individual regulatory sequences requires 

at least two phylogenetically distinct clades that both contain several sequenced species with 

high amino acid diversity in their disordered regions. However, these clades must also be 

closely related, such that they would have a large degree of shared orthologs. Based on these 

criteria, species of yeasts that include the ones studied in Chapter IV can be compared to the 

Candida and related species. Unfortunately, current genomic sequences from the Candida 

clade are still underrepresented but efforts have been made to extend the comparative 

analyses that was performed on S. cerevisiae to the Candida clade (Maguire et al. 2013). 

Given the pathogenicity of Candida, as well as documented changes in the genus’ regulatory 

networks (e.g. (Baker et al. 2012)), these types of analyses may provide a more global view 

of how molecular evolution of short linear motifs impact the regulatory networks of the cell. 

VI.2.4 Short linear motifs in higher eukaryotes 

Most of the research performed in this thesis took advantage of budding yeast as a model 

organism for the understanding of posttranslational regulatory divergence. Given the 

important differences in population structures and effectiveness of natural selection between 

unicellular and multicellular eukaryotic organisms, it is difficult to assess whether the 

methods used in this thesis and whether the findings will be directly applicable to another 

lineage such as the mammals.  

Specifically, we have attempted to use the phylogenetic hidden Markov model approach on 

sequence data obtained from Ensembl (Flicek et al. 2011). Preliminary analysis on the 

mammalian clade showed that the gene predictions were severely problematic with 

mispredictions of exons causing poor quantification of evolutionary rates in protein regions. 

Other problems surrounding the quality of the ortholog assignments also reduced the 

precision of the algorithm. Interestingly, the evolutionary distance required for the phylo-

HMM approach is responsible for many of these issues because the annotation quality tends 

to be worst on species more distantly related to humans. Consistent with this, encouraging 

preliminary results were obtained when predicting short linear motifs in the insect lineages, 

which are thought to have better gene prediction models due to their simpler genome 
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structure while maintaining a higher nucleotide diversity than the mammals (Leffler et al. 

2012).  

Another important issue with applying our phylo-HMM approach is that several parameters 

must be chosen in order to obtain meaningful predictions. Of these, the size of the local 

region (the window size) is one of the most crucial parameter that must absolutely be 

tweaked based on the quality and evolutionary time scale of the data. This is because a 

higher evolutionary distance tends to create more indels within the alignment, causing the 

estimation of local rate of evolution to be based on indels rather than substitutions, which are 

more informative than indels for our model. It may be possible to use Bayesian statistical 

approaches to remove the effects of choosing an inappropriate window size although this is 

still under study. Therefore, current limitations in using our phylo-HMM approach to other 

clades appear to be due to technical reasons. 

Nevertheless, it is likely that important short linear motifs would also be under purifying 

selection in more complex eukaryotes and that regulatory turnover is responsible for a 

portion of the organismal diversity observed throughout the multicellular eukaryotes. 

VI.2.5 Regulatory sequences in ordered regions 

Posttranslational regulatory sequences in disordered regions of proteins were a major focus 

of this thesis. However, our set of manually curated phosphorylation sites in Chapter II 

showed that 25% of the phosphorylation sites occurred in structured regions. This is not 

surprising because phosphorylation sites on kinases are known to control their catalytic 

activity (Johnson et al. 1996). There are most likely other motifs in ordered regions that 

could play regulatory roles  

Our current approach to predict short linear motifs is unlikely to be adequate for predictions 

inside ordered regions. However, as we refine the rules of disordered regions that allow 

accurate recognition of motifs by other proteins, we may uncover short segments in 

structured regions that have similar properties and it may be possible to adapt the phylo-

HMM approach for the prediction of motifs inside structured regions. 

VI.2.6 The effect of selection on disordered regions 
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Results from my thesis showed that disordered regions have short linear motifs that are likely 

to be important for function. However, in Chapter III I showed that short linear motifs were 

estimated to only populate 17% of the disordered regions. A compelling outstanding question 

remains as to whether the remaining disordered regions are also under purifying selection 

(not just junk protein) and if so how much of it. A parallel question aims to answer what are 

the functions that natural selection is preserving in disordered regions. Evidence that 

disordered regions must be maintained exists: disordered regions typically do not conform to 

the amino acid residues of proteins found to aggregate (Monsellier and Chiti 2007) and the 

state of disorder is frequently maintained over evolution (Bellay et al. 2011). Similarly, in 

Chapter IV, the simulation of protein evolution showed that a single substitution matrix 

could not be used to adequately model both ordered and disordered regions. It is therefore 

likely that evolution can maintain a state of disorderedness through mutations that favor 

amino acids found in these regions. The increased rate of evolution is likely to be due to 

several more accepted mutations and more accepted indels within these regions while 

maintaining the required level of disorder. A more thorough analysis of these regions could 

be performed using population data or closely related species where the amino acid residues 

can be aligned accurately. 

Experimentally, studying the evolution of disordered regions is an exciting avenue to 

understand the function of disordered regions. Although disordered regions for specific 

proteins have been studied, these previous studies did not address how these regions can 

evolve. One way to address whether disordered regions are only selected to remain 

disordered is by using simulation of protein evolution to simulate neutral evolution using the 

disordered amino acid substitution matrix or using the ordered substitution matrix. These 

simulated regions could then be introduced into the yeast genome along with the conserved 

short linear motifs and assayed for fitness. Alternatively, it would be interesting to know 

whether different disordered regions from non-orthologous (or orthologous) proteins can 

serve the same ‘function’. A possible experimental design to directly assay this would be to 

swap disordered regions from different proteins and assay for fitness consequences using 

similar techniques as outlined in Chapter V. This would allow us to disentangle some of the 

correlations with disordered regions that have been found. For example, as described in 

Chapter I, proteins containing disordered regions are more likely to be toxic upon 
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overexpression (Vavouri et al. 2009). However, because proteins containing disordered 

regions are more likely to be signaling proteins, it is difficult to untangle the effect of 

overexpressing the domain with the effect of overexpressing the disordered region. This can 

be partly solved by changing the length of the disordered region using other disordered 

regions from orthologs and assaying for toxicity, although care should be taken to ensure that 

the functions of the disordered regions have been preserved. 

VI.2.7 Competitive fitness assay using pooled yeast strains 

In Chapter V, I used the standard competitive fitness assay using fluorophores to differentiate 

genotypes. Although this assay was performed in high-throughput, the assay cannot be scaled 

easily because the number of competition grows exponentially for each new strain. One 

quick solution for this is to employ high-throughput liquid handling to significantly ease the 

process. In practice, it may also be possible to only compete against a reference strain at the 

expense of sensitivity in measurements of selection coefficient.  

One way to partly resolve the scalability problem is to employ more fluorophores, which 

allows more competitions to be performed in a single well. Indeed, we have generated query 

strains that express several other colours that can be spectrally differentiated using the flow-

cytometer or fluorescent microscopy with minimal spectral compensation (Figure IV-2). 

 

Figure VI-2. Possible fitness assay using multiple colours.  Yeast query strains carrying spectrally 

differentiable fluorophores are available and can be used to multiplex the fitness assay. 
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However, the additions of these fluorophores complicate the strain-making process and it is 

still unclear whether these fluorophores can be used effectively. An alternative to using 

fluorophores is to perform deep sequencing of en-masse competitions (Hietpas et al. 2011). 

However this approach is limited to studying a single allele that can be covered by 

sequencing reads, which is not applicable to our study that assayed multiple loci. To remedy 

this, another approach which is still under study is the use of site-specific recombinases (Lee 

and Saito 1998) flanking barcodes for each allele that can be combined into a single region of 

the yeast genome and finally sequenced (unpublished work by the Roth lab). A more recent 

approach has been to barcode yeast strains containing multiple alleles rather than marking 

individual alleles (unpublished work by the Sherlock lab). However, these approaches suffer 

from low resolution (s = 0.05), which is of an order of magnitude lower than what we can 

detect using the fluorophore system.  

An alternative approach to using one fluorophore per genotype is to use one fluorophore per 

allele. This requires more fluorescent reporters to be used and currently limits our choice of 

alleles. However, this can be partly solved by bypassing the use of florescent proteins. 

Instead, cell-surface display of epitopes can be used (Kondo and Ueda 2004) and recognized 

by chemical fluorophore-conjugated antibodies, which have better spectral properties than 

fluorescent proteins. For example, quantum dot bioconjugates can be engineered to cover a 

broad range of the visible light spectra from a single emission wavelength (Medintz et al. 

2005). Using this technique, seventeen colours have been used to track populations of 

phenotypically distinct cells in the peripheral blood of humans (Perfetto et al. 2004). An even 

higher level of multiplexing has be achieved with mass cytometry (Bendall et al. 2011). If 

these systems could be applied to yeast, then we would be able to follow several different 

alleles inside a single tube because the cytometer provides the measurements for each 

cellular event. 

Finally, these new technologies may even allow the creation of different strains from pools 

of yeasts rather than precisely forming ordered arrays using SGA (Tong et al. 2001) by 

sorting the cells with the desired allele combinations. This may also lead to other exciting 

areas of research where evolution of sexual populations can be studied, allowing the marked 

alleles to be followed in mixing populations. 
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Appendix Figure I-1. Ka/Ks of CDK phosphorylation sites in yeast in vitro CDK targets. 
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Appendix Figure I-2. Ka/Ks of phosphorylation sites from yeast high-throughput studies. 
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Appendix Figure II-3. Schematic of the phylo-HMM approach.  In the phylo-HMM framework, a 

column of the sequence alignment is assumed to belong to either a conserved state (“Conserved”) or a 

background state (“Background”) and probabilities of observing alignment columns in each state 

depend on a phylogenetic model of protein evolution with a rate parameter α. 
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Appendix Figure II-4. Regions without conserved segments are not detected by the phylo-HMM 
approach.  Posterior trace of the region 420-520 in the alignment of Swi5. No locally conserved 

segments were identified. The region shown corresponds to position 266-322 in S.cerevisiae. Red 

color intensity represents the posterior probability of the conserved state. 
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Appendix Figure II-5. Newly identified KEN box in Spt21 and Cbk1 interaction motif in Ssd1 are 
conserved in farther yeast species.  A) Alignment of the KEN box (in rectangle) in Spt21 with distantly 

related yeast species. We note that the KEN motif in the Candida clade does not align with species 

used in our study when performing a whole gene alignment. However, the motif is well conserved. B) 

Alignment of one of the Cbk1 interaction motif (in rectangle) in Ssd1 with distantly related yeast 

species. In both panels, species used for the phylo-HMM analysis are labelled with a vertical black 

bar. 
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Appendix Figure II-6. Simulation of protein evolution.  A) Simulations of proteins evolution were 

performed by randomly generating a protein sequence containing a motif in an unstructured region. 

An alignment of a typical simulated protein is shown with the motif, properly aligned, boxed in red. 

B) Alignment accuracy of the motif using MAFFT depends on the background rate of evolution and 

on the rate of motif evolution. C) The sensitivity of the phylo-HMM on simulated data shows strong 

dependence on the relative rate of evolution of the motif to the rate of evolution of the background. 

D) The rate of computational artifacts of the phylo-HMM on simulated data is dependent on the 

background rate of evolution. Each point represents the results from 100 simulated proteins. 
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Appendix Figure II-7. Performance of the phylo-HMM approach on literature-curated short linear 
motifs.  On characterized short linear motifs, the phylo-HMM performs best on conserved regulatory 

sequences. Data shown here only includes motifs with consensus sequences (no localization signals). 

Regulatory motif were binned on the basis of the fraction of species in which the consensus sequence 

could be found (Fraction of conservation) and sensitivity of the phylo-HMM was calculated for each 

bin (See Chapter III, Methods). 
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Appendix Figure II-8. Binding of [YF]xFP peptides to Cbk1.  Fragments from proteins identified in the 

[YF]xFP cluster (Figure III-5C) were expressed as maltose-binding protein (MBP) fusions and 

immobilized on amylose resin. The beads were assayed for binding to GST-tagged Cbk1 (Cbk1∆1-

351) in a pulldown assay. At the exposure time shown in Figure III-6, the lane showing 10% of the 

GST-tagged Cbk1 input (on a different nitrocellulose membrane but imaged at the same time and 

incubated with the same conditions) is overexposed. A reduced exposure of the assay is shown in this 

figure for comparison. 
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Appendix Figure II-9. Phylogenetic tree of species used for this study.  Protein sequences from related 

yeast species were used to predict short conserved sequences by our phylo-HMM approach. The 

vertical black line indicates the four closest species of yeast that were used to obtain the amino acid 

substitution model. The branch lengths were estimated from random concatenations of proteins (See 

Methods) and the Newick format tree representation is the following: ((((((((Scer: 0.0317431, Spar: 

0.022837): 0.0200533, Smik: 0.0499671): 0.0302187, Sbay: 0.0545286): 0.1984531, Cgla: 

0.3382801): 0.042494, Scas: 0.2796456): 0.0506147, Kpol: 0.3061641): 0.0374508, Zrou: 

0.2684242): 0.0489862, ((Klac: 0.3075333, Agos: 0.3326945): 0.0600818, ((Kwal: 0.1277869, Kthe: 

0.1223815): 0.1697185, Sklu: 0.1779484): 0.0492655): 0.0622827); 
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Appendix Table II-5. Annotation of top 20 clusters of predicted short conserved 
sequences using three different clustering parameters. Three tables show annotations of 
the top 20 clusters of each three cluster analyses that used three different metrics to assign 
sequence similarity between motifs (see Supplementary data table III-S4). Each set of 
annotation includes a sequence logo representing the pattern formed by the motifs, whether 
this pattern is known and notes regarding functional enrichments. The first table describes 
the results using an all-by-all pairwise distance measure (described in Methods) between the 
predicted segments. The second table describes the results after first extending either side of 
the motifs by five residues before applying the all-by-all distance measure. Using the same 
extended motifs, the third table describes the results considering only the top 10 most similar 
motifs as similar. 

 

Patterns obtained from clustering of pairwise sequence distance between conserved 

sequences. 

Cluster 
number 

Known Motif Notes 

1 Yes 
 

Enriched in cell-cycle proteins 

Probably proline-directed 
phosphorylation sites 

2 Yes 
 

Enriched in nuclear proteins 

Probably related to nuclear 
localization signals 

3 Yes 
 

Enriched in nucleoporins 

GLFG-repeat motif 

4 Yes  

Enriched in cell-cycle proteins 

Probably proline-directed 
phosphorylation sites 

5 Yes Proline-rich motif 

6 Yes 
Basophilic-kinase phosphorylation 
sites 
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7 No  

7 No  

8 No  

9 Yes 
Probably related to nuclear 
localization signals 

10 Yes 
 

Enriched in endocytosis genes 

EH-interacting motif 

10 Yes Proline-rich motif 

11 Yes 
Similar to Ime2 phosphorylation 
sites 

12 Yes 
Probably related to nuclear 
localization signals 

13 No  

14 No  

15 Yes 
Probably related to nuclear 
localization signals 

16 No  

17 Yes Proline-rich motif 

17 Yes 
Probably related to proline-directed 
phosphorylation sites 

18 Yes Glutamine-repeat 
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19 No  

19 No  

20 No  

 

Motif profiles were aligned using the average pairwise substitution score derived from the 

empirical substitution matrix described in Methods. Pairs of profiles (mi and mj) were then 

clustered using the Smith-Waterman score (S[mi,mj]) and divided by the square root of the 

aligned region length (li,j). Edges were pruned if the score exceeded a threshold of 

min(7.7,S[mi,mi]/sqrt(li,i)).   
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Patterns obtained from clustering of pairwise sequence distance between conserved 

sequences. Each predicted conserved sequences were first extended on both side and 

trimmed (See Methods). 

Cluster 
number 

Known Motif Notes 

1 Yes 
Enriched in nucleoporins 

GLFG-repeat motif 

2 Yes Proline-rich motif 

3 Yes 
 

Enriched in nuclear localization 

Probably related to nuclear 
localization signal  

4 Yes 
 

Enriched in endocytosis genes 

EH-interacting motif 

5 Yes 
 

Enriched in cell-cycle proteins 

Probably proline-directed 
phosphorylation sites 

6 Yes 
 

Enriched in nucleoporins 

FxFG-repeat motif 

7 Yes 
 

Enriched in cell-cycle proteins 

Probably proline-directed 
phosphorylation sites 

7 No  

8 No 
 

Enriched in vesicle and nuclear 
membrane proteins, enriched in 
protein transport process. 

Probably related to NPF motif 
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9 No  

10 Yes 
Probably basophilic-kinase 
phosphorylation sites 

10 Yes 
Probably related to nuclear 
localization signal 

11 Yes 
Probably related to nuclear 
localization signals 

12 Yes 
Probably related to nuclear 
localization signals 

12 Yes 
Probably related to nuclear 
localization signals 

12 Yes 
Basophilic-kinase 
phosphorylation sites 

12 Yes 
Probably proline-directed 
phosphorylation sites 

13 Yes 
Probably acidophilic-kinase 
phosphorylation sites 

13 No  

14 Yes 
 

Enriched in ER localization 

ER-localization signal 

15 Yes 
KEN-box APC/C degradation 
signal 

16 Yes Proline-rich motif 
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16 Yes 
Probably proline-directed 
phosphorylation sites 

17 No 
Enriched in amino acid 
permeases 

17 No  

17 No  

18 No  

19 Yes 
Probably proline-directed 
phosphorylation sites 

20 Yes 
 

Enriched in mitochondrial 
localization 

Mitochondrial targeting signal 

 

Motif profiles were aligned and scored as above. 
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Patterns obtained from clustering of conserved sequences and their top ten most similar 

conserved sequences, without allowing matches to paralogs or to the same protein. Each 

predicted conserved sequences were first extended on both side and trimmed (See Methods). 

Cluster 
number 

Known Motif Notes 

1 Yes 
Resembles motif in vacuolar proteins 
in yeast 

2 Yes Proline-rich motif 

3 Yes 
 

Enriched in ER localization 

ER-localization signal 

4 Yes Proline-rich motif of class II (PxxPx+) 

5 Yes 
 

Enriched in mitochondrial localization 

Mitochondrial targeting signal 

6 Yes 
Probably related to nuclear 
localization signal 

6 Yes PCNA-interacting motif 

6 No  

7 No  

8 Yes 
Probably basophilic-kinase 
phosphorylation sites 

9 No Enriched in Cbk1 interactors 

10 Yes Cbk1 phosphorylation motif 
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11 No  

12 Yes Disulfide isomerase motif 

13 Yes 
Probably related to nuclear 
localization signal 

14 Yes eIF4e binding site 

15 Yes EH-interacting motif 

16 No N-terminal motif 

17 No 
No particular 
motif 

 

18 No  

19 No  

19 Yes Disulfide isomerase motif 

19 No  

20 Yes FxFG-repeat motif 

  

Motif profiles were aligned using the average pairwise substitution score derived from the 

empirical substitution matrix described in Methods. These profiles were then clustered using 

the Smith-Waterman score (S[mi,mj]). The top ten most similar profiles were taken.
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Supplementary text 

Behavior of the likelihood-ratio test on short sequences under the null models 

We were first concerned by the fact that motifs identified in our study are short, which may 

prevent the use of the chi-squared approximation for the distribution of the likelihood-ratio 

test statistics (Wilks 1938). To address this, we evolved sequences of different lengths 

according to the null model assumed by the test (see Methods) and assessed whether the 

likelihood-ratio test statistics were chi-squared distributed. If the likelihood-ratio test 

statistics were chi-squared distributed, then we would expect uniformly distributed p-values. 

In our simulation of short sequence evolution, we observed that the p-values obtained were 

not uniform and that there were much fewer rejections of the null hypothesis than expected 

(Appendix Figure III-1A). This indicates that this test has low power for very short 

sequences and that assuming chi-square distribution for the likelihood-ratio test statistic will 

be conservative. Increasing the branch lengths to allow for more substitutions improved the 

uniformity slightly, but we never observed higher rates of rejection of the null hypothesis 

than expected (Appendix Figure III-1B). In phylogenetics studies involving proteome-wide 

analyses, increased acceptance of the null hypothesis has been suggested as an acceptable 

compromise to decrease the levels of false positives that may arise due to invalid model 

assumptions (Zhang et al. 2005; Yang and dos Reis 2011).  See the main text for the 

behavior of the test on more ‘realistic’ simulations. 
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Appendix Figure III-1. The chi-squared approximation of the distribution of likelihood-ratio test on 
short sequences is conservative.  A) Short amino acid sequences of various lengths were evolved under 

the WAG model with the same phylogenetic tree that follows a global clock (corresponding to the 

null model assumed by the test). Grey bars show the expected distribution of p-values if the chi-

squared approximation is correct. Data points are the obtained distribution of p-values. B) Short 

linear motifs of length 7 were evolved using the same procedure as in A) but the phylogenetic tree 

was scaled to allow for more substitutions per sites, showing that more substitutions do not lead to 

more false rejections than expected for short sequences. 

Simulation of protein evolution under various evolutionary models 

To illustrate the use of this non-central correction to eliminate false rejections of the null 

hypothesis when the background evolutionary process deviates from the model assumed by 

the test, we performed extensive simulation of sequence evolution where there were truly no 

changes in constraints after gene duplication, but where the simulation violated the model 

assumed by the test. In each case, we used a likelihood-ratio test to test whether the data is 

better explained by two rates of evolution as opposed to a single rate of evolution (using 

AAML (Yoder and Yang 2000), see Methods). Under the null hypothesis, p-values show a 
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uniform distribution and we use this as a measure for deviations of our test statistic under 

various simulations. For example, if the p-values are uniform in a simulation with no true 

positives, then we infer that the null distribution used is correct. 

We first simulated proteins evolving under the WAG model (Whelan and Goldman 2001) 

according to a single rate of evolution, which is the model assumed by the test, and tested for 

changes in constraints (see Methods). As expected, the distribution of the likelihood-ratio test 

statistic followed a chi-squared distribution, and the p-values are uniformly distributed 

(Appendix Figure III-2A, grey columns). Next, because short linear motifs are found in 

rapidly evolving disordered regions that contain indels, we simulated proteins according to 

the same model but also allowed indels (using INDELIBLE (Fletcher and Yang 2009), see 

Methods for indel parameters). We then aligned the proteins (MAFFT (Katoh et al. 2002), 

see Methods), and repeated the likelihood-ratio test for changes in constraints. The inclusion 

of indels in the simulation led to an increased rejection rate of the null hypothesis (Appendix 

Figure III-2A, black circles), presumably because alignment errors lead to analysis of non-

homologous residues and the extra rate parameter in the alternative hypothesis can ‘fit’ some 

of this heterogeneity. However, after performing the non-central correction to the chi-

squared distribution, the distribution of p-values was uniform, indicating that the indel and 

alignment process was adequately captured by the non-central parameter (Appendix Figure 

III-2A, white circles). The KL divergence for this particular set of parameters was 0.000837. 
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Appendix Figure III-2. P-value distribution of the likelihood-ratio test obtained from chi-squared and 
non-central chi-squared on simulated data.  A) Amino acid sequences were evolved under the WAG 

model with or without indels. Grey bars show the distribution of p-values obtained from the 

likelihood-ratio test when the data are generated according to the model assumed by the test. Circles 

indicate the distribution of p-values when indels are also included and data is aligned, and the test 

statistic is assumed to be chi-squared distributed (black circles) or non-central chi-squared distributed 

(white circles, “corrected”). B) Protein coding DNA sequences were evolved. Grey bars show the 

distribution of p-values when sequences are evolved under a homogenous and stationary codon 

frequency model assumed by the test. Circles indicate the distribution of p-values when the model is 

non-homogenous and the test statistic is assumed to be chi-squared distributed (black circles) or non-

central chi-squared distributed (white circles, “corrected”). Squares indicate the distribution of p-

values when the indels are also included and the test statistic is assumed to be chi-squared distributed 

(black squares) or non-central chi-squared distributed (white squares, “corrected”). 

To test whether the non-central correction could account for heterogeneity in the substitution 

process, we next performed codon-based simulations where we could vary the stationary 

codon frequencies. We simulated proteins according to a codon model (with Ka/Ks is equal 

to 1) using the codon frequency table from Thermus aquaticus (which is GC-biased), and 
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found that the likelihood-ratio test statistic followed a chi-squared distribution (Appendix 

Figure III-2B, grey columns) despite the GC-biased codon model likely leading to amino 

acid frequencies different than those assumed by the WAG model in the test. Next, we 

simulated a similar set of proteins, except that one of the tested clades was evolving under 

the S. cerevisiae codon frequency table (which is AT-biased). Because the substitution model 

changes on the phylogeny, this set of proteins corresponds to proteins evolving under a non-

homogenous and non-stationary process. As expected, we observed increased false rejections 

of the null hypothesis (Appendix Figure III-2B, black circles) because the alternative 

hypothesis can account for some of this heterogeneity using the additional rate parameter. 

However, after correction by the non-central parameter, the p-values were now uniformly 

distributed (Appendix Figure III-2B, white circles). The KL divergence for this set of 

parameters was 0.001031.  

To illustrate how all these deviations of the evolutionary models can be compounded in the 

analyses, we also evolved proteins under the same non-homogenous, non-stationary 

processes, but now also included indels (see Methods). Doing this, we observed a much 

higher false rejection rate of the null hypothesis (Appendix Figure III-1B, black squares); 

however, even while several factors compounded to deviate from the models assumed in the 

test, it was still possible to capture the deviation to the null hypothesis using a single non-

central parameter (Appendix Figure III-1B, white squares). Only a very small increase in the 

KL divergence for the combined deviations to the model was observed (0.001059 vs 

0.001031 for the heterogeneous substitution model with no indels); however, we observed a 

much higher false rejection rate of the null-hypothesis because the likelihood-ratio test is 

performed on more columns (more data points in the test) due to the indels. 
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Taken together, these results indicate that a non-central chi-squared distribution can be used 

to capture some of the evolutionary complexities that can be encountered when detecting 

functional divergence after gene duplication. 

Supplementary Figure 

M I CTGGKK L - E H S I NKK L T S P KK - S L LD - - - - - - - - - - - - - - - - - - - - S P HDT - - - - - - - S P V K E - -
MVCTGGKK L - E H S I S KKH I S P KK - S L LD - - - - - - - - - - - - - - - - - - - - S P Y E T - - - - - - - S P V K E - -
M I CAGGKK L - E H S I NKK L T S P KK - S L LD - - - - - - - - - - - - - - - - - - - - S P H E T - - - - - - - S P V K E - -
M I CTGGKK L - E H F I S KK L T S P KR - SG FG - - - - - - - - - - - - - - - - - - - - S P H E T - - - - - - - S P V K E - -
HNCTG P AR VP D S KMV S K - - S P R K - Q S S P - - - - - - - - - - - - - - - T K - L S S A I MN - - - - - - - S P I K E - -
M I C I GGKK S - D SMV - R K - - S P NK - R - - - - - - - - - - - - - - - - - - - - - - - E L L S R - - - - - - - S P V K E - -
AT CGG S - - - - - - - V T KR T A S P NKY T T S P - - - - - - - - - - - - - - - - - - - - - S K L A - - - - - - - S P T KD - -
- - - - - - - - - - - - - - - - - - - S P QK - R VQK - - - - - - - - - - - - - DH SNE G TQ SNNT - - - - - - - S P V K E - -
- - - - - - - - - - - - - - - - - - - S P I K - - - - - - - - - - - - - - - - - - - - - K KNA I E E E R - - - - - - - S P V K E - -
M I CDGGKR Y - ANVV I KR - - S P R R - RG R P - - - - - - - - - - - - - - - R KT P G LG T T - - - - - - - - S P V KQ LQ
N I C I GG TN L - QK S VT KT - - S P KK - YQGN - - - - - - - - - - - - - - - R P GNNN I I I N - - - - - - - S P V K E - -
KNCNGQY KQ- DKA I V KK - - S P VK - - - - - - - - - - - - - - - - - - - - - - - G P G S VN S - - - - - - - S P V RD - -
M I C SGGKKY - E NVV I KR - - S P R K - RG R P - - - - - - - - - - - - - - - R KDGT S S V S S - - - - - - - S P I K E - -
M I C SGGKKY - E NVV I KR - - S P R K - RG R P - - - - - - - - - - - - - - - R KDG S S S V S S - - - - - - - S P I K E - -
M I C SGGKKY - E NVV I KR - - S P R K - RG R P - - - - - - - - - - - - - - - R KDEMS S V S S - - - - - - - S P I K E - -
M I CTGGKKY - E NVV I KR - - S P R K - RG R P - - - - - - - - - - - - - - - R KDG S S S V S S - - - - - - - S P I K E - -
M I C I GGKKY - ANVV I KR - - S P R K - RG R P - - - - - - - - - - - - - - - R K E E G - - - - - - - - - - - - S P V K E - -
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M I C I GGKQY - E N I V I K R - - S P R K - RG R P - - - - - - - - - - - - - - - R KNE S L TG - - - - - - - - - T ADKD - -
M I C SGGKKY - E NVV I KR - - S P R K - RG R P - - - - - - - - - - - - - - - R KDG SD S VNC- - - - - - - S P V K E - -
M I C SGGR R Y - E NVV I KK - - S P R R - RG R P - - - - - - - - - - - - - - - K KDDY S S TH S - - - - - - - S P V K E - -
L I C SGGKKY - E NVV I KK - - S P R K - RG R P - - - - - - - - - - - - - - - K KDG S T S V SN - - - - - - - S P I K E - -
M I CVGGKK F - DN I V I KK - - S P R K - RG R P - - - - - - - - - - - - - - - K K E G S S AHN - - - - - - - - S P V KD - -
M I C I GGKK F - DN I V I KK - - S P R K - RG R P - - - - - - - - - - - - - - - R KDG S T S VNN - - - - - - - S P V K E - -
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M I CVGAKKY - SNVV I KK - - S P R R - RG R P - - - - - - - - - - - - - - - R KDGT F S VN S - - - - - - - S P V KD - -
G T C S RNDE S - - - - Y I AK - - - P G AHRQKN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DV I LD - -
N I CVGGNKN - - - - V I S K - - - P T KKKGTN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - N TQQQ- -
N I CVGGVKG - - - - MVNK - - - P S T S K LNKK S FNGDD I VGVDD- - - - - - - - - - - - - - - - - - - - - - - - - -
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Appendix Figure III-3. Alignment of the characterized nuclear localization signal of Swi5 and other 
species.  Green box indicates the characterized nuclear localization signal in the Swi5 lineage. 

Coordinates of Ace2 are indicated in the alignment. Bolded species indicate species that we tested for 

their localization in Figure IV-6. 

 

Methods 

To simulate short linear motif evolution of different lengths (Appendix Figure III-1), we 

estimated a phylogenetic tree from Cdc20 (a protein conserved in all eukaryotes) using 
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AAML and under the global clock model. We used this tree with the program INDELIBLE 

(Fletcher and Yang 2009) to evolve short sequences of different lengths under the WAG 

model. These sets of simulated short linear motifs therefore correspond to the null model of 

the likelihood-ratio test. 

To simulate protein sequences under various models of evolution for the purpose of testing 

the non-central chi-squared correction to the likelihood-ratio test (Appendix Figure III-1), we 

used the program INDELIBLE (Fletcher and Yang 2009). The same phylogenetic 

relationship was always used: (((a,b),(c,d)),((e,f),(gh))) with equal branch lengths of 0.8 and 

a root length of 300 (codons or amino acids). We arbitrarily set the (e,f) clade to be the post-

WGD clade and performed likelihood-ratio tests on proteins simulated by the program. 

Sequences were evolved with the following parameters:  

1) WAG model,  

2) WAG model with power law distributed indels, with a=1.7 for inserts, and a=1.8 for 

deletions, with an indel rate of 0.1,  

3) Homogeneous codon models with codon stationary frequency equals to the Thermus 

aquaticus codon frequency with kappa=2, omega=1,  

4) Non-homogeneous codon models, and codon stationary frequency equals to the S. 

cerevisiae codon frequency for all the tree, except for the (e,f) clade which was set to the 

Thermus aquaticus codon frequency,  

5) same as 4) except with indels similar to test 2) except with indel rate of 0.05.  
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The likelihood-ratio test was then performed on the resulting proteins (or aligned first with 

MAFFT if indels were simulated). 
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Supplementary text 

High-throughput construction of homozygous and heterozygous diploids 

Diploids containing all combinations of the marked alleles can also be created (Appendix 

Figure IV-I). A previous approach to efficiently construct diploid strains used a plasmid that 

contained a haploid-specific promoter driving transcription of a counter-selectable marker 

and controlled expression of the HO endonuclease to alter the mating type of cells within a 

colony (Furukawa et al. 2011). In practice, this approach requires the transformation of a 

plasmid and requires strains that can only survive with URA3 complementation. Importantly, 

this approach does not allow the creation of heterozygous diploids which we believe are 

important when studying the evolution of beneficial mutations. To address this, we designed 

another strategy to create diploid strains, taking advantage of the previously applied SGA 

methodology. Briefly, SGA output strains (MATα,∆lys2, TRP1, yfg::marker) are mated with 

a ∆trp1 strain (MATa,LYS2,∆trp1) and diploids are selected on media lacking tryptophan 

and lysine. The cells are then sporulated, and a haploid of the opposing mating type is 

selected along with lysine prototrophy and tryptophan auxotrophy (MATa,LYS2,∆trp1, 

yfg::marker). We use lysine and tryptophan auxotrophy because the markers can be 

conveniently selected and counter-selected (see Chapter V, Methods). This creates a library 

of strains with identical marker as the original set of strains but of opposite mating type and 

with complementary auxotrophies. 
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Appendix Figure IV-1. SGA methodology to create diploids. The SGA methodology can be used to 

create homozygous or heterozygous diploids from starting SGA output strains. The SGA output strain 

(pink: MATα) is converted to the opposite mating type (blue: MATa) along with different 

auxotrophic markers. The converted strain can be effectively mated back to the original ordered array 

to create a diploid strain. 

Reproducibility in selection coefficient measurements 

Our high-throughput strain construction and fitness measurements allows several controls to 

be included that can assess the reproducibility of the selection coefficient measurements. 

Briefly, strains are constructed twice independently, marked with red and green fluorescent 

protein. Therefore, when performing high-throughput fitness measurements, competition 

between genotypes is performed twice on the 96-well plate (swapping the fluorescent 
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proteins between competitions). If our measurements are reproducible, we would expect very 

small variations between the two replicates. Indeed, on all the fitness measurements 

produced for this study, we observed an R2 of 0.9983 with a slope of -1.0014 between the 

two replicates. We were concerned that this correlation was driven by very sick genotypes 

(where we arbitrarily set the relative selection coefficient to 0.3) and assessed the correlation 

of our measurements without these. This resulted in a slightly lower correlation (R2 of 0.9) 

with a slope of -1.058 (Appendix Figure IV-2). To further quantify the variation between 

replicates, we also plotted the sum of the reciprocal measurements. Under ideal conditions, 

we would expect this sum to be zero. As expected for highly reproducible measurements, we 

observed that the median of this sum was -0.00042. However, we did observe cases where 

the measured fitness effects varied by a large amount (0.016 as the strongest deviation in 

measurements). These deviations occurred when strains were phenotypically sick and similar 

effects have been observed in previous use of the competitive fitness assay (see Breslow et 

al, 2008). 
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Appendix Figure IV-2. Variations in selection coefficient measurements between replicates.  

Competitions between genotypes with swapped fluorescent proteins produce highly reproducible 

fitness measurements. Sngr and Snrg are the measured selection coefficients for reciprocal 

experiments. The sum of the two measurements is expected to be zero for reciprocal measurements, 

and the observed distribution of the sum is represented in a quantile plot. 
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Appendix Figure IV-3. Spot dilution assay of yeast species on benomyl.  S.cerevisiae is highly sensitive 

to benomyl, and the sensitivity can be rescued using the single-copy protein from L. kluyveri. Species 

underlined have not undergone the whole-genome duplication, but still grow well on benomyl 

containing plates. 
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Appendix Figure IV-4. Sequence analysis of V. polysporus shows reversion to single-copy protein.  

Sequence alignment of the regions of interests indicates that V. polysporus reverted to a single-copy 

protein. Shown is a schematic of the phylogenetic gene tree of the studied proteins. Branch lengths 

are not to scale. The red line indicates the duplication event. Stars and boxes are as in Figure V-1B. 
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Appendix Figure IV-5. Schematic of constructs.  Various mutations of the single-copy proteins 

were assayed for fitness using spot dilution assays (all), or our high-throughput fitness assay 

(first four constructs). In red are the indicated mutations that abolish function of the 

functional element. KD: Kinase-dead. 
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