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Active site mutations that disrupt drug binding are an important mechanism of drug resis-

tance. Such resistance causing mutations impair drug binding, thus reducing drug efficacy.

Knowledge of potential resistance mutations, before they are clinically observed, would be

useful in a number of ways. During the lead prioritization phase of drug development, this

knowledge may direct the research team away from candidate drugs that are most likely to

experience resistance. In the clinical setting, knowledge of potential resistance mutations

could allow the development of treatment regimens, with drug cocktails likely to maximize

efficacy. In this thesis I present a structure-based approach to predict resistance and its

evolution. This method utilizes a two-pass search, which is based on a novel protein de-

sign algorithm, to identify mutations that impair drug binding while maintaining affinity

for the native substrate. The approach is general and can be applied to any drug-target

system where a structure of the target protein, its native substrate and the drug is avail-

able. Furthermore, it requires no training data for predictions and instead predicts resis-

tance using structural principles. Finally, I use approximate force-field calculations from

MMPBSA and simple assumptions about the relationship between binding energy and fit-

ness to build fitness landscapes for a target protein under selective pressure from either a

single drug or a drug cocktail. I use a Markov-chain based model to simulate evolution

on this fitness landscape and to predict the likely evolutionary trajectories for resistance

starting from a wild-type. The structure-based method was used to probe resistance in four
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drug-target systems: isoniazid-enoyl-ACP reductase (tuberculosis), ritonavir-HIV protease

(HIV), methotrexate-dihydrofolate reductase (breast cancer and leukemia), and gleevec-ABL

kinase (leukemia). This method was validated using clinically known resistance mutations

for all four test systems. In all cases, it correctly predicts the majority of known resistance

mutations. Furthermore, exploiting the relationship between binding energy, drug resistance

and fitness of a mutant, evolution was simulated on the HIV-protease fitness landscape. This

hybrid evolutionary model further improves the resistance prediction. Finally, good agree-

ment between these evolutionary simulations and observed evolution of drug resistance in

patients was found.
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Chapter 1

Introduction

1.1 Drug Resistance

Evolution of drug resistance is a leading cause of treatment failure, making it a serious

and growing public health risk (Knobler et al., 2003; Baddeley et al., 2013; Holohan et al.,

2013). Drug resistance is defined as the reduced ability of a drug to cure or suppress a

disease. At a molecular level, the Red Queen hypothesis (van Valen, 1973) suggests that

as a patient begins a particular treatment regimen, adaptations occur in the drug targets

(bacteria, virus or tumor cells) that allows them to survive and function in presence of

the drug. This evolution in target cell population for survival under adverse circumstances

i.e. under drug pressure results in reduced efficacy of the drug, thereby conferring drug

resistance. Drug resistance is prevalent in a vast majority of diseases ranging from bacterial

and viral epidemics such as malaria, tuberculosis and AIDS, to tumor related diseases such

as cancer (Le Bras and Durand, 2003; Baddeley et al., 2013; Holohan et al., 2013).

Since evolution of resistance is a primary cause of treatment failure, various strategies are

used in clinical practice to combat it. One such clinical strategy is the change of treatment

as resistance to the drug being administered arises. This is often the case for diseases

such as tuberculosis and malaria, where after the failure of first-line (first administered)

drugs, second-line and third-line drugs are used (Miller et al., 2013; Zumla et al., 2013).

Unfortunately this recourse to second and third-line drugs, while effective in some patients,

is far from optimal, since first line drugs are often selected as they are effective in a large

section of population with minimal side effects, making them the ideal drug candidates

in the absence of resistance. An alternate clinical strategy to combat drug resistance in

patients involves the use of multiple drugs or of drug cocktails (Majori, 2004; Spanagel and
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Vengeliene, 2013). These drug cocktails are expected to increase efficacy of treatment and

make appearance of drug resistance less likely. Unfortunately, the use of drug cocktails can

correspond to an increase in side effects in patients. Furthermore, resistance often evolves to

drug cocktails as well, impairing their efficacy (Daniela et al., 2003). Thus drug resistance

is often reminiscent of an evolutionary arms race between the drugs or treatment regimens

and the drug target. As the treatment regimen is changed to inhibit the (resistant) targets,

mutations in the drug target arise to enable an escape from therapy.

Despite efforts to overcome resistance in clinical practice, many drug targets develop re-

sistance to multiple drugs, leading to the appearance of highly resistant strains. An example

of this is the emergence of the highly resistant Mycobacterium tuberculosis strains known as

the multi drug resistant or MDR TB. These MDR TB strains are resistant to both Isoniazid

and Rifampicin, which are first-line drugs for TB, thereby necessitating the use of second

line drugs for the treatment of MDR TB (Baddeley et al., 2013). Often these second-line

drugs are more expensive compared to Isoniazid and Rifampicin and cause numerous side

effects in the patients (Baddeley et al., 2013). Furthermore, populations that are immuno-

compromised e.g. patients suffering from HIV, are much more likely to acquire and retain

these resistant strains of tuberculosis, often causing fatalities (Daley and Caminero, 2013).

To further complicate matters, these MDR TB bacteria give rise to increasingly resistant

strains that are resistant to some of the most effective second-line anti-TB drugs as well,

leading to a form of TB known as extensively drug-resistant tuberculosis or XDR TB. Rise

of these XDR TB strains has caused serious concerns about the treatability of a future TB

epidemic (LoBue et al., 2009; Daley and Caminero, 2013).

Currently, attempts to control and overcome drug resistance are focused at the clinical

level and are executed once resistance is observed. However, a priori knowledge of resistance,

i.e. before it arises, could be beneficial in a number of ways including lead prioritization

during drug development and drug target selection. As pathogens become resistant to the

existing drugs, development of new and innovative drugs can help disease management.

Unfortunately this option is associated with high costs and risk. The cost of bringing a

new drug to the market (i.e. from lead discovery to clinical trials and final approval) ranges

anywhere between $870 million to $1.8 billion (DiMasia et al., 2003; Adams and Brantner,

2006). If resistance to the new drug arises quickly, its efficacy is compromised making the

return on investment of the new drug development questionable in this scenario. Under these

circumstances, a priori knowledge of resistance can be used to prioritize drug leads (lead

compounds) during development such that a lead compound against which it is difficult to
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develop resistance is favoured compared to another lead compound. In addition to aiding lead

prioritization, such a priori knowledge of resistance can also help in prioritizing drug targets.

Drugs often aim to inhibit an essential functional protein of the disease cell (bacteria, virus or

tumor), thereby suppressing its activity. Thus, in cases where more than one potential drug

target proteins exist, a protein that cannot evolve resistance easily would be a preferred target

for drug development. In addition to drug development, a priori knowledge of resistance can

aid treatment design as well. Knowing what resistant forms are likely to evolve for a given

patient and different drug regimes, we can potentially design better treatment strategies that

minimize the evolution of resistance.

As previously noted, a priori knowledge of resistance can be beneficial in a number of

ways. However, acquiring this knowledge entails significant and possibly inhibiting scale of

wet lab effort. For instance, in order to determine the effect of the different mutational

changes happening in a target bacterial cell on drug resistance, we would need to engineer

these mutant bacteria in the wet lab, followed by assays to quantify and measure the effect

of these mutations on drug efficacy. Since, an exponential number of such mutant pathogens

exist, exhaustive wet lab experiments to predict resistance are not feasible. On the other

hand, a computational method that can predict the effect of these mutant pathogen forms

on drug resistance is a more efficient option. However, it is important to note, that the aim

of such computational approaches is not to replace, but to supplement and guide the wet

lab efforts. For instance, a computational approach can select a small set of highly likely

resistance conferring mutant bacteria. Wet lab experiments can then be performed on this

small set, as opposed to the exponential number of mutants, to confirm drug resistance.

The aim of this thesis is to develop computational models that allow us to predict drug

resistance a priori i.e. before it arises. The methods presented in this thesis are not intended

as a replacement for wet lab efforts. Instead, they are intended to guide and supplement

such efforts. The rest of this chapter is organized as follows. First, a brief biological overview

providing necessary biological background to understand drug resistance is provided. Second,

the approach taken in this thesis and its chapter contents are described.

1.2 Biological Background

Cells of living organisms contain molecules known as DNA. These DNA molecules encode

genetic information as a sequence of nucleotides (one of A, T, G or C). Thus, a simple

representation of DNA can be the sequence of nucleotides that compose it. For instance, a
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Table 1.1: Amino Acid Codes. Single and three letter codes for all 20 naturally occurring amino
acids are provided.

Amino Acid Three Letter Code Single Letter Code

Alanine ala A
Cystein cys C

Aspartic Acid asp D
Glutamic Acid glu E
Phenylalanine phe F

Glycine gly G
Histidine his H
Isoleucine ile I

Lysine lys K
Leucine leu L

Methionine met M
Asparagine asn N

Proline pro P
Glutamine gln Q
Arginine arg R
Serine ser S

Threonine thr T
Valine val V

Tryptophan trp W
Tyrosine tyr Y

sequence such as ATGCAAATCG can represent part of a DNA molecule. The genetic infor-

mation encoded by the DNA controls various cellular functions and determines phenotype

via genes. These genes are stretches of DNA and its functional information carrying units.

Before its function can be performed in the cell, the gene sequence has to be translated

into the protein encoded by that gene. Like DNA, a protein is also a large molecule. However,

instead of nucleotides, proteins consist of a single chain of amino acids. This chain often folds

into a distinct 3D structure in the cell to allow the protein to perform its various functions.

Similar to the gene that encodes it, a protein can also be represented by its amino acid

sequence. However, unlike a gene sequence that has a four-letter alphabet consisting of the

nucleotides A,T,G or C, the protein sequence alphabet is twenty-letter, where each letter

represents one of the twenty amino acids (see Table 1.1 for a list of amino acids and their

single letter codes).

As mentioned previously, the information contained in the gene has to be converted into

the protein it encodes in the cell. The process where a gene produces its encoded protein
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Figure 1.1: Gene Expression A gene is transcribed into RNA. This RNA is then translated
into a protein sequence which folds into the 3D structure of the protein. The folded protein
then performs a number of cellular functions.

is called gene expression. Gene expression involves two steps: transcription and translation.

During transcription, the DNA sequence of the gene is copied into an intermediate RNA se-

quence by a molecule known as the RNA polymerase. During translation, this intermediate

sequence is then decoded by the cell to produce the resulting protein’s amino acid sequence

(also known as a polypeptide). Finally, this protein sequence folds into its 3D structure.

During gene expression, stretches of three nucleotide basis in the DNA sequence are trans-

lated to a single amino acid in the resulting protein sequence. (Thus the coding sequence

of the gene is thrice the length of the protein sequence it encodes.) These stretches of three

nucleotides are also known as codons. Since there are four nucleotides, there are 43 = 64

distinct codons. As these 64 codons encode for 20 amino acids, there is redundancy in the

genetic code implying that many codons encode for the same amino acid. The process of

gene expression is illustrated in Figure 1.1.

Drug Mechanism The translated proteins perform a vast range of functions within the cell

including DNA replication, catalysis of reactions, molecule transport, stimulus response etc.

In order to perform these functions, the protein often interacts with other small molecules

known as substrates or ligands. These ligands interact with the protein by binding it at
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Figure 1.2: HIV Protease Left: HIV protease bound to its natural substrate (the peptide
shown in magenta) (PDB ID:1KJF,(Prabhu-Jeyabalan et al., 2002)) Right: HIV protease
bound to a protease inhibitor. (PDB ID: 1EBY, (Andersson et al., 2003)) Since the active
site is occupied by the PI, HIV protease can no longer bind its natural substrate. Thus, the
drug inhibits protease function.

a specific interaction location, also known as the active site (or alternately a binding site),

and the resulting protein-ligand structure is known as a protein-ligand complex or simply

a complex. The HIV protease protein is presented here as an example. The task of HIV

protease in the virus is to cleave newly synthesized polypeptides at appropriate location so

they can fold into their 3D structures. In order to perform this function, the HIV protease

binds peptide ligands.

The task of a drug is often to suppress or kill the disease cell, e.g. by inhibiting a function

necessary for its survival or replication. In order to achieve this, the drug is often designed to

bind an essential protein and prevent it from binding its natural substrate, thereby inhibiting

the natural function of the protein. An example of this is a class of drugs known as the

protease inhibitors (PIs) aimed at inhibiting the function of HIV protease. These PIs bind

the HIV protease at the peptide binding site. Since the binding site is occupied by the

drug, the protease can no longer bind its natural substrate, i.e., the peptides. Thus, the

polypeptide chains cannot be cleaved by the drug-bound protease. Since cleaving of the

polypeptides by HIV protease is essential for the virus’s ability to replicate and infect cells,

its inhibition by the PIs renders the virus uninfectious (see Figure 1.2).
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1.3 Mechanisms of Drug Resistance

In general, resistance to a drug can be acquired in one of four ways: mutations in non-target

genes, reduced effective concentration of the drug in the cell, modification of the drug by

the pathogen and finally, by point mutations in the target protein (Rosenzweig, 2012; Konig

et al., 2013). These mechanisms are briefly described below.

Perhaps the most direct and prevalent method of drug resistance is through acquisition

of point mutations in the drug target protein. A point mutation (or mutation) is a change

in the DNA sequence of a gene encoding for the protein. These mutations in the gene’s

DNA sequence consequently alter the amino acid sequence of the translated protein, thereby

altering its structure and impairing its binding with the drug. While these mutations can

be present anywhere in the target protein, the most direct and well understood impact is

caused by the mutations located within the drug binding site (Ode et al., 2006). On the

other hand, mechanisms of the compensatory mutations which are located away from the

binding site and do not directly alter drug binding are more ambiguous and varied, possibly

including large scale structural changes or a change in protein dynamics (Ode et al., 2005;

Rosenzweig, 2012). In addition to point mutations in the genes encoding for the drug target,

mutations in other genes can cause drug resistance indirectly (de Vos et al., 2013). This is

possible in a number of different ways. For instance, consider a scenario where a cellular

function can be performed by two different proteins A and B. If protein A is the drug target,

any change in the gene encoding protein B which increases its expression (indicating that

more of B will be produced in the cell) will offset the fact that protein A has been inhibited

by the drug. The cellular need for protein A is thereby compensated by an abundant protein

B, causing drug resistance. Other than mutations, modification of the drug structure by

a protein within the cell can inactivate the drug and cause drug resistance. An example

of this mechanism is the penicillin resistance exhibited by some bacteria. These penicillin

resistant bacteria produce a protein called beta-lactamase that alters penicillin’s structure

through hydrolysis. As a result of this hydrolysis, the drug undergoes a structural change

that destroys its antibacterial properties, causing penicillin resistance (Drawz and Bonomo,

2010). Finally, another fascinating mechanism by which cells acquire drug resistance includes

the use of efflux pumps. An efflux pump is a protein that is responsible for extrusion of toxic

substances. Since a drug is a toxic substance for a pathogen cell, these efflux pumps remove

the drug from the cell as well. In cases where the gene expression for efflux pumps is

increased, indicating increased efflux activity in the cell, more of the drug is removed from
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the cell. This results in reduced uptake and reduced concentration of the drug in the cell,

thereby causing drug resistance (Konig et al., 2013). Figure 1.3 illustrates this process.

Measuring Drug Resistance In the wet lab, the degree of drug resistance conferred is

measured by an IC50 value. This IC50 value denotes the concentration of the drug needed

to reduce the activity of the drug target by 50%. The intuition is that as a mutant causes

drug resistance, the amount of drug needed to reduce its target protein’s activity increases,

thereby increasing the IC50 for a resistant mutant.

Acquisition of drug resistance is a complicated biological process that is not understood

fully. A number of confounding factors influence our understanding of its mechanism e.g.

effects of the human immune system on drug resistance, effects of drug dosage and drug

metabolism in humans etc. The methods described in this thesis do not address these

aspects of drug resistance. Furthermore, our understanding of most mechanisms of drug re-

sistance and of the biophysical and biochemical laws governing them is limited. For instance,

our knowledge of gene interaction networks in different pathogens or humans is sparse. It

will therefore be extremely challenging to accurately predict the effects of over expression

of one mutant gene on another to acquire drug resistance. Similarly, most efflux pumps

are not specific to drugs i.e. they are likely to extrude a number of potentially beneficial

cellular products along with the drug as well. However, without complete knowledge of

these extruded cellular products (and their impact/function in the cell), it is not possible to

accurately quantify the effects of efflux pump over expression on drug resistance. However,

despite our limited understanding of some of the more elusive mechanisms of drug resis-

tance, one the most direct and common ways in which drug resistance is acquired is by point

mutations in the drug target. Often, these point mutations are present within the active

site of the target protein, thereby having direct influence on drug and substrate binding.

Thus, to predict drug resistance, this particular mechanism of resistance acquisition is a

potentially attractive starting point. However, computational methods that are capable of

predicting such resistance a priori in a drug-target system are limited. In addition, these

existing methods rely on the knowledge of previously observed resistance in a drug target to

predict further resistance. Thus, these methods are disease-specific and are not applicable

to drug targets where such knowledge is sparse such as in emerging diseases or new drug

targets.
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Figure 1.3: Mechanisms of Resistance Top: The drug (red) inhibits the wild type protein
on the left by binding its active site. The altered local structure of the mutant protein on
the right prevents this drug binding causing resistance. Bottom: An efflux pump (green)
pumps out the drug from both the cytoplasm and periplasm, reducing drug concentration
in the cell and causing drug resistance.

1.4 Thesis Outline

In this thesis, computational methods for predicting drug resistance a priori i.e. before it

arises are presented. I present computational approaches that will model drug resistance

arising due to point mutations in the drug target’s active site. The chapter details for this

thesis document follow.

The methods presented in this thesis borrow heavily from different areas in Computer

Science. Chapter 2 contains sufficient background for the reader to understand the contents

of this thesis. The chapter begins with a summary of previous computational approaches

that attempt to predict resistance. Next, since the methods presented in this thesis are

based on the search and score mechanisms from computational protein design, Chapter 2

also contains a review of these methods and related concepts. Finally, the chapter closes
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with a description of Markov processes and computational models of evolution.

In this thesis, I aim to develop an algorithm that can predict resistance in any given

drug target from structural principles and does not rely on existing data. To achieve this,

resistance acquisition is modelled as a protein redesign problem. However, existing protein

design approaches do not extend easily to the resistance problem. A resistance conferring

mutant often has a small number of mutations relative to the wild type (Parikh et al., 1999;

Arnold et al., 2005; Volpato et al., 2007a; Bang et al., 2011; Chen et al., 2013). Existing

protein design algorithms are not well suited to search for these restricted mutants. To ad-

dress this issue, Chapter 3 introduces restricted dead-end elimination (rDEE), which is a

protein redesign algorithm tailored for restricted protein design problems such as those of

resistance. In Chapter 3, the rDEE algorithm is explained and a number of increasingly effi-

cient extensions are derived. The chapter closes with a proof of correctness for the algorithms

presented.

Chapter 4 elaborates the algorithm to search and score resistance mutations in an arbi-

trary drug target using the rDEE algorithm from Chapter 3. A hierarchical methodology that

employs rDEE, as the first of a two pass search-and-score algorithm followed by improved

scoring using enhanced molecular modelling, is described. I use this method to predict resis-

tance in four drug target systems including isoniazid-enoyl ACP Reductase (tuberculosis),

Gleevec- ABL Kinase (leukaemia), Methotrexate-DHFR (chemotherapy) and Ritonavir-HIV

Protease (AIDS). This chapter presents the predicted results and compares them to clinically

determined resistance mutations for the four systems studied.

Chapters 3 and 4 focus on the development of computational methods to predict drug

resistance from structural principles. In Chapter 5, resistance is modelled as an evolutionary

process that takes a drug sensitive wild type protein to a drug resistant mutant. Chapter

5 uses the HIV protease gene from HIV-1 virus as an example system to study evolution

of resistance to ritonavir. Highly likely evolutionary trajectories for resistance under riton-

avir are predicted. Furthermore, the chapter includes an analysis of the evolution of drug

resistance under drug cocktails and for varying levels of drug adherence by patients.

Finally, Chapter 6 concludes this thesis with a discussion of its overall contributions,

results and limitations. Future extensions to this work and possible directions are also

included.
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Chapter 2

Background

The appearance of drug resistant mutants is a serious health issue today. A priori knowledge

of resistance for drug targets can help combat drug resistance in various ways. To this

effect, a number of computational studies has been aimed at predicting whether a mutant

confers resistance. This chapter begins with a brief overview of these previous works. In

addition, this thesis has been influenced by work in fields of computational protein design

and computational evolution. This chapter also provides sufficient background for the reader

in these areas.

2.1 Previous Computational Approaches to Predict Re-

sistance

Existing works that aim to predict resistance in drug targets can be broadly categorized

into two categories: sequence-based and structure-based. Of these, the sequence-based ap-

proaches work by exploiting either the gene or amino acid sequences of the drug target

protein. Often, these sequence-based approaches are learning or inference techniques insofar

that they rely on existing (albeit partial) data to train a computational model to predict

resistance. On the other hand, structure based approaches rely on the 3D structure of the

drug target protein to probe resistance. Previous works in both these categories are further

described below.

11



2.1.1 Computational Sequence-Based Approaches

In general, given a query sequence and a drug, the goal of the sequence-based learning

approaches is to classify the query sequence as either resistant or susceptible. In order to

achieve this, these sequence-based approaches use existing data and train a learning model

to learn the correlation between different mutations and their effects on drug resistance.

Therefore, sequence-based approaches are dependent on the availability and abundance of

training data that links mutant sequences to a resistance phenotype (i.e. if the mutant

sequence is resistant or susceptible). Due to this limitation, attempts at predicting resistance

using these approaches have been mostly limited to AIDS where a wealth of training data is

available.

AIDS is a disease affecting the human immune system and is caused by the human

immunodeficiency virus or HIV. The HIV pol gene encodes both the HIV protease and HIV

reverse transcriptase proteins which are the molecular targets for both the protease and

reverse transcriptase inhibitors. Drug resistance in HIV often arises as a result of mutations

in this pol gene, making it a target for frequent genotypic resistance testing. A large set of

such genotypic sequence data with corresponding phenotypic results is available through

the Stanford HIV Drug Resistance Database (HIVDB) (Rhee et al., 2003; Shafer, 2006).

The viral gene sequences represent the genotype whereas the phenotype is measured as the

mutant’s effect on resistance or its resistance factor (RF). This resistance factor is defined

as the fractional change in the mutant virus’s IC50 compared to the wild type virus IC50.

(For a description of IC50, see Chapter 1).

RF =
mutantIC50

wildtypeIC50
, (2.1)

Thus, using this HIVDB data linking the HIV genotype with resistance phenotype, the

sequence-based resistance prediction algorithms for HIV attempt to predict the logarithm

of RF values for a given query viral sequence. A few of these works pertaining to various

drug targets and drugs for HIV are discussed briefly.

From a set of 650 matched genotype-phenotype pairs, (Beerenwinkel et al., 2003) con-

structed regression models for the prediction of phenotypic drug resistance from the HIV

genotype. For each queried mutant sequence, their model provides a probability of mem-

bership in the resistant population. Another work using regression models for HIV drug

resistance prediction comes from (Rhee et al., 2006). The authors used five statistical learn-

ing methods including least-squares regression, least angles regression, decision trees, neural
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networks and support vector machines to relate the HIV reverse transcriptase and HIV

protease mutations to drug susceptibility for 16 anti-HIV drugs. The authors found the

regression methods, in particular least angle regression, to be the best learning model for

the prediction of drug resistance in HIV. A more recent study employing regression for resis-

tance prediction comes from (van der Borght et al., 2011). The authors used both linear and

cross-validated stepwise regression to predict resistance to various HIV reverse transcriptase

inhibitors. The study also identified novel mutants associated with resistance to the non-

nucleoside reverse transcriptase inhibitors (NNRTI) drug class. These novel mutants were

further confirmed to be resistance conferring in the wet-lab by generation of site-directed

mutants and by determining the in vitro resistance levels. (Pasomsub et al., 2010) used Ar-

tificial Neural networks (ANNs) to predict HIV resistance phenotype from genotypic data.

The study used 7500 pairs of HIV sequences with corresponding phenotypic fold change

values for 14 drugs to train and test their model. A set of amino acid mutations known to

be associated with resistance to HIV inhibitors was used as input to the training as well.

Their results were comparable to other interpretation systems such as geno2pheno (Beeren-

winkel et al., 2003). Similarly, (Heider et al., 2010) also used ANNs and random forests for

the prediction of bevirimat resistance in HIV. In addition, they identified target mutation

positions which are resistance hotspots. Another HIV study for protease inhibitor lopinavir

was conducted in (Bembom et al., 2009). The authors used targeted maximum likelihood

estimation to determine mutants which are significant contributors to lopinavir resistance.

The learning methods described here often report high accuracies of prediction ranging from

90-96 percent on their test sets, often coupled with reasonable true positive rates (where

reported). However, it is worth noting that high accuracy alone can be misleading in this

context and should not be used to assess the difficulty of the resistance prediction problem.

As only a small number of possible resistance mutants exist, a naive classifier can assign

all mutants to be drug-sensitive and still achieve high accuracy. Thus, a challenge for resis-

tance prediction methods is often to maintain a high true positive rate while minimizing the

number of false positives.

Despite good predictive abilities, often the learning methods for HIV resistance prediction

described above cannot explain the reasons why a particular query mutant is resistance

conferring or susceptible. For instance, it is often not clear what mutations are enough to

cause resistance or what interactions occur between mutations to cause either resistance or

susceptibility in the mutant. A study by (Zhang et al., 2010) attempted to explain these

interactions in the HIV protease. Using Bayesian statistics and probabilistic modelling, they
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designed a statistical procedure to detect mutations associated with drug resistance. More

importantly, their model predicts interaction patterns between different single point mutants.

For instance, the authors reported that under their model, mutations at positions 46 and 54

of the HIV protease are conditionally independent given the amino acid at position 82.

The methods described previously use the gene or protein sequence of HIV virus to

train the learning models and, to subsequently predict resistance. However, another class

of sequence-based methods performs proteochemometric modelling of the HIV protein se-

quences and inhibitors to predict resistance. In these methods, each gene or protein sequence

is converted into a set of descriptors that describe the chemical properties of the protein.

A similar process is repeated for the ligands i.e. the drugs and the interactions between

the ligand and protein are inferred based on complementarity of the chemical features. The

model is then trained to correlate these chemical descriptors with the susceptibility data.

(Junaid et al., 2010) and (Lapins et al., 2008; Lapins and Wikberg, 2009) have applied such

proteochemometric modelling to HIV reverse transcriptase and HIV proteases respectively.

The salient feature of the model is that since both the protein and inhibitor are somewhat

generalized using their chemical descriptors, a model trained for inhibitor A can potentially

be used to make predictions for a chemically similar inhibitor B for which the model has no

training. However, in a case where novel inhibitors are found and similarity between drugs

is minimal, the model accuracy will decline.

In addition to these computational learning approaches, rule-based systems that rely on

expert knowledge of resistance are available for well studied systems such as HIV. These

rule based systems rely on clinical data and human expert knowledge about drug resistance

for the disease in question to determine rules that estimate the influence of mutations on

single drugs or on drug combinations. At the time of writing, five such systems are publicly

available for HIV and include: Agence Nationale de Recherche sur le SIDA (ANRS) (Meynard

et al., 2002), HIV RT and Protease Sequence Database (HIVDB) (Shafer et al., 1999), Rega

Institute (Rega) (van Laethem et al., 2002), Visible Genetics (VGI)(Reid et al., 2002) and

HIV-GRADE (Obermeier et al., 2012).

2.1.2 Computational Structure-Based Approaches

Unlike sequence based approaches of the previous section, structure-based approaches use

structure of the drug target protein and probe the binding interactions between a drug and

this target protein. These methods often use available protein-inhibitor complex structures,
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docking programs, molecular modelling programs and molecular dynamics. In general, start-

ing with a wild type structure, structure-based methods introduce mutations in the target

protein using modelling software. This step is followed by energy minimization and molecu-

lar dynamics of the target structure to incorporate any structural changes introduced by the

mutation; binding energies between the drug and mutant are then calculated via docking

algorithms or other molecular mechanics methods. Finally, a scoring function is used to

evaluate the resistance conferring ability of these mutant proteins. These scoring functions

often use the decreased drug binding with the mutant protein as an indication of resistance

conferring ability.

A number of studies fall under this category. For instance, (Chen et al., 2001) used dock-

ing algorithms to study resistance in HIV protease, HIV reverse transcriptase and enoyl ACP

reductase from Mycobacterium tuberculosis. They introduced specific single and double point

resistance mutations in these drug target proteins using SYBYL (a molecular modelling pro-

gram). Receptor-ligand binding was then studied using docking algorithms. They note that

in majority of the cases, the energy shift in the binding energy of the mutant-protein-ligand

was consistent with clinically known resistance data, indicating that resistance mutations

disrupt drug binding, whereas those not conferring resistance might actually improve drug

binding. Similarly, using molecular dynamics (Hou and Yu, 2007) studied the effect of the

V82F/I84V double mutant of HIV protease on the protease inhibitor amprenavir and two

novel inhibitors. The authors found that the double mutant distorts the binding site geome-

try, thereby weakening drug interactions between the mutant protein and protease inhibitors.

Another resistance study for enoyl ACP reductase in Mycobacterium tuberculosis comes from

(Wahab et al., 2009). The authors studied the S94A mutation that occurs in enoyl ACP

reductase active site and confers resistance to isoniazid in tuberculosis patients. Molecu-

lar docking and molecular dynamics simulations were used to study and compare isoniazid

binding to the wild type and the S94A mutant protein. The authors reported that the S94A

mutation makes the mutant protein more mobile, impairing drug binding and causing isoni-

azid resistance. (Zhu et al., 2009) studied the mechanism of resistance for four single point

mutants which make grass weed populations resistant to ACCase herbicides. A multidrug

resistant mutant of HIV-1 protease was studied using molecular dynamics and NMR relax-

ation by (Cai et al., 2012). Their comparative analyses from both method shows that the

enzyme dynamics are affected by the mutant. The authors hypothesized that these alter-

ations in enzyme dynamics likely modulate the balance between protease substrate turnover

and drug binding, and hence confer drug resistance. Finally, more recently, (Mittal et al.,
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2013) carried out structural and binding thermodynamics to investigate the effects of mu-

tations at residue 50 of HIV-1 protease on binding to atazanavir and amprenavir. The

authors report a decrease in binding entropy, which is compensated by enhanced enthalpy

for atazanavir binding to I50V variants, and amprenavir binding to I50L variants leading to

hyper susceptibility.

The structural studies mentioned in this section manipulate and analyze the structural

interactions of a drug and mutant protein to infer resistance in a drug target. Thus, the

biochemical and structural causes of resistance through particular mutations can be explained

using these structural methods. Furthermore, unlike the sequence-based methods from the

previous section, these structure-based studies do not rely on extensive training data for the

systems being studied. However, docking and molecular modelling is performed on specific,

predefined mutants, and are not inherently search methodologies. Thus, these structural

studies have been limited in modelling and analyzing a select number of predefined mutations,

and do not perform an extensive search for possible resistant mutants for a drug target.

2.2 Introduction to Computational Protein Design

Computational protein design methods are used to engineer novel biological function in a

target protein, to change its thermostability, or to change its binding profile (Ambroggio

and Kuhlman, 2006; Ashworth et al., 2006; Chakrabarti et al., 2005; Desjarlais and Handel,

1995; Dwyer et al., 2004; Hu et al., 2008; Kraemer-Pecore et al., 2003; Kuhlman et al., 2003;

Looger et al., 2003b; Marvin and Hellinga, 2001; Offredi et al., 2003; Shimaoka et al., 2000;

Slovic et al., 2004). The design procedure generally starts with an input template or protein

backbone structure which has been stripped of its amino acid side-chains. A computational

protein design (CPD) algorithm then aims to find the amino acid sequence(s) that can best

adopt the target 3D fold/structure specified by the input template and posses the desired

change in function or binding profile. The fitness of a sequence is evaluated by the energy

associated with it as it adopts the target structure. The goal of a CPD algorithm is then to

search for the optimal solution or the Global Minimum Energy Conformation (GMEC). (For

the rest of this section, the terms energy and fitness are used somewhat interchangeably.)

The search for the GMEC in the protein sequence-structure space is a daunting task

which has been shown to be NP-hard (Pierce and Winfree, 2002). For a target protein of

size n and the 20 naturally occurring amino acids, there are 20n distinct amino acid sequence

choices. Furthermore, in the structure of naturally occurring proteins, the amino acids side
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Figure 2.1: Rotamers Two rotameric conformations of phenylalanine side chain are dis-
played (blue). Left: Selection of the phenylalanine rotamer during protein redesign causes
a steric clash with the ligand (yellow). Right: An alternate rotamer of phenylalanine avoids
the steric clash with the ligand.

chains can adopt an orientation which is sampled from a continuous space. Therefore, each

sequence corresponds to an infinite and continuous structure space. However, to approximate

this behavior, rotamer libraries (Lovell et al., 2000a; Ponder and Richards, 1987) are used

in protein design which discretize this continuous space by sampling the most probable side

chain orientations or conformations for each amino acid (rotamer) (see Figure 2.1). Thus a

degree of structural flexibility is incorporated in the protein design experiments, and each

amino acid sequence corresponds to a finite, yet combinatorially large, discretized structural

space. After the inclusion of rotamer libraries of size m (where m represents total number

of rotamers for all amino acids), the total number of possible sequence-structure solutions or

conformations in the search space becomes mn which is prohibitively large. It is also worth

northing that naturally occurring proteins are relatively long, containing on average 200

amino acids. Therefore, for many redesign experiments, only a small, specific part of the

target protein is selected for redesign, such as a hydrophobic core containing 30 residues or

an active site containing 10 residues (Looger et al., 2003b). However, even for modest design

goals as these, the search space size prevents exhaustive enumeration, since for a rotamer

library of size m = 100, there are 10030 and 10010 possible solutions for the aforementioned

cases.

It is evident that the search space for even a modest protein design experiment is large

enough to prevent exhaustive enumeration and evaluation of all solutions. Therefore, various
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search and optimization methodologies are used for efficient solution of the protein design

problem. These methods can be broadly categorized into stochastic and deterministic strate-

gies. The former includes genetic algorithms (GA) and Simulated Annealing Monte Carlo

(SA) methods, whereas the latter is composed of the Dead-End Elimination (DEE) based

search strategies. The rest of this section details previous work in each of these categories.

2.2.1 Stochastic Computational Protein Design

The stochastic strategies include genetic algorithms (Holland, 1975; Holland, 1992; Fogel,

1998) and simulated annealing (Kirkpatrick et al., 1983; Cerny, 1985; Thomas et al., 2009).

Brief details of both methods are described below.

Genetic Algorithms

In simple terms, genetic algorithms are search heuristics that draw on the concepts of natural

selection and evolution to model optimization and search problems. A genetic algorithm is

initialized with a parent generation. Each member of a generation is called a genome and

encodes a valid solution. (It is worth noting that although the term genome seems to

imply a sequence, the genomes are just possible solutions in a domain and often represent

a candidate protein structure in protein design.) The parent generation is then evolved

towards better solutions (as per a fitness or energy function) via the processes of mutation

and crossover. The next generation of genomes then undergoes selection and forms the

subsequent parent generation. This process continues until either the maximum number of

generations specified has been examined, or the current population has members with an

acceptable level of fitness, or the process converges to a single solution. The operators of

mutation and crossover are predominantly used to create new generations by introducing

small changes to or by randomly combining genomes from the parent generation. Each of

these operations is described below:

Mutation: Mutations are small changes in the parents to ensure genetic diversity during

the algorithm run. The classic example of a mutation operator involves a probability that

an arbitrary bit in a parent genome will be changed from its original state. The mutation

operator is analogous to the biological mutations.

CrossOver: New solutions that differ significantly from the parents can be generated

by combining the parent genomes by cross over. Single or multiple cross over points are

chosen. (The crossover points can be chosen randomly or by some pre-decided strategy.)
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The crossover operator then generates genomes containing distinct parts that entirely belong

to one parent or the other.

After new generations have been created by mutation and crossover, each new generation

undergoes the process of selection which decides the genomes that will comprise the next

parent generation for further breeding/evolution. Selection can be performed in many dif-

ferent ways. For instance, after the fitness function has been evaluated for each individual

genome, the best genome out of a randomly selected subset can be chosen each time until

the desired generation size is obtained (tournament selection).

Genetic algorithms can be easily extended to protein design and have thus been applied

to protein design in various studies (Desjarlais and Handel, 1995; Jones, 1994; Tuffery et al.,

1991; Voigt et al., 2000a; Xia and Levitt, 2004; Yang and Liu, 2006; Thomas et al., 2009).

Each position in a genome can adopt m distinct values where m is generally the rotamer

library size. Thus, each genome is a rotamer assignment for the target structure. The fitness

of each solution can be calculated via an energy function which indicates the likelihood that

the current rotameric and amino acid assignment folds into the target 3D structure. In

the past, studies have also experimented with various simple fitness functions such as those

only considering hydrophobicity or those only concerned with avoiding steric clashes in the

target protein structure. Use of such simplistic fitness functions eases the computation but

often presents mixed results such as suggested solutions where the amino acid composition

does not conform to the naturally occurring proteins at all, instead predominantly using one

amino acid such as Histidine. Use of sophisticated fitness functions, such as those better

approximating the free energy of the target structure (by including terms like dihedrals,

electro statics, vdW etc) will likely see better results.

Monte-Carlo Simulated Annealing

In the simulated annealing approach, random walks are created in the search space of inter-

est. These walks are generated by creating successive candidate solutions by making small

changes to the current candidate solution. The changes are accepted using an acceptance

criterion such as the Metropolis Criterion (MC). Using MC, if the changes optimize the

current solution i.e. if the energy of the new solution is lower (or fitness is higher) then

the new solution is accepted. In order to prevent the algorithm from getting stuck in bad

local minima prematurely, some potentially negative changes are also accepted where the

new candidate solution is higher in energy (lower in fitness) as compared to the current so-

lution. The simulated annealing process borrows heavily from statistical mechanics theory.
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The process is described below in relation to its application to protein design (Godzik, 1995;

Hayes et al., 2002; Hellinga and Richards, 1994; Jiang et al., 2000; Kuhlman and Baker,

USA; Nilges and Brunger, 1991; Shakhnovic and Gutin, 1998). The redesign process begins

from a random sequence. The energy of this sequence Ei (fitted into the target structure)

is calculated. Random mutations (amino acid changes or just rotameric changes) are made

to this sequence to generate a new candidate solution. The energy Ei+1 of the new solution

is then computed. If the difference of the energies ∆E = Ei+1 − Ei is negative (indicating

the new solution has a lower energy than the current one and hence better fitness), the

mutations are accepted. On the other hand, if the energy difference is positive, indicating

the new solution has a higher energy than the current solution, the new solution is accepted

by evaluating the metropolis criterion (MC). The MC for any conformation c is evaluated

according to the Boltzmann distribution and is accepted if and only if:

p < e−∆Ei/κβTn (2.2)

where p is the acceptance probability, which is a random number between 0 and 1, Tn is

the annealing temperature and κβ is the Boltzmann constant. As can be seen from the MC,

at higher temperatures, the probability that unfavorable changes made to a solution will be

accepted is higher. This allows the algorithm to escape from local minima as the system

is heated, by sampling a larger area of the search space. As the system cools down, the

probability that unfavorable changes will be accepted becomes smaller, allowing the system

to converge. The search procedure starts with the system at a higher annealing temperature

which is slowly cooled down. At each temperature, a number of trials are carried out until

the system equilibrates or converges.

Both simulated annealing and genetic algorithms are non-deterministic methods and se-

lectively sample the search space. Thus, these stochastic approaches are often computation-

ally efficient and can rapidly provide feasible solutions. On the other hand, due to selective

sampling of the search space, these approaches have the potential to get stuck in local min-

ima. Neither approach guarantees to find the minimum or best solution (the GMEC), and

instead terminates when a good enough solution has been found or the maximum number

of allowed iterations has expired. Like genetic algorithms, the results of simulated annealing

Monte-Carlo methods are somewhat dependent on the starting conditions as well as the

system parameters (mutation rate , crossover points, max. number of generations, annealing

temperature etc). Depending on the target protein, these system parameters are determined
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either randomly or by previous knowledge of the system. Often multiple runs of GA and SA

are required to arrive at a set of acceptable solutions.

2.2.2 Deterministic Protein Design (Dead-End Elimination)

Both genetic algorithms and Monte-Carlo based approaches sample a subset of the allowed

conformational space. Therefore, neither approach guarantees the GMEC as the final solu-

tion. Dead-End elimination (DEE) (Desmet et al., 1992) is a family of pruning techniques

applied to the protein design problem which guarantee that the GMEC is not pruned. Com-

bination of DEE along with best-first searches like A∗ guarantees that the GMEC of the

search space is returned.

Given a pairwise energy function, the total energy Ec of a conformation c can be specified

as :

Ec = Et +
∑
i

E(ir) +
∑
i

∑
j>i

E(ir, js) (2.3)

This equation follows the notation established by the DEE community: Et is the template

self energy (i.e., the self energy of the backbone and other rigid parts of the protein), ir

denotes the presence of rotamer r at position i, E(ir) is the self energy for rotamer ir (i.e.,

the sum of intra-residue and the residue-to-template energies), and E(ir; js) is the pairwise

energy between rotamers ir and js. The traditional DEE criterion of (Desmet et al., 1992)

prunes a rotamer ir if a second rotamer it is found such that the lowest (best) energy among

the conformations including ir is greater than the highest (worst) energy among all the

conformations containing it (see Figure 2.2A). Intuitively, a satisfied DEE criterion implies

that the energy of any conformation involving ir can be improved by exchanging it for it;

therefore, ir can not be part of the GMEC. The traditional DEE pruning criterion is written

as:

E(ir) +
∑
j

min
s
E(ir, js) > E(it) +

∑
j

max
s
E(it, js) + ∆ (2.4)

where s is selected from the set of allowed rotamers at position j.

Similar to the genetic algorithms and simulated annealing approaches, DEE based al-

gorithms search for the GMEC as defined by an energy function. State-of-the-art energy

functions aim to approximate the experimental interaction energies. These approximations

often come close to, but do not perfectly, predict the true interaction energies. Hence, in

the traditional DEE criterion, a ∆ term allows a window of low energy conformations to
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Figure 2.2: Pruning by DEE The abscissa represents all possible conformations of the
protein (excluding residue i). In other words, each value on the abscissa corresponds to a
partial protein conformation where a side-chain conformation is assigned for every position
j(j >= i). The curve for rotamer ix represents the total energy of complete conformations
containing rotamer x at position i and the remainder of the protein conformation dened by
the position along the abscissa. (A) Using traditional DEE criterion, rotamer it can prune
rotamer ir because the best energy (dashed line) among the conformations including ir is
greater than the worst energy among all conformations containing it. Rotamer iu is not able
to prune ir. (B) Goldstein DEE: Energy of conformations containing it is always lower than
those containing ir, hence it prunes ir. (C) Split DEE: it eliminates ir in first partition,
whereas iu eliminates it in the second. (This figure is simply illustrative; if one were actually
to plot these energies, the curves would likely not be as smooth as presented here.)

be identified. When ∆ > 0, DEE will only prune rotamers that are not part of any con-

formation with energy within ∆ of the GMEC. A number of these conformations would,

then, be taken to the wet-lab for synthesis and testing. The conservative pruning condition

of traditional DEE is often difficult to satisfy and hence provides limited pruning ability.

However, a number of DEE extensions greatly enhance the methods power. Two of the

more common extensions are the Goldstein (Goldstein, 1994) and split (Pierce et al., 2000)

criteria. The Goldstein criterion results from an algebraic manipulation of traditional DEE

criterion. Instead of requiring that the worst energy contribution of it be greater than the

best energy contributions of ir, Goldstein criterion requires that as long as lower energy can

always be achieved by substituting it for ir, ir can be pruned. This translates to the following

equation:

E(ir)− E(it) +
∑
j

min
s

(E(ir, js)− E(it, js)) > 0 (2.5)

The split-DEE criterion (Pierce et al., 2000) divides the conformational space into multi-

ple partitions (see Figure 2.2C) and allows a different rotamer to prune ir in each partition.

The split-DEE criterion is satisfied if there is always some rotamer at position i which is en-

ergetically favorable to ir. Therefore, split-DEE allows a set of alternate rotamers to prune
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ir. In the single split (or s = 1) criterion, we identify a single split position (or residue)

p with q remaining (unpruned) rotamers. The method splits conformational space into q

partitions, where in partition x, the rotamer at position p is set to px(x ≤ q). The Goldstein

or traditional DEE criterion is then examined in each partition. If ir is pruned in each

partition, then ir can be pruned from the entire conformational space. It is also possible

to split on multiple residues (i.e., s = 2) and exchange a further expansion of conformation

space for improved pruning ability. Splits beyond s = 2 have significant bookkeeping and

implementation overhead and are rarely employed. Beyond the traditional, Goldstein, and

split criteria, several powerful and provably correct extensions have been added to the DEE

family of algorithms. These methods include the ability to handle rotamer pairs (doubles

(Gordon and Mayo, 1998; Lasters and Desmet, 1993)) instead of single rotamers, the abil-

ity to allow rotamers with energy minimization (MinDEE (Georgiev et al., 2006b; Georgiev

et al., 2008b)), limited backbone flexibility (BD (Georgiev and Donald, 2007)) and backbone

backrub motions (BRDEE (Georgiev et al., 2008a)).

When pruning with DEE, dead-ending rotamers are identified by comparing all remaining

rotamers against the specified DEE criterion. This process of evaluating the DEE criteria

for all rotamers is defined as a DEE cycle. Highly efficient DEE cycles can be created by

sequential execution of multiple different DEE criteria. For example, a single DEE cycle

might consist of first applying the Goldstein criterion followed by a split-DEE criterion. The

general contraction of conformation space in earlier cycles allows some rotamers to be pruned

in later cycles, even if they were not initially identified as dead-ending in earlier cycles.

It is worth noting that DEE is a pruning criterion that only guarantees that no rotamers

belonging to the GMEC will be pruned, however it does not guarantee that repeated DEE

cycles will prune all but the GMEC. Therefore, a redesign algorithm will run multiple DEE

cycles until either no more rotamers can be pruned or the GMEC has been identified (i.e.,

only one rotamer remains at each position). When multiple rotamers remain, the DEE

cycles are followed by an enumeration stage generally based on the A∗ branch-and-bound

search algorithm. In (Leach and Lemon, 1998) an A∗ best-first search is used to expand a

conformation tree, such that the conformations are returned in order of increasing energy

(i.e., best-first). Hence, the first conformation returned by the A∗ search is the GMEC.

If DEE was performed with ∆ > 0, conformations can be repeatedly enumerated by

the A∗ search until one is identified with an energy ∆ above the GMEC. Conformation

enumeration should stop at this point because there is no guarantee on the presence and

proper ordering of conformations with energies which are ∆ above the GMEC. The A∗
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search eliminates the need to examine all remaining conformations and typically results in

a combinatorial factor reduction in the search space. Enhanced efficient versions of A∗ that

work in conjunction with split-DEE (Georgiev et al., 2006b) have also been reported.

Stochastic and approximate methods such as genetic algorithms and Monte-Carlo simula-

tions have been mostly replaced by the dead-end elimination based strategies since the latter

are guaranteed to find the GMEC. It has previously been reported that unlike DEE, GA and

SA based approaches almost always fail to find the GMEC (which is the best energy solu-

tion as defined by an energy function) (Voigt et al., 2000b). The emergence of stronger DEE

criteria, coupled with faster enumeration stages have enabled DEE based computational de-

signs of large proteins. For instance, using DEE, (Offredi et al., 2003) performed a successful

design of a 216 amino acid long alpha/beta-barrel protein. The computational solution was

tested in the wet-lab and exhibited a stable three-dimensional structure in solution.

2.3 Free Energy Calculations and Ligand Binding

The ability of proteins to bind with other proteins as well as small molecules in a highly

specific manner is an important aspect of biological processes. In addition, specific bind-

ing of drugs to the drug target proteins is a crucial aspect of drug efficacy as well. Thus,

characterization and calculation of energies involved in this ligand binding process is an

important objective in computational biology and computational chemistry. A number of

computational approaches have been developed towards this objective ranging from empiri-

cal or statistical based methods to those aimed at evaluating the actual biophysical energies

involved in binding. Among the most time efficient methods for estimation of binding ener-

gies are the knowledge-based statistical or empirical approaches (Jain, 1996; Eldridge et al.,

1997; Gohlke et al., 2000). A number of simplifying assumptions such as lack of explicit

solvent as well as absence of conformational sampling contribute towards their time effi-

ciency at the cost of accuracy. On the other hand, more rigorous and biophysically accurate

methods of calculation tend to be more time consuming and are based on molecular force

fields. These methods often involve gradual transformations between the states of interest

using Monte-Carlo (MC) or Molecular Dynamics (MD) simulations.
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2.3.1 Free Energy Perturbation and Thermodynamic Integration

Free energy calculations are generally formulated in terms of estimating relative free energies

between two states A and B. In context of ligand binding, these states can represent the

unbound protein and ligand and the bound complex. The free energy difference between two

states can be obtained by using the Zwanzig equation (Zwanzig, 1954).

∆G = GB −GA = −β−1ln〈exp(−β∆V )〉A (2.6)

where β = 1/kBT , T is the temperature, kB is the Boltzmann constant, and 〈〉A represents

the ensemble average over state A, obtained by conformational sampling via MC or MD

simulations. Free energy calculations converge when the difference between energies of two

states A and B is small. When the energy differences are larger, the transformation between

the two thermodynamic states A and B is replaced by a series of transformations between

non-physical, intermediate states along a well-delineated pathway that connects A to B.

This pathway is characterized by the general extent parameter λ, making the free energy a

continuous function of λ between A and B. The total free energy can then be obtained by

summing over these intermediate states along the λ variable.

∆G = GB −GA = −β−1
n−1∑
m=1

ln〈exp(−β(Vm+1 − Vm))〉m (2.7)

where m stands for the number of intermediate states used. This approach is generally

referred to as the free energy perturbation (FEP) method.

An alternative to free energy perturbation method is the thermodynamic integration (TI)

approach (Frenkel and Smit, 2001). The free energy in TI is given by:

∆G =

1∫
0

〈∂V (λ)

∂λ
〉λ∂λ (2.8)

Equation 2.7 provides an exact formula for free energy calculations and, in principle, if

the simulations are allowed to run long enough and adequate sampling is performed, FEP

can provide highly accurate results. However, in practice, performing extensive sampling

and simulations might not be feasible, and convergence of FEP can become an issue. On the

other hand, TI avoids this problem. However, Equation 2.8 is essentially an integral that

must in practice be computed by discretizing and computing the integrand at finite intervals,
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thus affecting accuracy. Despite these possible pitfalls, both FEP and TI can provide highly

accurate results at the cost of efficiency.

2.3.2 QM/MM

Computational approaches based on QM/MM combine the accuracy of quantum mechanics

(QM) with relative efficiency of molecular mechanics (MM), and are employed to study chem-

ical reactions including ligand binding (Warshel, 1976). These QM/MM based approaches

are quite useful in describing phenomenon such as charge polarizations and electron transfer,

which is not possible by the classical force field based methods. However, the accuracy in

quantum mechanics is obtained at the cost of efficiency. A force field or MM based approach

generally scales quadratically with the number of atoms N . This complexity is often further

reduced by employing cutoff radii as well as by use of efficient particle mesh Ewald (PME) to

calculate electrostatics (Darden et al., 1993). On the other hand, the computational time of

quantum mechanics approaches generally ranges from N3 to N5 (Van der Vaart et al., 2000).

Thus, in a QM/MM simulation only a small part of the system of interest, e.g. the binding

site or the ligand, is treated using quantum mechanics, whereas the rest of the system is

treated using classic molecular mechanics. A number of previous studies have employed

QM/MM based protocols to investigate ligand binding and activity and report promising

results. (Hayik et al., 2010) developed a QM/MM based approach to study binding energies

in 23 metalloprotein-ligand complexes. More recently, (Rathore et al., 2013) applied and val-

idated a QM/MM based method to a structurally diverse set of fructose 1,6- bisphosphatase

(FBPase) inhibitors.

2.3.3 MM-PBSA and MM-GBSA

The Molecular Mechanics- Poisson Boltzmann Surface Area or MM-PBSA approach is based

on analysis of MD trajectories using a continuum solvent approach (Srinivasan et al., 1998;

Kollman et al., 2000). The free energy of a state by MM-PBSA is approximated as:

〈G〉 = 〈EMM〉+ 〈GPBSA〉 − T 〈SMM〉 (2.9)

where 〈EMM〉 is the average molecular mechanical energy including bond, angle, torsion,

electrostatic and van der Waals terms as described by a force field. 〈GPBSA〉 represents the

solvation free energy as well as a surface area based estimate of the nonpolar free energy. As
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the name indicates, the solvation free energies are calculated using the Poisson-Boltzmann

equation. (Alternately, for MM-GBSA, the solvation free energy is obtained by using the

generalized Born (GB) approximation to the Poisson Boltzmann equation). Both 〈EMM〉
and 〈GPBSA〉 are obtained by averaging over an MD trajectory of the system. Finally,

T 〈SMM〉 represents the solute entropy and can be calculated by using normal mode analysis

(Srinivasan et al., 1998).

For binding energy calculations, Equation 2.9 can be evaluated independently for the

ligand, receptor and complex; binding energy can subsequently be determined by:

∆Gbind = 〈Gcomplex〉 − 〈Greceptor〉 − 〈Gligand〉 (2.10)

Alternately, each of the terms in Equation 2.10 can be estimated by using snapshots from

the MD trajectory of the complex alone. In this scenario, the energy terms for the receptor

and ligand alone are estimated by removal of one binding partner from the trajectory (ligand

and receptor respectively). Consequently, calculation of binding energies using MM-PBSA

using the complex trajectory alone assumes that the structure of the receptor as well as

ligand does not change upon binding.

A number of factors influence the choice of a methodology for calculating binding ener-

gies including computational efficiency or running time and accuracy tradeoff. The quantum

mechanics or free energy perturbation based models, in principle, avail high accuracies. How-

ever, significant computational resources are needed to perform these calculations, making

these methods unsuitable for studies where large number of protein-ligand complexes need to

be screened. Alternately, when a reasonable structure of the ligand and receptor is known,

it is possible to limit the running time while offering modest declines in accuracy. A num-

ber of previous studies have employed MM-PBSA or MM-GBSA based schemes to evaluate

binding energies in a time efficient manner (Ferrari et al., 2007; Guimaraes and Cardozo,

2008; Raju et al., 2010). However, it is worth noting that these efficient schemes make a

number of simplifying assumptions and may not account for energy changes occurring from

large scale conformational changes as well as large entropic contributions. Finally, none of

these approaches are able to predict binding energies in absolute quantitative agreement

with the experimental binding energies (Ferrari et al., 2007).
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2.4 Computational Models of Molecular Evolution

Evolution is the process by which hereditary characteristics of organisms change over gener-

ations. In general, the term evolution suggests a change in visible or phenotypic characters.

Examples of such evolution would be changes in human height, skin colour etc. However,

whether or not evolution manifests itself at the phenotypic level, it is primarily a change in

the underlying DNA of an organism by introduction of mutations. In this thesis, the term

evolution specifically refers to the evolution of a single gene or its associated protein over

time. Three concepts underlie the process of evolution: mutation, selection and fixation.

As genomes replicate and new cells are produced, mutations are seen in the resulting

genomes. These mutations can potentially be one of three kinds: deleterious, neutral and

beneficial. The acquisition of deleterious mutations makes an organism less fit than its

parent, whereas the acquisition of beneficial mutations grants a benefit to the organism

and increases its fitness. Unlike deleterious and beneficial mutations, the neutral mutations

are those which have little to no effect on the fitness of an organism i.e. these mutations

maintain the status quo. Thus, these neutral mutations can provide genetic variation in a

population. The definition of whether a newly appeared mutant is deleterious, beneficial or

neutral is largely dependent on the environment or external circumstances which the genome

is subjected to. As this environment changes, formerly beneficial mutations might become

deleterious or vice versa. The environment exerts a selective pressure on the genome that

defines what mutations are beneficial, deleterious or neutral. In this context, the beneficial

mutations confer a higher reproductive ability that allows these mutants to survive while

most deleterious mutants are nearly eliminated. The mutants that survive in the offspring

population are thus known to be selected by nature or by natural selection.

Consider the following simple synthetic example of evolution in a protein (see Figure 2.3).

Two mutations m1 and m2 arise in the wild type protein, leading to three mutant proteins:

first containing single mutation m1, second containing single mutation m2 and the third

double mutant containing both m1 and m2. Also consider that the first mutant misfolds and

has zero functional activity; the second mutant is more stable and shows higher functional

activity than the wild type and finally, the third mutant has slightly decreased stability and

functional activity close to the wild type. If protein function is assumed to affect fitness,

in this example, m1 is a highly deleterious mutation since the protein completely loses its

function. On the other hand, m2 is beneficial mutation since the second mutant has a higher

functional activity compared to the wild type. And finally, the double mutant is nearly
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Mutation Selection

Figure 2.3: Evolution In A Protein Mutations in wild type protein (green) give rise to
mutant types. First mutant mis-folds and is deleterious (red). Second mutant is slightly
beneficial (cyan), whereas the third mutant is nearly neutral (wheat). Selection favours the
beneficial mutant, increasing its frequency in the final evolved population.

neutral since it maintains an activity level compared to the wild type protein. Thus, over

the course of evolution, the first highly deleterious mutant will be selected against and vanish

from the population; whereas the second mutant will be favoured in a population. It is worth

noting that while protein function might not always be a good indicator of fitness, in case

of essential proteins, one can reasonably expect function to impair fitness.

2.4.1 Simulating Molecular Evolution

Evolution is often simulated as a computational process governed by laws of evolutionary

theory. The Wright-Fischer model is a well-established evolutionary model (Hartl and Clark,

2007; McCandlish, 2011), where generations are assumed to be non overlapping. Thus, in

the context of a Wright-Fisher process, evolution can be modelled as a Markov process

where the current state of the population is only dependent on its previous state. As time

goes on, mutations in the wild type protein sequence produce new mutant proteins. These

evolutionary simulations are modelled to have the Markov property i.e. they are memory

less. In the context of an evolutionary simulation, this entails that the probability that a

mutation mut leads it from state i to state j is independent of the sequence of mutations

that led from an initial state to state i.

Evolution as a Markov Process A Markov process is a stochastic process that satisfies
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the Markov property. Having the Markov property implies that the future state of the

process can be described completely based on its present state, without the knowledge of

previous states. In this way, a Markov process is memoryless. A Markov process can be

regarded as a directed graph where each vertex represents a state of the process. The edges

between two states i and j have weights associated with them. In a continuous time Markov

process, these weights correspond to the instantaneous transition rates qij between states

(Norris, 1997; Yang, 2006). Thus, such a Markov process can be represented by its rate

transition matrix Q of size n × n where n is the number of states. Each entry of the rate

matrix represents a transition rate between two states. Finally, in a continuous time Markov

process, the probability of transition between two states can be found using the probability

transitions matrix P (t) given by:

P (t) = e−Q∆t (2.11)

As mentioned earlier, evolution can be considered a Markov process (Yang, 2006). Thus to

simulate evolution, we need to define the rate and probability transition matrices. The rate

matrices for evolutionary simulations are often derived from models of nucleotide substitu-

tion. These substitution models define the rate of mutation between different nucleotides at

a single DNA location.

Models of Nucleotide Substitution

During gene evolution, mutation samples new gene sequences. Various nucleotide substi-

tution models that capture this process of mutation in evolution are used in evolutionary

simulations. Since DNA is composed of four nucleotide bases: A, T, G and C, the muta-

tional space for a single DNA site or locus can be represented as four discrete states. The

substitution models represent the rate of mutation or the rate of change of one nucleotide

base to the other. However, these models do not explicitly account for natural selection,

which has to be accounted for separately in a simulation. These models of DNA sequence

evolution are briefly discussed below:

Jukes and Cantor Models of DNA sequence evolution were first described by Jukes and

Cantor in 1969 (Jukes and Cantor, 1969). In this model, the rate of substitution from one

nucleotide to another is the same for all nucleotides. Thus, if we define qij to be the rate

of substitution/mutation from nucleotide i to j, the rate matrix for an evolutionary Markov
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chain described by the Jukes Cantor model is given by:

Q = {qij} =


−3λ λ λ λ

λ −3λ λ λ

λ λ −3λ λ

λ λ λ −3λ


where the nucleotides are ordered as A, T, G, C. Since Q represents a rate matrix for a

continuous time Markov Chain, each row the matrix sums to 0. Intuitively, the product qijδt

gives the probability that the nucleotide i will change into nucleotide j given infinitesimally

small time step δt. Under Jukes Cantor model, as time goes to infinity, the equilibrium

frequencies for all substitutions are equal to 1/4, indicating that since rates of substitutions

are the same, as times goes on, the identity of a nucleotide at position x for an evolving

DNA sequence is random.

Kimura 1980 Unlike Jukes-Cantor, the substitution model proposed by Kimura (Kimura,

1980) makes a distinction in the substitution rates between different nucleotide bases. Two

types of differences are accounted for: transitions and transversions. A substitution is called

a transition if it occurs between bases which are chemically similar i.e. both purines (A or G)

or both pyrimidines (C or T). A transversion is said to occur when the substitution changes

a pyrimidine into a purine or vice versa. The rate matrix Q is given by:

Q = {qij} =


−2β − α β α β

β −2β − α β α

α β −2β − α β

β α β −2β − α


Felsenstein 1981 (Felsenstein, 1981) extends the models presented by (Jukes and Cantor,

1969) and (Kimura, 1980) by allowing distinct substitution rates between all base pairs. The

rate matrix is given by:

Q = {qij} =


−πG − πT − πC πT πG πC

πA −πA − πG − πC πG πC

πA πT −πA − πT − πC πC

πA πT πG −πA − πT − πG


In addition to the foundational substitution models described here, a number of sophis-
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ticated and organism and application specific rate matrices have been developed which are

beyond the scope of this work (Hasegawa et al., 1985; Tamura and Nei, 1993; Tavare, 1986;

Yang, 1994a; Yang, 1994b).

Evolution Models Incorporating Structure And Function The substitution models

described in the previous section operate at the gene or DNA sequence level and assume

site independence such that a mutation at one position is independent of the rate of mu-

tation at another positions. However, the coding sequences of genes have to be translated

into protein sequence which then fold into a specific structure to perform a specific function

which is what often defines fitness in a cell. This process indicates that there are subtleties

in the underlying biological process that are not nearly well captured by the substitution

models described above. First, due to the redundancy in the genetic code, multiple codons

(nucleotide triplets) translate to the same amino acid. Thus, many distinct DNA sequences

will produce identical protein sequences. Thus, it stands to reason that the synonymous and

non synonymous rates of substitutions in genes are different, since their effects on proteins

and subsequent fitness are likely to be different. In addition, different structural locations

in a protein differ in how tolerant they are to mutations. For instance, it is often that the

surface of a protein tolerates mutations well, whereas most mutations in the hydrophobic

core of the protein are deleterious due to large impacts on the folding and structure of the

resulting protein. A number of substitution models that take such differences in structure

into account have also been developed. In general, these models map the positions in protein

sequences to a phenotypic property such as thermostability, contribution to protein function

or protein structure etc, and the substitution rates are determined as a function of the

modelled property. For instance, (Parisi and Echave, 2001) developed a substitution model

where mutant protein sequences are selected against departure from a reference structure.

This implies that in their model, any mutation that causes a structural breakdown or change

compared to a reference structure is selected against. Despite progress in this field, general

models of substitution that take into account the target protein structure, function etc are

approximations that are far from perfect. Finally, even though the computational protein

design algorithms described in previous sections do not define explicit substitution models,

they also address the structural aspect of sequence evolution by searching for protein se-

quences which are compatible with a target structure. For a detailed review of evolutionary

models and their structural aspects, see (Liberles et al., 2012).

Evolution In A Population The previous sections treat evolution as a single trajectory

where new sequences or proteins are generated from old ones and selection acts as an agent
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that either eliminates or selects for the new mutant. In reality, a gene or protein is a single

entity in a population whereas selection acts at the protein/gene population level. The pa-

rameters of this population affect how selection and evolution manifest in a protein. As an

example, one can consider two extreme populations: one consisting of two individuals and

another one consisting of 1 billion individuals. The chance that a beneficial mutation will be

selected for and appear in every individual of the first population is much higher than that

for the second population. Thus, this underlying population size is an important parameter

for evolution and is known as the effective population size Ne. This effective population

size is the size of an idealized sample population that harbours the same genetic diversity

as an actual population. Thus, the Ne individuals from an idealized population are a good

representation of the actual population. As time goes on, some of the mutants selected by

evolution will dominate others in the population. A mutation is said to reach fixation in a

population if it sweeps through the population i.e. no other genetic variant remains in the

population. The probability of such an event is known as the probability of fixation and is

given by the following formula: (Fisher, 1930; Kimura, 1962; Wright, 1931):

pfix(a→ b) =
1− e−2sa→b

1− e−2Nesa→b
(2.12)

where sa→b represents the selective advantage (or disadvantage) of mutant b over mutant

a. The formula assumes that a mutation reaches fixation before another mutation arises.

Evolution under different population conditions will have different outcomes.

For a comprehensive review of evolutionary models of nucleotide substitution, physical

models for evolution and influence of populations on evolution, see (Liberles et al., 2012).
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Chapter 3

Restricted Dead-End Elimination

As previously described in Chapter 1, this thesis deals with resistance as a special protein

design problem. The objective of this resistance redesign problem can be specified as the

acquisition of decreased affinity for the drug by the mutant protein while maintaining its

affinity for the native substrate. To this effect, this chapter focuses on the development of

an efficient and provably correct protein redesign algorithm. The contents of this chapter

have been previously published as (Safi and Lilien, 2010).

3.1 Introduction

Novel biological function can be engineered into a target protein with the use of algorithms for

protein redesign. The task of computational protein redesign generally starts with a template

structure, an initial sequence, and a set of assumptions. In this context, the protein redesign

problem differs from de novo protein design where no initial sequence is provided and the

goal is to determine a sequence that folds into the target structure. On the other hand, in

protein redesign, changes are introduced in the known initial sequence of a protein to achieve

desired results (novel function, improved thermostability etc). Most redesigns assume that a

large subset of the protein is rigid, including the backbone and residues located sufficiently

far away from the region of interest (typically the protein’s active site). The side-chains of

the non-rigid residues are considered flexible; they are allowed to change conformation during

the redesign process, typically switching among a discrete set of low-energy conformations

(i.e., rotamers) (Lovell et al., 2000a). Flexible residues can be immutable, in which case they

are restricted to assume rotamers from the wildtype amino acid, or they can be modeled as

mutable in which case they are allowed to assume rotamers from a number of different amino
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acid types. The goal of the redesign algorithm is to identify the protein sequence containing

the Global Minimum Energy Conformation (GMEC). Under this set of conditions, protein

design is NP-Hard (Chazelle et al., 2004; Pierce and Winfree, 2002).

Existing protein design strategies can be broadly categorized into deterministic and non-

deterministic classes. The non-deterministic / heuristic approaches of random sampling,

neural networks, and genetic algorithms are unable to make guarantees on the quality of

their computational search. These heuristic methods have all but yielded to a family of

deterministic techniques dominated by the pruning algorithms of Dead-End Elimination

(DEE) (Desmet et al., 1992; Georgiev et al., 2006b; Goldstein, 1994; Gordon and Mayo,

1998; Lasters and Desmet, 1993; Pierce et al., 2000). DEE-based approaches are generally

fast, are guaranteed to identify the GMEC, and have been used successfully in a number

of protein redesigns (Filikov et al., 2002; Gielens et al., 2007; Looger et al., 2003a; Maglia

et al., 2008; Novoa de Armas et al., 2007). For a detailed description of computational

protein design, see Chapter 2.

3.1.1 Restricted Redesign

Given a protein with n mutable residues, the redesign problem is said to be κ-restricted

if there exists a limit κ, (κ < n) on the maximum number of allowed mutations. The κ-

restriction is motivated by a number of different causes. First, a limited number of mutations

is ideal due to wet-lab experimental constraints where, in practice, redesigns containing a

large number of mutated residues are often problematic. Despite significant advances over

the past thirty years, the assumptions made in molecular modelling still induce a number

of fundamental limitations to its predictive accuracy. In the context of protein redesign, the

risk of major unpredicted and undesirable conformational changes occurring during wet-lab

experimentation increases with the number of mutations introduced in the redesigns. These

risks can be partially mitigated by restricting the number of allowed mutations. Furthermore,

the introduction of a large number of point mutations via site-directed mutagenesis is time

consuming and expensive. To this end, most of the published work in protein redesign

reports a small number of mutations in the redesigns tested in the wet-lab (Bae et al., 2003;

Chen et al., 2009b; Ito et al., 2008; Jouaux et al., 2009; Lilien et al., 2004; Stachelhaus et al.,

1999; Stevens et al., 2006). Therefore, the κ-restriction’s upper bound on the number of

allowed mutations can aid wet-lab experimentation. As, only a small number of mutations

are often essential for a change in function, such an upper bound can help introduce a

minimal number of mutations essential for the desired change in functionality. And finally,
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the notion of restricted redesign can provide insights into protein evolution, for instance,

during the acquisition of drug resistance where a small number of mutations are critical for

the acquisition of resistance.

In this thesis, such restricted redesign will be applied to explore the effect of a small

number of mutations in a wild-type protein on its binding profile. Unfortunately, the tradi-

tional Dead-End Elimination (DEE) criteria do not address the restricted redesign problem

directly. Hence, solving a restricted redesign problem with traditional DEE approaches

requires a combinatorial number of DEE runs and can be quite inefficient.

3.1.2 Dead-End Elimination

The DEE criterion described in this section addresses the unrestricted (κ = n) redesign

problem and facilitates conformational search by identifying and pruning rotamers which

are provably not part of the GMEC. Given a pairwise energy function, the total energy Ec

of a conformation can be specified as:

Ec = Et +
∑
i

E(ir) +
∑
i

∑
j>i

E(ir, js) (3.1)

This equation follows the notation established by the DEE community; Et is the template

self energy (i.e., the self energy of the backbone and other rigid parts of the protein), ir

denotes the presence of rotamer r at position i, E(ir) is the self energy for rotamer ir (i.e.,

the sum of intra-residue and the residue-to-template energies), and E(ir, js) is the pairwise

energy between rotamers ir and js. The traditional DEE criterion (Desmet et al., 1992)

prunes a rotamer ir, if a second rotamer it is found such that the lowest (best) energy

among the conformations including ir is greater than the highest (worst) energy among all

the conformations containing it (Figure 3.1A). Intuitively, a satisfied DEE criterion implies

that the energy of any conformation involving ir can be improved by exchanging it for ir;

therefore, ir can not be part of the GMEC. The traditional DEE pruning criterion is written

as:

E(ir) +
∑
j

min
s
E(ir, js) > E(it) +

∑
j

max
s
E(it, js) + ∆ (3.2)

where s is selected from the set of allowed rotamers at position j.

DEE pruning criteria search for the GMEC as defined by an energy function. State-of-

the-art energy functions aim to approximate the experimental interaction energies. These

approximations often come close to, but do not perfectly, predict the true interaction en-
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ergies. Hence, in the traditional DEE criterion, a ∆ term allows a window of low energy

conformations to be identified. When ∆ > 0, DEE will only prune rotamers that are not

part of any conformation with energy within ∆ of the GMEC. A biologist would then test

a number of these conformations to the wet-lab. For clarity, we will assume ∆ = 0 in the

remainder of this document, however this is not a limitation of rDEE.

The conservative pruning condition of Eq. (3.2) is often difficult to satisfy and hence

provides limited pruning ability. Fortunately, a number of DEE extensions greatly enhance

the method’s power. Two of the more common extensions are the Goldstein (Goldstein,

1994) and split (Pierce et al., 2000) criteria. The Goldstein criterion (Eq. (3.3)) results from

a simple algebraic manipulation of Eq. (3.2),

E(ir)− E(it) +
∑
j

min
s

(E(ir, js)− E(it, js)) > 0 (3.3)

The split-DEE criterion (Pierce et al., 2000) divides the conformational space into multiple

partitions (Figure 3.1C) and allows a different rotamer to prune ir in each partition. The

split-DEE criterion is satisfied if there is always some rotamer at position i which is ener-

getically favorable to ir. In the single split (or s = 1) criterion, we identify a single split

position (or residue) p with q remaining (unpruned) rotamers. The method splits confor-

mational space into q partitions, where in partition x, the rotamer at position p is set to px

(x ≤ q). The Goldstein or traditional DEE criterion is then examined in each partition. If

ir is pruned in each partition, then ir can be pruned from the entire conformational space.

It is also possible to split on multiple residues (i.e., s = 2) and exchange a further expansion

of conformation space for improved pruning ability.

Beyond the traditional, Goldstein, and split criteria (Figure 3.1) several powerful and

provably correct extensions have been added to the DEE family of algorithms. These meth-

ods include the ability to handle rotamer pairs (doubles (Goldstein, 1994; Gordon and Mayo,

1998; Lasters and Desmet, 1993)), energy minimization (MinDEE (Georgiev et al., 2006b;

Georgiev et al., 2008b)), limited backbone flexibility (BD (Georgiev and Donald, 2007)),

and backbone backrub motions (BRDEE (Georgiev et al., 2008a)). Although we do not

explicitly discuss restricted DEE in the context of these extensions, the rDEE technique can

be combined with any previous DEE method to perform a restricted search.

When pruning with DEE, dead-ending rotamers are identified by comparing all remaining

rotamers against the specified DEE criterion. This process of evaluating the DEE criteria

for all rotamers is defined as a DEE cycle. Highly efficient DEE cycles can be created by
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sequential execution of multiple different DEE criteria. For example, a single DEE cycle

might consist of first applying the Goldstein and then the Split-DEE criteria. The general

contraction of conformation space allows some rotamers to be pruned in later cycles, even if

they were not initially identified as dead-ending in early cycles. Although DEE guarantees

to not prune a rotamer that is part of the GMEC, it does not guarantee that repeated

DEE cycles will prune all but the GMEC. Therefore, a redesign algorithm will run multiple

DEE cycles until either no more rotamers can be pruned or the GMEC has been identified

(i.e., only one rotamer remains at each position). When multiple rotamers remain, the

DEE cycles are followed by an enumeration stage generally based on the A∗ branch-and-

bound search algorithm. In (Leach and Lemon, 1998), an A∗ search is used to expand a

conformation tree, such that the conformations are returned in order of increasing energy

(i.e., best-first). Hence, the first conformation returned by the A∗ search is the GMEC. If

DEE was performed with ∆ > 0, conformations can be repeatedly enumerated by the A∗

search until one is identified with an energy ∆ above the GMEC. Conformation enumeration

should stop at this point because there is no guarantee on the presence and proper ordering

of conformations with energies ∆ above the GMEC. The A∗ search eliminates the need to

examine all remaining conformations and typically results in a combinatorial factor reduction

in the search space.

3.1.3 Restricted Dead-End Elimination Solution

In this work, we present Restricted DEE (rDEE) as an efficient pruning technique capable

of solving the restricted redesign problem. The DEE criteria of Section 3.1.2 (henceforth

referred to as uDEE) addressed the unrestricted redesign problem. Redesign of a protein

with n mutable residues using uDEE, can contain as many as n mutations. The target

of a κ-restricted redesign is the κGMEC - the minimum energy conformation among those

with at most κ mutations. Since the goal of an unrestricted redesign is identification of

the GMEC, the uDEE criteria of Section 3.1.2 make no guarantees about preserving the

rotamers of the κGMEC. If the κGMEC is different than the GMEC, it is likely to be

pruned during a uDEE cycle (Figure 3.1D). Therefore, to solve a κ-restricted redesign using

the uDEE criteria requires n-choose-κ separate runs. In each run an explicitly specified set of

κ residues are allowed to mutate, uDEE cycles are repeated until convergence, and the local

minimum energy conformation is identified using A∗. Upon completion of all n-choose-κ

runs, the resulting conformations are merged and the κGMEC is identified. For reasonable

values of n and κ, this process can be quite inefficient. One example of this inefficiency
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is the redundant computation of repeatedly pruning of the same rotamer; if a rotamer ir

can be pruned in multiple of the n-choose-κ runs, this fact must be rediscovered by each

run independently (i.e., it must be discovered a combinatorial number of times). rDEE

removes the need for multiple runs to solve a κ-restricted redesign, efficiently searches only

the restricted regions of conformational search space, and guarantees generation of a gap-free

list of top-ranking conformations. In the redesign of three test proteins, our rDEE pruning

criteria is over 10-times faster than previous approaches. The following contributions are

made in this chapter:

1. Restricted DEE (rDEE): a restricted version of the traditional DEE criterion which

allows specification of a maximum number of allowed mutations, and incorporates this

constraint in the pruning process. rDEE is provably correct and guarantees not to

prune rotamers that are part of the κGMEC.

2. Goldstein Restricted DEE (GrDEE): a restricted analog of the Goldstein DEE criterion

with extended pruning capabilities as compared to traditional rDEE.

3. Split Restricted DEE (Split-rDEE): a conformational splitting based extension to tradi-

tional rDEE. Split-rDEE derives from the original Split-DEE criterion and is provably

accurate in the context of a κ restricted redesign.

4. Restricted A∗ (rA∗): a restricted version of the standard A∗ search that exploits the

smaller conformation space inherent to a restricted redesign.

5. Application of rDEE and rA∗ in κGMEC-based redesigns of three protein systems,

Gramicidin Synthetase A, Plastocyanin, and the β1 domain of protein-G.

3.2 Approach

In the κGMEC, mutations may occur at any of the n residues, but the total number of

mutations must be at most κ. The rDEE pruning criteria will identify a rotamer ir as

dead-ending if the rotamer is provably not part of the κGMEC.

Intuitively, previous DEE-based approaches (Desmet et al., 1992; Georgiev et al., 2006b;

Goldstein, 1994; Gordon and Mayo, 1998; Lasters and Desmet, 1993; Pierce et al., 2000)

mark rotamer ir as dead-ending if a second rotamer it can be identified such that the energy

of any allowed protein conformation including ir can be reduced by exchanging rotamer it for

ir. Restricted DEE is no different; however, the definition of allowed protein conformations

is inherently more complicated. In this section, we first define a number of terms necessary
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to describe rDEE; we next provide the intuition behind the three cases rDEE must handle;

and finally we introduce the formal rDEE criterion along with several powerful extensions.

In this description we first consider traditional rDEE, a pruning condition analogous to the

traditional DEE criteria of (Desmet et al., 1992). We then extend rDEE to incorporate

the more powerful pruning ideas of Goldstein (Goldstein, 1994) and Splitting (Pierce et al.,

2000).

In the derivation and description of restricted DEE we consider pruning a rotamer at

position i. Let the neighborhood of residue i be the set of residues j, j 6= i. Let the number

of flexible residues in the protein be n. We define a mutation-position-vector, m = (0, 1)n

as an n-dimensional binary vector corresponding to the mutated state of each residue. In

this notation, m(j) = 1 indicates that a mutation is allowed at position j whereas m(j) = 0

restricts the residue to rotamers of the wildtype amino acid. We define a mutation subspace

Mk
/x to be the set of mutation-position-vectors with k or fewer mutations at positions other

than x:

Mk
/x =

{
m
∣∣ ∑

i/∈xm(i) ≤ k,
∑

i∈xm(i) = 0
}

(3.4)

A mutation-position-vector or mutation subspace can therefore be used to define the allowed

rotameric states for each residue. We define the set of allowed rotamers at position i under

the mutation-position-vector m as Rm(i). Finally, we introduce the type(ix) operator to

probe rotamer ix as being either wt (wildtype) or mut (mutant).

In traditional uDEE, rotamer ir is dead-ending (and can be pruned) if a second rotamer

it can satisfy the pruning condition (Eq. (3.2)). This equation is independent of type(ir)

and type(it). Regardless of whether ir or it are wildtype or mutant, the neighborhood of i

is drawn from Mn−1
/i . Therefore it is always allowable to swap rotamer it for ir. In other

words, swapping ir for it will not violate a restriction on the number of allowed mutations

because there is no restriction to violate. However, when performing a restricted redesign,

one needs to consider type(ir) and type(it). When type(ir) 6= type(it) the allowable mutation

subspaces for the neighborhoods of ir and it are not the same. Fundamentally there are three

cases to consider (Fig. 3.2): (1) type(ir) = type(it), (2) type(ir) = mut and type(it) = wt,

(3) type(ir) = wt and type(it) = mut. The following description of the three rDEE cases will

build from the traditional DEE criterion of (Desmet et al., 1992) applied to rotamers ir and

it in subspace m:

DEEm(ir, it) :=
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E(ir) +
∑
j

min
s∈Rm(j)

E(ir, js) > E(it) +
∑
j

max
s∈Rm(j)

E(it, js) (3.5)

3.2.1 Restricted DEE (rDEE)

During a restricted DEE pruning cycle, we prune rotamer ir by identifying a rotamer it that

satisfies the rDEE condition. The rDEE pruning criteria depend on type(ir) and type(it)

and fall into one of the three cases. Each criterion uses a set of mutation-position-vectors to

cover all allowed conformation space. If the DEE criteria hold in all allowed regions, then

rotamer ir can be identified as dead-ending.

Case 1: type(ir) = type(it)

When the type of both rotamers is the same, all conformations of the neighborhood of ir

are also valid for the neighborhood of it. By combining the conformation at position i with

conformations of its neighborhood, we can specify an allowed set of conformations for the

entire protein including ir or it as ir ×Mκ
/i and it ×Mκ

/i if ir and it are both wildtype, or

ir ×Mκ−1
/i and it ×Mκ−1

/i if ir and it are both mutant (where × represents the Cartesian

product). The rDEE criterion is satisfied if the DEE criterion is satisfied for all appropriate

values of m.

rDEEκ(ir, it) :={
∀m ∈Mκ

/i DEEm(ir, it) if type(ir) = type(it) = wt

∀m ∈Mκ−1
/i DEEm(ir, it) if type(ir) = type(it) = mut

(3.6)

Case 2: type(ir) = mut, type(it) = wt

When ir is mutant and it is wildtype, the neighborhood of ir is allowed to contain at most

κ− 1 mutations. It therefore suffices to compare the protein conformations of ir ×Mκ−1
/i to

it ×Mκ−1
/i . Although it can be part of conformations with κ mutations in its neighborhood,

these neighborhoods containing κ mutations are not allowed for ir and can therefore be

ignored. The DEE criterion only requires that for each allowable conformation of ir that we

find a better conformation it. The rDEE criterion for Case 2 can be written,

rDEEκ(ir, it) :={
∀m ∈Mκ−1

/i DEEm(ir, it) if type(ir) = mut, type(it) = wt (3.7)

Case 3: type(ir) = wt, type(it) = mut
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If ir is a wildtype and it is a mutant, then pruning inherently becomes a bit more involved.

The neighborhood of ir will consist of mutation-position-vectors in Mκ
/i. Unfortunately, the

neighborhood conformations containing κ mutations can not be combined with rotamer it as

they would result in a protein with κ+1 mutations, thereby violating the restricted redesign.

We address this problem by dividing the allowable mutation space into two subsets (handled

by Ψ1 and Ψ2 of Eq. (3.8), both of which must hold). The first subset consists of a mutation

subspace with up to κ − 1 mutations. This subspace is valid for both ir and it and can

be handled by Eq. (3.9). The second subset consists of a constructed mutation space where

residue i is paired with a second residue p, selected so that at most one of i and p is mutated.

This mutation subspace is created by combining i and p with Mκ−1
/i,p . The intuition behind

this maneuver is that for any allowable protein conformation including ir and κ neighbor

mutations, we can change ir to it and convert any of the mutated neighbors, p, back to

wildtype and achieve a lower energy. For this manipulation to work, the criterion must hold

for all mutated residues p (a proof of correctness follows at the end of this section).

rDEEκ(ir, it) :={
Ψ1 ∧Ψ2 if type(ir) = wt, type(it) = mut (3.8)

Ψ1 :=
{
∀m ∈Mκ−1

/i DEEm(ir, it) (3.9)

Ψ2 :=
{
∀p, p 6= i, ∀m ∈Mκ−1

/i,p , DEEp
m(ir, it) (3.10)

where

DEEp
m(ir, it) :=

E(ir) +
∑
j,j 6=i,p

min
s∈Rm(j)

E(ir, js) + min
u∈[mut or wt]

[
E(pu) +

∑
j,j 6=p

min
s∈Rm(j)

E(pu, js)

]
>

E(it) +
∑
j,j 6=i,p

max
s∈Rm(j)

E(it, js) + max
u∈wt

[
E(pu) +

∑
j,j 6=p

max
s∈Rm(j)

E(pu, js)

]
(3.11)

Equation (3.11) differs slightly from Eq. (3.5) in that Eq. (3.11) must include the pairwise

energy terms involving residue p. On the left-hand side of Eq. (3.11), residue p is evaluated

with wildtype rotamer ir. Residue p is therefore allowed to assume either a mutant or

wildtype conformation. On the right-hand side of Eq. (3.11), residue p is evaluated in the
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context of it and is therefore restricted to assume only wildtype rotamers. Residues at

position j, j 6= i, p may assume rotamers as specified by m.

Algorithmic Complexity of rDEE: The DEE search procedure comprises of an energy

matrix pre-computation and a DEE pruning cycle. For multiple DEE runs, the pruning

and enumeration costs significantly dominate the energy pre-computation costs. We now

calculate the algorithmic complexity of DEE pruning.

For a design problem with n mutable residues, and a total number of r rotamers at each

position, evaluation of Eq. (3.3) is O(nr). Hence, a single uDEE cycle over all positions and

all rotamers, takes O(n2r3). The rDEE criteria (Eqs. (3.6), (3.7), and (3.8)) distinguish

between the wildtype and mutant rotamers, let w denote this number of wildtype rotamers.

We now calculate the complexity for a single evaluation of the rDEE criteria of Eqs. (3.6)

and (3.8).

Case 1/ Case 2: For given wildtype ir, it and a subspace m, run time of Eq. (3.6) is order

of κr + (n−κ)w. Hence the evaluation of Eq. (3.6) over all subspaces is O(
(
n
κ

)
(κr+(n−κ)w)

). Note that as w � r, the runtime of Eq. (3.6) for wildtype rotamers ir and it is an upper

bound for the algorithmic complexity of Eq. (3.7).

Case 3: For given ir, it, a position p and a subspace m, complexity of Eq. (3.8) is also

order of κr + (n−κ)w. Hence the evaluation of Eq. (3.8) over all positions and subspaces is

O(
(
n
κ

)
n(κr+ (n−κ)w) ). As n� r for most redesign problems, the algorithmic complexity

for any rDEE criterion becomes O(
(
n
κ

)
(κr + (n − κ)w)). Therefore, the complexity of an

entire rDEE cycle is O(nr2 (
(
n
κ

)
(κr + (n− κ)w)).

Although the rDEE pruning criteria are inherently more involved than uDEE, rDEE is a

more powerful pruning technique. To prune rotamer ir we only need to consider conforma-

tions containing up to κ mutations. This contrasts with uDEE where to prune ir the DEE

condition must hold over all of mutation space. This superior pruning ability is manifested

in significantly smaller runtimes for fifteen distinct redesigns (See Section 3.4). The pruning

ability of the rDEE criterion (Eqs. (3.6), (3.7), and (3.8)) is further enhanced by inclusion

of Goldstein and Split Restricted DEE conditions.

3.2.2 Goldstein Restricted DEE

Whereas the original DEE criterion compares the minimum pairwise energy between ir and

each residue j to the maximum pairwise energy between it and each residue j, the Goldstein

criterion (Goldstein, 1994) examines the difference in pairwise energy between rotamers ir
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and it. This simple relaxing of the DEE criterion still guarantees to only prune residues that

are provably not part of the GMEC. The rDEE criteria of section 3.2.1 can be extended to

incorporate the Goldstein criteria by replacing the original DEEm(ir, it) of Eqs. (3.6), (3.7),

and (3.8) with the following Goldstein criteria defined over subspace m:

GoldsteinDEEm(ir, it) := E(ir)− E(it) +
∑
j,j 6=i

min
s∈Rm(j)

(E(ir, js)− E(it, js)) > 0 (3.12)

The traditional rDEE criteria can only prune a rotamer ir if a single rotamer it is always

more energetically favorable. Following the ideas of Split-DEE, we observe that the muta-

tion subspaces m already induce a partitioning of conformation space. Therefore in Split

Restricted DEE we remove the limitation that the same single rotamer it prune rotamer ir

in every mutation subspace.

3.2.3 Split Restricted DEE

The restricted DEE criteria can be extended to incorporate the Split-DEE criterion (Pierce

et al., 2000) (see Section 3.1.2). In Split-DEE, conformation space is split into partitions

using the rotamers at a residue k, k 6= i. A rotamer ir is dead-ending if there exists some

rotamer at position i capable of pruning ir in each of the partitions defined by the rotamers

v of position k. We can incorporate Split-DEE into rDEE by removing the explicit it and

replacing the original DEEm(ir, it) of Eqs. (3.6), (3.7), and (3.8) with the Split-DEE criteria

defined over subspace m.

SplitDEEm(ir, ·) := ∃ k, (k 6= i) s.t. ∀v ∈ Rm(k) ∃ it :

E(ir)− E(it) +
∑

j,j 6=k,i
{

minu∈Rm(j) [E(ir, ju)− E(it, ju)]
}

+ [E(ir, kv)− E(it, kv)] > 0 (3.13)

Direct implementation of the criterion of Eq. (3.13) introduces a significant bookkeeping

overhead which can empirically result in slower running times. Therefore, a slightly modified

version of Eq. (3.13) was implemented. The pseudocode for the modified implementation is

shown in Fig. 3.3.

Proof of Correctness A formal proof of correctness for the traditional rDEE criteria

is provided below. Proofs of Goldstein and Split rDEE are nearly identical and are omitted

to avoid redundancy.

We define m̂ as the subspace containing the κGMEC. We indicate the rotamers of the
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κGMEC with a subscript g (i.e., the κGMEC contains rotamers jg, (j = 1 . . . n)). We define

Eir(m̂) to be the energy of a conformation in m̂ with κGMEC rotamers jg at all positions

j 6= i and rotamer ir at position i. skip

Case 1: type(ir) = type(it)
To Prove: If it eliminates ir by Eq. (3.6) then ir cannot be part of κGMEC (ir 6= ig).

Proof by contradiction. Assume ir = ig.

Without loss of generality, assume type(ir) = type(it) = wt. Therefore the mutation subspace, m̂,

containing the κGMEC is a member of Mκ
/i.

Since ir = ig,

EκGMEC = Eir(m̂) = Et + E(ir) +
∑
j

E(ir, jg) +
∑
j

E(jg) +
∑
j

∑
k,k>j

E(jg, kg)

Because type(ir) = type(it), there exists a conformation in m̂ with energy Eit(m̂).

Eit(m̂) = Et + E(it) +
∑
j

E(it, jg) +
∑
j

E(jg) +
∑
j

∑
k,k>j

E(jg, kg)

Then, because Eir(m̂) = EκGMEC ≤ Eit(m̂), we can state Eir(m̂) ≤ Eit(m̂) and

Et + E(ir) +
∑
j

E(ir, jg) +
∑
j

E(jg) +
∑
j

∑
k,k>j

E(jg, kg) ≤

Et + E(it) +
∑
j

E(it, jg) +
∑
j

E(jg) +
∑
j

∑
k,k>j

E(jg, kg))

Canceling identical terms we get,

E(ir) +
∑
j

E(ir, jg) ≤ E(it) +
∑
j

E(it, jg) (3.14)

We now note the following conservative bounds,∑
j

min
s∈Rm̂(j)

E(ir, js) ≤
∑
j

E(ir, jg) and
∑
j

max
s∈Rm̂(j)

E(it, js) ≥
∑
j

E(it, jg)

Substituting these bounds into Eq. (3.14),

E(ir) +
∑
j

min
s∈Rm̂(j)

E(ir, js) ≤ E(it) +
∑
j

max
s∈Rm̂(j)

E(it, js) (3.15)

As, Eq. (3.6) was used to eliminate ir in m̂ ∈ Mκ
/i, Eq. (3.15) cannot be true. This contradiction
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proves that ir 6= ig and that ir is not part of the κGMEC.

Case 2: type(ir) = mut, type(it) = wt

To Prove: If it eliminates ir by Eq. (3.7), then ir cannot be part of κGMEC (ir 6= ig).

Proof by contradiction. Assume ir = ig.

Because ir is a mutant, the mutation subspace, m̂, containing the κGMEC is a member of Mκ−1
/i .

Since ir = ig,

EκGMEC = Eir(m̂) = Et + E(ir) +
∑
j

E(ir, jg) +
∑
j

E(jg) +
∑
j

∑
k,k>j

E(jg, kg)

Then, as type(it) = wt, there exists a conformation with energy Eit(m̂):

Eit(m̂) = Et + E(it) +
∑
j

E(it, jg) +
∑
j

E(jg) +
∑
j

∑
k,k>j

E(jg, kg)

Then as Eir(m̂) = EκGMEC ≤ Eit(m̂), we can state Eir(m̂) ≤ Eit(m̂) and,

Et + E(ir) +
∑
j

E(ir, jg) +
∑
j

E(jg) +
∑
j

∑
k,k>j

E(jg, kg)) ≤

Et + E(it) +
∑
j

E(it, jg) +
∑
j

E(jg) +
∑
j

∑
k

E(jg, kg)

Canceling identical terms we get,

E(ir) +
∑
j

E(ir, jg) ≤ E(it) +
∑
j

E(it, jg) (3.16)

We now note the following conservative bounds,∑
j

min
s∈Rm̂(j)

E(ir, js) ≤
∑
j

E(ir, jg) and
∑
j

max
s∈Rm̂(j)

E(it, js) ≥
∑
j

E(it, jg)

Substituting these bounds into Eq. (3.16),

E(ir) +
∑
j

min
s∈Rm̂(j)

E(ir, js) ≤ E(it) +
∑
j

max
s∈Rm̂(j)

E(it, js) (3.17)

As Eq. (3.7) was used to eliminate ir in m̂ ∈Mκ−1
/i , Eq. (3.17) cannot be true. This contradiction

proves that ir 6= ig and that ir is not part of the κGMEC.

Case 3: type(ir) = wt, type(it) = mut

To Prove: If it eliminates ir by Eq. (3.8), then ir cannot be part of κGMEC (ir 6= ig).
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If κGMEC has less than κ mutations, ir is eliminated by Eq. (3.9). The proof is thus similar to

case 1 and case 2 above; the proof is not shown here.

We now address the case where the κGMEC has κ mutations and rDEE resorts to Eq. (3.10) for

pruning.

Proof by contradiction. Assume ir = ig.

Then EκGMEC = Eir,ṕg(m̂) for some arbitrary flexible residue position ṕ 6= i. The m̂ ∈ Mκ−1
/i,ṕ and

m̂ can introduce up to κ − 1 mutations in positions other than i and ṕ. The rotamer ṕ can be a

mutant without violating the restricted redesign.

We write the energy of Eir,ṕg(m̂) by separating energetic contributions of rotamer ir and another

rotamer ṕg:

Eir,ṕg(m̂) = Et + E(ir) +
∑
j

E(ir, jg) + E(ṕg) +
∑
j

E(ṕg, jg)

+E(ir, ṕg) +
∑
j

E(jg) +
∑
j

∑
k,k>j

E(jg, kg) where (j, k 6= ṕ, i) (3.18)

There exists a conformation C identical to the κGMEC but with it instead of ir and ṕv instead of

ṕg. This conformation has energy Eit,ṕv(m̂):

Eit,ṕv(m̂) = Et + E(it) +
∑
j

E(it, jg) + E(ṕv) +
∑
j

E(ṕv, jg)

+E(it, ṕv) +
∑
j

E(jg) +
∑
j

∑
k,k>j

E(jg, kg) where (j, k 6= ṕ, i) (3.19)

Then, since Eir,ṕ(m̂) = EκGMEC ≤ Eit,ṕv(m̂), we can state Eir,ṕg(m̂) ≤ Eit,ṕv(m̂) and substitute

Eqs. (3.18) and (3.19). After simplification,

E(ir) +
∑
j

E(ir, jg) + E(ṕg) +
∑
j

E(ṕg, jg) + E(ir, ṕg) ≤

E(it) +
∑
j

E(it, jg) + E(ṕv) +
∑
j

E(ṕv, jg) + E(it, ṕv) (3.20)

We now note the following conservative bounds,∑
j

min
s∈Rm̂(j)

E(ir, js) ≤
∑
j,j 6=ṕ

E(ir, jg) + E(ir, ṕg)∑
j

max
s∈Rm̂(j)

E(it, js) ≥
∑
j,j 6=ṕ

E(it, jg) + E(ir, ṕv)

min
u∈{mut,wt}

E(ṕu) +
∑
j,j 6=i

min
s
E(ṕu, js)

 ≤ E(ṕg) +
∑
j,j 6=i

E(ṕg, jg)
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and for a wildtype rotamer ṕv

max
u∈{wt}

E(ṕu) +
∑
j,j 6=i

max
s∈Rm̂(j)

E(ṕu, js)

 ≥ E(ṕv) +
∑
j,j 6=i

E(ṕv, jg)

Substituting these four bounds into Eq. (3.20),

E(ir) +
∑
j

min
s∈Rm̂(j)

E(ir, js) + min
u∈{mut,wt}

E(ṕu) +
∑
j

min
s∈Rm̂(j)

E(ṕu, js)

 ≤
E(it) +

∑
j

max
s∈Rm̂(j)

E(it, js) + max
u∈{wt}

E(ṕu) +
∑
j

max
s∈Rm̂(j)

E(ṕu, js)

 (3.21)

As Eq. (3.10) (using Eq. (3.11)) was used to eliminate ir in m̂ ∈ Mκ−1
/i,p for all mutant positions p

other than i, Eq. (3.21) cannot be true. This contradiction proves that ir 6= ig and that ir is not

part of the κGMEC.

3.2.4 Restricted A∗ Search

The restrictions of a κ-restricted redesign can be exploited during the enumeration stage of the

redesign process. Following (Leach and Lemon, 1998), we introduce a restricted A∗ (or rA∗) search

for conformation enumeration in restricted redesign. An A∗ search is best-first and uses bounds to

evaluate the goodness of a rotamer nd at level d before adding it to the search queue. Specifically,

before a rotamer nd at depth d is selected, a score f∗ is computed. The score f∗ is a sum of two

functions g∗ and h∗. The function g∗ is the energy of the partial conformation up to and including

nd (i.e., rotamers at levels [1 . . . (d − 1)]); whereas h∗ is a lower bound on the minimum energy

required to complete the conformation ((Leach and Lemon, 1998) provides an excellent overview

of A∗ in DEE),

h∗ =
N−1∑
j=d+1

min
s

E(js) +
d∑
i=0

E(ir, js) +
N−1∑
k=j+1

min
t
E(kt, js)

 (3.22)

The estimate h∗ can be modified to exploit the κ-restriction. The modified estimate ĥ∗ approximates

the minimum energy required to complete the conformation with at most κ mutations. We define

h∗(nd,m) to be the minimum energy estimate required to complete the conformation which has
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rotamer nd at level d and lies in the mutation subspace m.

h∗m(nd) =
N−1∑
j=d+1

min
s∈Rm(j)

E(js) +
d∑
i=0

E(ir, js) +
N−1∑
k=j+1

min
t∈Rm(k)

E(kt, js)

 (3.23)

where the rotameric identities used to compute Eq. (3.23) are determined by the mutation vector

m. The overall minimum energy estimate for nd can be obtained by taking the minimum value of

h∗m(nd) over all applicable m ∈Mκ
/d.

ĥ∗(nd) =

 minm∈Mκ
/d

h∗m(nd) if type(nd) = wt

minm∈Mκ−1
/d

h∗m(nd) if type(nd) = mut
(3.24)

The A∗ algorithm guarantees to generate the best solution that complies with the specified scoring

functions g∗ and h∗. Our definition of g∗ is identical to the one in (Leach and Lemon, 1998).

However, we restrict our bound h∗ to estimate the minimum energy required to complete a confor-

mation with at most κ mutations. Therefore, rA∗ only searches the κ-restricted space to identify

the κGMEC.

We note that the uDEE criteria might prune rotamers that are part of the κGMEC. Therefore,

restricted A∗ cannot guarantee to identify κGMEC using the results of a uDEE pruning cycle.

3.3 Methods

Sixty κ-restricted redesign experiments were performed (Table 3.1) to compare the performance

of rDEE and restricted A∗ against their unrestricted counterparts. For each of the three protein

systems (see Structural Models below), restricted redesigns were performed for κ = 2, 3, 4, and 5.

Restricted DEE was evaluated using one of two rDEE cycles: (1) GrDEE (Section 3.2.2), or (2)

GrDEE followed by (s=1) Split-rDEE (Section 3.2.3). Within a cycle, each rDEE criterion is evalu-

ated until no additional rotamers can be pruned. Similarly, the entire rDEE cycle is repeated until

a cycle produces no additional pruned rotamers. Following rDEE pruning, the κGMEC is identified

using restricted A∗. For comparison, we performed κ-restricted redesigns using the standard uDEE

and unrestricted A∗ (uA∗) algorithms implemented as n-choose-κ separate runs. The DEE cycles

for these unrestricted criteria consisted of either (1) the Goldstein DEE criterion or (2) Goldstein

DEE followed by (s = 1) Split-DEE. The κGMEC was identified as the lowest energy conformation

among the n-choose-κ local minima generated by unrestricted A∗ enumerations. Performance of

rDEE criteria was then compared against these benchmarks. All experiments were performed on a

single processor.

Structural Models: Protein systems were selected based on our previous experience with the
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system or its previous use as a benchmark in the DEE community. The selected systems are di-

verse and range from a small redesign of 9 active site residues (NRPS) to larger redesigns with 18

residues (plastocyanin). The first system is the NRPS enzyme GrsA-PheA (PDB: 1AMU) (Conti

et al., 1997). Similar to (Lilien et al., 2005), nine active site residues were modeled as flexible

(235,236,239,278,299,301,322,330,331) and were allowed to mutate to a set of hydrophobic amino

acids (GAVLIFYWM). Our model also included the amino acid substrate, the AMP cofactor, and a

steric shell consisting of all residues with at least one atom within 8 Å of the substrate. The second

test system was the core of the β1 domain of protein-G (PDB: 1PGA) (Gallagher et al., 1994).

Similar to (Georgiev et al., 2006a) and (Shah et al., 1999), we allowed 12 flexible core residues

(3,5,7,9,20,26,30,34,39,41,52,54) to mutate to the hydrophobic set (GAVLIFYWM). Finally, the

third test system was plastocyanin (PDB: 2PCY) (Garret et al., 1984). Similar to (Gordon et al.,

2003), we model 18 core residues as flexible (5,14,21,27,29,31,37,38,39,41,72,74,80,82,84,92,96,98)

allowing mutations to the hydrophobic set of residues (AVLIFYW). In all systems, side-chain flexi-

bility was modeled using the Richardson’s rotamer library (Lovell et al., 2000a). A validated imple-

mentation of the AMBER energy function (electrostatic, vdW, and dihedral energy terms) (Cornell

et al., 1995a; Weiner et al., 1984a) was used to compute pairwise energies.

3.4 Results and Discussion

Restricted Redesign: The runtime results of sixty redesign experiments are summarized in

Table 3.1. The results are consistent across all three test systems, (a) GrsA-PheA, (b) β1 domain

of protein G, and (c) plastocyanin. The unrestricted DEE and A∗ based redesigns require up to 10

times as long to complete than their restricted counterparts. This trend holds for all tested values

of κ. We expect this improvement in runtime to become even more pronounced for larger values of

n and κ. The results also confirm the expected impact on pruning efficiency provided by the split

criteria. A significant number of experiments did not complete within twelve hours. For example,

none of the uDEE + uA∗ runs for plastocyanin completed within twelve hours. In contrast, all of

the Split-rDEE runs completed within the allowable time window.

The use of GrDEE-only pruning, results in a runtime advantage for both systems for small values

of κ. For κ = 2, restricted redesign finishes in less than half the time taken by the unrestricted

benchmark. However, for GrsA-PheA, as κ increases, the pruning ability of GrDEE does not keep

pace with the additional bookkeeping required for a restricted search. As a result, the GrDEE cycle

is occasionally slower than the corresponding unrestricted redesign. The specific case of GrsA-PheA

may be explained by a peculiarity of the protein system, which contains three alanines (each with

a single rotamer) among the nine mutable residues. The presence of three alanines provides a

significant pruning advantage to uDEE, where almost 90% of the n-choose-κ runs have at least
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uDEE and uA∗ rDEE and rA∗

κ Goldstein Split-DEE GrDEE Split-rDEE
GrsA-PheA 2 2.0 2.1 0.6 0.3

(n = 9) 3 4.8 5.1 6.8 0.5
4 7.4 7.2 63.0 1.4
5 8.4 11.2 + 3.4

β1 domain protein-G 2 11.2 10.9 0.6 0.5
(n = 12) 3 19.6 34.8 8.4 0.9

4 65.2 62.6 32.3 3.0
5 115.6 117.6 238.0 7.7

Plastocyanin 2 + + + 1.3
(n = 18) 3 + + + 8.4

4 + + + 44.4
5 + + + 216.4

+ : did not complete within 12 hours

Table 3.1: Runtimes (in minutes) for κ-Restricted Redesigns of GrsA-PheA (n =
9), core of β1 domain of protein-G (n = 12) and Plastocyanin (n = 18). Runtimes
include DEE pruning as well as A∗ enumeration. DEE criteria evaluated were Goldstein
(Goldstein), restricted Goldstein (GrDEE), unrestricted split (s=1) (Split-DEE), and Split
(s=1) Restricted (Split-rDEE) criteria. All restricted DEE criteria (rDEE) were followed by
restricted A∗ (rA∗) enumeration. All uDEE criteria were followed by uA∗ enumeration. Most
rDEE based redesigns are 10 times faster than their uDEE counterparts. All experiments
were performed on a single processor.

51



one position with a single rotamer (essentially reducing the number of flexible residues). However,

despite this situation, our Split-rDEE runs significantly outperform their uDEE counterparts. This

illustrates the importance of combining multiple different rDEE criteria.

The rDEE criteria are provably correct and therefore guaranteed not to prune any rotamer that

is part of the κGMEC. As a result, we expect the same κGMEC to be identified by the restricted and

unrestricted searches. This result was confirmed by comparing the set of top-ranking conformations

returned by our rDEE based methods with that returned by their uDEE counterparts. An analysis

of the specificity determining residues for the NRPS redesign with different ligands is provided

in (Stachelhaus et al., 1999). We note that the top mutation sequences returned by rDEE based

methods contain the specificity determining mutation A301G for the GrsA-PheA redesign, pointing

to the biochemical feasibility of the solutions suggested by rDEE. We also note that certain aspects,

such as sequence recovery, remain unchanged between uDEE and rDEE approaches as they are

independent of the DEE criteria and are dependent on the energy function instead.

Restricted A∗ Evaluation: The performance advantage provided by restricted A∗ was further

evaluated against its unrestricted counterpart. For two systems (GrsA-PheA and β1 domain of

protein G) and κ = 2, 3, 4, and 5, rDEE pruning was followed either by an unrestricted uA∗ or a

restricted rA∗ enumeration stage (Table 3.2). As κ increases, the number of irrelevant conformations

(i.e., conformations with more than κ mutations) in uA∗ grows quickly, leading to a significant loss

in efficiency.

For GrsA-PheA, the number of possible conformations containing κ or fewer mutations (i.e.

the entire restricted search space), is 2.4× 108, 1.1× 1010, 2.7× 1011, and 4.2× 1012 for κ = 2, 3, 4,

and 5 respectively. The uA∗ search does not limit the number of allowed mutations, consequently

it is forced to consider a significantly larger search space. For example, after pruning with Split

Restricted DEE, the number of GrsA-PheA conformations considered by uA∗ is 9.1×1012, 1.4×1012,

6.8×1012, and 1.5×109 (for κ = 2, 3, 4, and 5 respectively). Note that in GrsA-PheA (where n = 9),

the number of unpruned conformations for κ = 5 (where over half the residues are mutable) is

smaller than that for κ = 4. This reflects the fact that in a redesign with a large number of allowed

mutations, a highly mutated, low energy solution may prune large number of rotamers compared

to a smaller redesign where no such solution exists. Table 3.2 shows the number of partial solutions

examined before the κGMEC was found in both unrestricted and restricted A∗ runs. For all runs,

restricted A∗ evaluates far fewer partial solutions, a fact reflected in the runtimes of Table 3.1. For

increasing values of κ, uA∗ evaluates between 10 and 100 times as many partial solutions as does

restricted A∗. These results provide insight not only into the pruning ability but also the memory

requirements of the two approaches.
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Goldstein Restricted DEE Split Restricted DEE
κ uA∗ rA∗ uA∗ rA∗

GrsA-PheA 2 8.2× 104 1.6× 104 7.0× 103 1.3× 103

(n = 9) 3 6.3× 105 6.5× 104 5.6× 104 8.0× 103

4 + 2.4× 105 1.5× 105 2.4× 104

5 + + 2.7× 105 7.0× 104

β1 domain protein-G 2 7.5× 103 2.1× 102 7.8× 103 7.0× 101

(n = 12) 3 6.3× 105 9.8× 103 2.1× 104 1.3× 103

4 1.7× 106 1.2× 105 6.1× 104 5.7× 103

5 + 2.3× 105 2.5× 105 2.1× 104

+ : did not complete within 12 hours

Table 3.2: Comparison of the Number of Partial Solutions Evaluated by uA∗ and
rA∗ for Redesigns of GrsA-PheA and core of β1 domain of protein-G. For both
Goldstein rDEE and Split-rDEE the restricted A∗ search evaluates an order of magnitude
fewer conformations than the unrestricted A∗ search. In all cases, the number of confor-
mations evaluated by A∗ is far fewer than the total number of allowed conformations (see
text).

3.5 Conclusion

This chapter addresses the restricted protein redesign problem as a first step towards a structural

method of predicting drug resistance. In a κ-restricted redesign, solutions may contain up to

κ mutations among the protein’s n mutable residues. First, rDEE, a novel version of DEE for

use in restricted redesign problems, was introduced. Second, restricted A∗, an enhancement to

unrestricted A∗ search for enumerating conformations in restricted redesigns, was presented. The

results presented in the chapter support rDEE as the method of choice when a protein redesign

requires an upper limit on the number of allowed mutations.

Following the introduction of rDEE and restricted A∗, several enhanced pruning criteria were

also introduced. These extensions include the Goldstein Restricted and Split Restricted criteria.

All rDEE pruning criteria are both deterministic and provably correct and therefore guarantee not

to prune any rotamer that is part of the κGMEC. It was demonstrated that the rDEE criteria

and restricted A∗ search reduce the runtime of restricted redesigns by an order of magnitude when

compared to traditional methods. These results were illustrated on three test systems. As the

values of n and κ increase, the execution of multiple unrestricted DEE runs becomes extremely

time consuming. Therefore, we can conclude that the use of the presented methods is both a

necessary and enabling part of any large restricted redesign.

The challenge for protein redesign has been and will continue to be the development of accurate

and efficient models that simultaneously honor the underlying biophysics, are provably accurate
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with respect to the scoring function, and are computationally efficient. Although our restricted

redesigns were able to complete within a day, for larger protein systems it may be useful to extend

rDEE to incorporate the advanced pruning techniques of split flags, s = 2 split-DEE, or dead-

ending pairs. Additionally, we can incorporate a model of backbone flexibility, by combining rDEE

with BD or BRDEE. We can also handle energy minimization by adapting rDEE to use Energy

Minimized DEE (MinDEE). Incorporation of these criteria would result in more efficient searches

thereby allowing κ-restricted redesigns for larger values of n and κ. We note that all of these

extensions are feasible given our rDEE formulation.

In this chapter, the impact of a small number of mutations (redesigns) on a protein’s ligand

binding profile was explored. Next chapters of this thesis will employ rDEE to model the acquisition

of drug resistance mutations in drug target proteins. Furthermore, the evolutionary life of a drug

target protein will be probed by exploring the local mutational landscape surrounding a wild type

sequence. Apart from its use in modelling drug resistance, this work can also facilitate structure-

based drug discovery both in terms of lead optimization and lead prioritization. Finally, for a

given disease, restricted mutational analysis may also allow prioritization among multiple candidate

protein targets.
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Figure 3.1: Pruning by Traditional DEE, Goldstein DEE, Split-DEE and Re-
stricted DEE. Following the conformational plots of (Pierce et al., 2000) the abscissa
represents all possible conformations of the protein (excluding the conformation of residue
i) and the curve for rotamer ix represents the total energy of conformations containing ix at
i. (a) Traditional DEE: rotamer it can prune rotamer ir because the lowest (best) energy
(dashed line) among the conformations including ir is greater than the highest (worst) en-
ergy among all conformations containing it. Rotamer iu is not able to prune ir. (b) Using
Goldstein DEE both rotamers iu and it can prune ir. The vertical lines represent the energy
difference of Eq. (3.3). (c) Using Split-DEE, rotamer it and iu together are able to prune ir
(it is a better alternative in partition p1, iu is a better alternative in p2). (d) In the restricted
redesign problem, conformations with greater than κ mutations are disallowed (shaded re-
gions). In an unrestricted redesign, rotamer it would not be able to prune ir; however it can
prune ir in a restricted redesign. In this example the GMEC (star) contains greater than κ
mutations; the κGMEC is designated with a circle.
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n = 3, κ = 2

Case 1:

Case 2:

Case 3:
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Figure 3.2: Graphical Representation of the Mutation-Position-Vectors (MPV)
for the Three Cases of Restricted DEE. A small three residue protein is shown for
a κ = 2 restricted redesign. A mutated residue is darkly shaded, a wildtype residue is
light. For Case 1 (shown with wildtype ir) and Case 2, every allowable conformation of the
neighborhood of ir (circled structures) is also an allowed conformation for the neighborhood
of it. This is not true for Case 3, where an MPV of (11) is allowed for rotamer ir but not
for rotamer it.

canEliminate(ir)

for each split position k
for each partition kv

for each subspace m
Sm = < ∃it, it eliminates ir in m >

if ∀m, Sm

prune partition kv

if all partitions are pruned
return true

return false

1

canSplitEliminate(ir)

for each split position k
for each partition kv

Skv = < ∃it, it eliminates ir in kv >
if ∀kv, Skv

return true
return false

canSpaceEliminate(ir)

for each valid subspace m
Sm = < ∃it, it eliminates ir in m >

if ∀m, Sm

return true
return false

1

Figure 3.3: Pseudocode for Split Restricted DEE (Left) The pseudocode for the Split-
rDEE of Eq. (3.13). (Right) An alternative pseudocode for restricted Split-rDEE. Multiple runs
of canSplitEliminate are performed until no more pruning can be achieved, followed by multiple
runs of canSpaceEliminate until no more pruning can be achieved again. The results in Table 3.1
were obtained using the Right implementation of Split-rDEE. Partition kv refers to the partition
with splitting rotamer kv.
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Chapter 4

Efficient A Priori Identification of

Drug Resistant Mutations using

Dead-End Elimination and

MM-PBSA.

Chapter 3 described restricted Dead-End Elimination (rDEE) as the protein design algorithm of

choice when the objective is to limit the number of mutations in the redesign. When the objective

of such a restricted redesign is a reduction in binding affinity of the mutant protein for the drug,

rDEE can be used to predict resistance conferring mutations. This chapter describes a resistance

prediction algorithm that utilises rDEE to predict drug resistance a priori in four drug-target

systems. The contents of this chapter have been previously published as (Safi and Lilien, 2012).

4.1 Introduction

The emergence of drug resistance remains a significant and frustrating cause of treatment failure.

Four molecular mechanisms underly the majority of drug resistance: point mutations in the drug

target, alterations in non-target compensatory genes, increased drug metabolism, and reduction

in intracellular concentration through reduced cellular uptake or upregulated small molecule ef-

flux (Blanchard, 1996; Borst, 1991; Erickson and Burt, 1996) (see Chapter 2). In this chapter, we

focus on modelling the most direct and prevalent ways in which resistance is conferred: the intro-

duction of mutations within the drug binding site (Parikh et al., 1999; Arnold et al., 2005; Volpato

et al., 2007a; Bang et al., 2011; Chen et al., 2013). To cause resistance, these mutations must main-
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tain near-native protein function, otherwise they are effectively inherently inhibited. Therefore, in

order to confer resistance, a binding site mutation should reduce drug binding while maintaining

native substrate binding at near original levels (see Figure 4.1). The resistance problem is therefore

similar to that of modeling binding selectivity in that both problems evaluate the binding pref-

erences of the protein receptor for one molecule over another (i.e., substrate vs. drug) (Huggins

et al., 2012; Noble et al., 2004; Ohtaka et al., 2002; Pastor and Cruciani, 1995).

Knowledge of potential resistance mutations, before they are clinically observed, would be

very useful. During lead prioritization, this knowledge may direct the research team away from

candidates that are most likely to confer resistance. Knowledge of resistance mutation hot-spots

would allow pharmaceutical researchers to favor leads that avoid interactions with these problematic

regions of the active site. Furthermore, this approach could complement the idea of respecting the

substrate envelope in lead optimization (Altman et al., 2008; Nalam et al., 2010; Nalam et al., 2013;

Shen et al., 2013) in guiding medicinal chemists toward modifications aimed at evading resistance.

In the clinical setting, knowledge of potential resistance mutations could allow the development of

treatment regimens, with drug cocktails likely to maximize treatment efficacy.

Methods for modeling and identifying known resistance mutations are slowly emerging. These

methods can be divided into two categories: sequence-based methods and structure-based methods.

Sequence-based methods currently include both computational and wetlab/clinical analyses. The

bulk of sequence-based methods, both computational and experimental, are knowledge based and

make use of existing sequence and phenotype data to generate and score potentially resistant se-

quences. Among the sequence-based methods are the genotypic resistance assays (GRTs) that are

primarily used to identify resistant strains in a clinical setting (Eboumbou Moukoko et al., 2009;

Operario et al., 2010; Van Laethem et al., 2005). GRTs predictions are based on previously iden-

tified molecular markers of resistance. Existing sequence-based computational approaches closely

mimic the GRT resistance assays. These approaches employ machine learning and statistical meth-

ods such as neural networks and random forests (Buendia et al., 2009; Chen et al., 2009a; Fjell

et al., 2009; Heider et al., 2010; Pasomsub et al., 2010; Zhang et al., 2010). Genetic features indica-

tive of resistance are identified by analyzing known sensitive and resistant sequences. The presence

or absence of these features are used to detect resistance in a candidate sequence. These methods

are useful in identifying known or combinations of known patterns of resistance; however, these

methods are not useful in identifying novel resistance mutations. For systems where knowledge of

previously known mutations is small or non-existent, such as in emerging diseases and new drug

targets, the utility of these knowledge-based methods is significantly reduced.

A second class of methods attempts to model the structural effects of known resistance muta-

tions using molecular modeling and molecular dynamics simulations (Dixit et al., 2009; Frieboes

et al., 2009; Lapins and Wikberg, 2009; Pricl et al., 2005; Velazquez-Campoy et al., 2003; Wahab
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et al., 2009; Zhu et al., 2009). For example, Chen et. al. used a docking algorithm to study resistance

in several drug targets (Chen et al., 2001). They introduced specific, known resistance mutations

into the protein target and used docking algorithms to study the effects of these mutations on drug

and substrate binding. These molecular modeling approaches have been useful in understanding

the structural basis of known resistance mutations, but these algorithms are not designed to search

the combinatorial number of potential mutations to identify novel resistant sequences.

Since resistance mutations typically involve a small number of amino acid changes to the active

site, it may be possible to predict new resistance mutations in the drug targets before they arise.

This involves searching through and ranking a large number of possible candidate solutions. An

exciting new direction is the use of protein redesign algorithms to identify novel resistant sequences

using first principles (i.e., without the use of known resistance data). The techniques utilized in

protein redesign are extremely efficient at searching exponentially large search spaces and generating

a ranked list of candidate redesigns. This approach does not rely on clinical data and can be useful

for systems where very little is known about possible resistance. For example, the Donald lab

successfully used the K∗ ensemble-based protein redesign algorithm (Lilien et al., 2004) to identify

novel resistance mutations in dihydrofolate reductase (Frey et al., 2010). Their work demonstrates

that computational methods can be useful when modeling a priori drug resistance. For a detailed

description of previous works in the field, see Chapter 2.

In this chapter, a general framework to probe active site localized resistance mutations is de-

scribed. Our approach uses the restricted Dead-End Elimination (rDEE) based protein design

described in Chapter 3 (Safi and Lilien, 2010), coupled with a two-pass search and scoring method

based on the more biophysically accurate MM-PBSA model. The use of DEE based methods makes

this approach deterministic, fast, and guaranteed to identify the lowest energy solution from the

specified search space. DEE was initially described by (Desmet et al., 1992) and has been success-

fully employed in several redesigns (Gielens et al., 2007; Looger et al., 2003a; Maglia et al., 2008;

Novoa de Armas et al., 2007). In this chapter, the model’s ability to predict resistance mutations

in four diverse drug target systems will be tested. Hence, these four systems serve as a validation

set for the model. For each experiment, the algorithm had no foreknowledge of known resistance

mutations. In all cases, the model’s predicted mutations have good agreement with the known

mutations. Therefore, it can be concluded that the use of protein redesign methods, including

rDEE, has significant potential to identify previously unseen resistance mutations in a range of

drug targets.
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Wildtype Mutant 2 Mutant 3 Mutant 4Mutant 1

Drug
Native Substrate

Figure 4.1: Binding free energy shifts of mutant sequences. Hypothetical binding profiles
for the native substrate (green polygon) and the drug (red circle). The wild-type protein binds
the drug more strongly than the native substrate and is therefore sensitive to the drug. Mutant 1
represents the ideal resistant case; the protein’s interaction with the native substrate is no worse
than that of the wild type yet binding of the drug is significantly impaired. Mutant 2 represents
the more realistic resistant case where both native substrate and drug binding are affected. Mutant
3 preferentially binds the drug over the native substrate and therefore remains sensitive to the
inhibitor. Mutant 4 prefers to bind the native substrate; however, the significant decrease in
binding energy may result in impaired native function and thus a constitutively inhibited protein.

4.2 Methods

We define the term ‘mutation sequence’ to refer to the sequence of amino acids of a mutated gene

variant. Our method consists of two stages. The first stage uses an efficient restricted Dead-End

Elimination (rDEE) (Safi and Lilien, 2010) search of allowable mutation space to identify potential

resistance mutations. In the second stage, the more accurate yet computationally expensive MM-

PBSA scoring method is used to validate and rank the identified mutation sequences.

4.2.1 Stage 1: Efficient Dead End Elimination Based Search

In the first stage, we use a Dead-End Elimination based search to identify mutation sequences that

disrupt drug binding while maintaining sufficient binding of the native substrate. To enforce this

constraint, a two-pass search procedure was utilized: the native substrate pass and the drug pass.

To improve computational efficiency, our method utilizes restricted Dead-End elimination (rDEE)

in combination with restricted A∗ enumeration. These methods are fully described elsewhere (Safi

and Lilien, 2010). Protein conformations are scored using an efficient pairwise energy function that

includes the dihedral, electrostatic and vdW terms of the AMBER energy function (Case et al.,

2005; Pearlman et al., 1995; Cheatham and Young, 2001; Ponder and Case, 2003). A flowchart
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depicting the approach appears in Figure 4.2.

Our use of DEE closely parallels its use in a typical DEE-based protein redesign. Each of

the protein’s residues is modeled as either rigid and not mutable, flexible and not mutable, or

flexible and mutable. Side-chain flexibility is modeled using a discrete rotamer library of low-energy

conformations (Lovell et al., 2000b). Rigid residues include those sufficiently far from the region

of interest such that that the rigid approximation is not likely to significantly affect the model. A

subset of the n active site residues are modeled as flexible and mutable while the remaining active

site residues are modeled as flexible and not mutable. In the context of modeling drug resistance, it

is extremely unlikely that a large number of active site residues will mutate simultaneously. In other

words, for most drug-target systems, we expect a resistant sequence to contain k mutations where

k < n and typically k ≤ 4. Since the number of mutations in a resistant phenotype is often much

smaller than the number of residues in the active site and because traditional DEE algorithms do

not have a mechanism for restricting the search to any of the
(
n
k

)
allowed solutions, traditional DEE

algorithms are not an efficient choice for resistance prediction. To date, restricted redesign has been

accomplished either by running
(
n
k

)
separate searches where in each search only k specific residues

are allowed to mutate or by using a single run where solutions are enumerated until a sequence

with only k mutations is generated. In the latter case, care must be taken to avoid pruning the

desired solution. Recently, we described a restricted version of DEE (rDEE) and A∗ specifically

tailored to facilitate the search for redesigns with a limited number of allowed mutations (Safi and

Lilien, 2010). An rDEE A∗ search is therefore an ideal choice for predicting resistance mutations. It

removes the need to perform
(
n
k

)
separate searches and is faster than searching through the results

of an unrestricted run.

Native Substrate Pass: The search for mutation sequences capable of maintaining native sub-

strate binding is termed positive design. A gap free list of mutation sequences ranked on their

predicted ability to bind the native substrate is identified using rDEE and restricted A∗ enumer-

ation. Mutation sequences whose predicted native substrate binding energies are no more than

1.5 kcal/mol worse than the wild type were identified. Mutation sequences whose predicted native

substrate binding energies were worse than this threshold were eliminated from consideration. We

emphasize that this threshold is a system parameter that the user can use to control the number of

mutant sequences that are further evaluated. We chose a threshold of 1.5 kcal/mol for all reported

experiments to allow a compromise between computational efficiency and percentage of the muta-

tion search space evaluated beyond the native substrate pass. However, the user may modify this

threshold when evaluating different protein-drug systems.

Drug Pass: The search for mutation sequences with reduced drug binding is termed negative

design. The output of the native substrate pass is a set of sequences S predicted to bind the native

substrate no worse than 1.5 kcal/mol of the wild type sequence. In the drug pass, all sequences in

61



Obtain PDB structures, add 
Hydrogens

Parametrize non-AA ligand 
(antechamber)

∆∆rdee > 0

Discard

Potential resistance. 
Evaluate in Stage 2.

No

Yes

Score s2 using rDEE for drug 
binding. Keep structure of best 

conformation

Score s1 using rDEE for drug 
binding. Keep structure of best 

conformation

Score sn using rDEE for drug 
binding. Keep structure of best 

conformation

Stage 1

Run rDEE to obtain a gap-free 
list S (|S| = n) of best, native 

substrate binders. Keep lowest 
energy structure for each 

mutant

Thursday, April 5, 2012

For each mutant and its 
corresponding structure 

passing Stage 1

Solvate both substrate and 
drug complexes (leap)

Minimize each complex using 
(2000 steps of conjugate 

gradient) (sander)

Stage 2

Calculate substrate and drug 
binding energies using MM-

PBSA (mmpbsa.py) 
∆∆pbsa > 0 Predicted Resistance 

Sequence

Discard

No

Yes

Thursday, April 5, 2012

Figure 4.2: Flowchart of Methods. The two stage approach is displayed. (A) Stage 1. DEE
is used to search and score potential mutants. Complex structures with both substrate and drug
corresponding to lowest energy conformation for each selected mutant are generated. (B) Stage 2.
Mutants that pass Stage 1, are solvated and energy minimized. A PBSA based approach is used
to recalculate binding energies.
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S are screened for drug binding. Individual DEE searches are used to identify the lowest energy

conformation for each mutation sequence s ∈ S. In these DEE searches, residues are modeled as

flexible or rigid, but because the mutations away from the wild type are implicit in s, no further

mutations are permitted. The best binding energy between the drug and any conformation of s,

as computed by the AMBER energy function (see Additional Modeling Details), is saved as the

drug-interaction energy of sequence s. Finally, for each of these mutation sequences, the best

interaction energy with the native substrate and the best interaction energy with the drug are used

to compute a ∆∆rdee score (see Scoring Function below).

Additional DEE Search Details: For both the positive and negative design passes, protein

systems consist of all residues with at least one atom within 10 Å of the native substrate. The

subset of these residues, which together compose the active site, are modeled as both flexible and

mutable. These active site residues are identified from previous structural studies (Cowan-Jacob

et al., 2007; Dias et al., 2007; Golovin and Henrick, 2008; Schweitzer et al., 1989; Volpato et al.,

2009) and PDBeMotif (Protein Data Bank Europe, ). Residues that are included (i.e., those within

10 Å) but are not part of the active site form a steric shell that is modeled as rigid and non-mutable

during the DEE based search.

Finally, while stochastic methods of protein redesign offer efficient ways of probing the search

space, our choice of a DEE based method for resistance modelling is motivated by a desire to

maximize coverage. Ideally, a resistance prediction algorithm should aim to predict all resistance

conferring mutants for a given drug target protein and drug. DEE allows a systematic method

of searching the conformational space where all solutions within a user-specified ∆ of the optimal

solution are returned. Thus, by altering this ∆, a user can control the percentage of search space

near the optimal solution (and hence, number of potential candidates) that is returned, and then

further examined for resistance conferring abilities. Furthermore, any mutant not returned by DEE

is guaranteed to have an energy difference greater than ∆ from the optimal.

4.2.2 Stage 2: Rescoring with MM-PBSA

The first stage serves as a filter to identify candidate resistant mutation sequences and their cor-

responding low energy structures. In the second stage, these candidates are rescored using the

more accurate and more computationally expensive MM-XBSA models as implemented in AM-

BER 11.0 (Case et al., 2005; Pearlman et al., 1995) (XBSA refers to either the PBSA or GBSA

methods). While molecular modeling approaches are far from perfect (Pearlman, 2005), both the

MM-PBSA and the MM-GBSA techniques have demonstrated reasonable accuracy on a number

of different test systems (Ferrari et al., 2007; Guimaraes and Cardozo, 2008; Raju et al., 2010;

Wang et al., 2006). For the results reported in this chapter, we utilized MM-PBSA as it is typically

more accurate than MM-GBSA at the cost of added runtime (Hou et al., 2011). We performed
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experiments using both MM-PBSA and MM-GBSA in Stage 2 and found no significant differences

in results; however, MM-PBSA takes approximately four times longer to compute. Therefore, if

optimizing runtime is crucial, MM-GBSA could be used instead of MM-PBSA in Stage 2.

In Stage 2, we rescore each mutation sequence by considering the two structures generated in

Stage 1: the lowest energy (best) conformation of the protein bound with the drug and the lowest

energy conformation of the protein bound with the native substrate. The rescoring process utilizes

all protein residues, including those beyond the steric shell and active site. There are three steps

to this rescoring.

First, the mutant structure generated by rDEE in Stage 1 is parametrized using the leap mod-

ule in AMBER 11.0, and solvated in an octahedral box of TIP3P water molecules extending 12

Å beyond the protein on all sides. Second, the solvated complexes are minimized with 500 steps

of steepest descent minimization followed by 1,500 steps of conjugate-gradient minimization. No

restraints are used during minimization. A residue-based cutoff of 12 Å for nonbonded terms is

used. For comparison, we also evaluated longer minimizations with 5,000 and 10,000 steps; how-

ever, in all four protein systems, 2,000 steps (500 + 1,500) was sufficient for the minimization

to converge. Finally, we compute the ligand binding energy of the solvated, minimized complex.

Poisson-Boltzmann (PBSA) implementation of mmpbsa.py module in AMBER 11.0 is used to

compute the ligand binding energy. The overall workflow evaluates binding energies using AMBER

PBSA, an explicit solvent model, and energy minimization (but no molecular dynamics). This

pipeline was introduced by Ferrari et al (Ferrari et al., 2007). The authors report promising corre-

lation (∼0.8) between experimentally determined energies and those predicted by AMBER PBSA

using explicit solvent for a set of aldose inhibitors.

Using the bound structures generated from Stage 1, each mutation sequence is scored for both

native substrate and drug binding. The ∆∆pbsa score is calculated (see below). Mutation sequences

with positive values for both ∆∆ scores (∆∆rdee and ∆∆pbsa) are categorized as the predicted

resistant mutation sequences. A diagram of the process is shown in Figure 4.2.

Scoring Function: We defined a scoring function to measure resistance. The scoring function

computes the difference in binding energy between the wild-type and mutation sequence for both

the native substrate and the drug. An ‘ideal’ resistant mutation sequence would maintain native

interaction energy with the native substrate while decreasing the protein’s interaction energy with

the drug (Figure 4.1). The improvement in binding energy for the native substrate is measured

as Ewt,s − Emut,s and the decrease in binding energy for the drug is measured as Ewt,d − Emut,d.

Where Ex,y is the interaction energy between protein x (wt: wild-type; mut: mutation sequence)
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and molecule y (s, native substrate; d, drug). The terms are combined to create a resistance score,

∆∆ = (Ewt,s − Emut,s)− (Ewt,d − Emut,d) (4.1)

Two resistance scores can be computed, one using the interaction energies from Stage 1 and one

from the MM-PBSA based energies of Stage 2. The method used to calculate the ∆∆ score is

indicated in the subscript, thus scores calculated by rDEE and PBSA are referred to as ∆∆rdee

and ∆∆pbsa respectively.

A positive ∆∆ score indicates a possible resistance mutation. A positive score is obtained when

a mutation sequence disrupts drug binding more than it disrupts binding the native substrate. A

negative score indicates the opposite and is thus unlikely to confer resistance. The scoring function

of Eq. 4.1 is intuitively similar to the scoring functions used in a number of published binding

selectivity studies (Cheng et al., 2010; Kangas and Tidor, 2000; Sherman and Tidor, 2008).

In summary, a series of filters and scoring methods are applied to each molecular system. First,

a positive design pass applies rDEE to the protein and native substrate system. Sequences with

sufficiently ‘good’ energies are then evaluated in a negative design pass to assess drug binding

and compute a ∆∆rdee resistance score. Mutation sequences with a positive resistance score are

reevaluated in Stage 2 using MM-PBSA. Mutation sequences with both positive ∆∆rdee and ∆∆pbsa

scores are output as predicted resistant mutation sequences. All mutations that do not pass Stage

1 or that have a negative ∆∆pbsa score are considered sensitive to the drug.

Molecular Systems: For all four systems, only the active site residues (specified for each

system below) were modeled as flexible and mutable. For rDEE runs, a rigid steric shell consisting

of residues with at least one atom within 10 Å of the active site (and not explicitly modeled as

active site) was included in energy computation. In Stage 2, all protein residues were included in

calculations.

Isoniazid-enoyl-ACP Reductase: Isoniazid is a competitive inhibitor of Mycobacterium tuber-

culosis enoyl-ACP reductase. We utilized the structures from PDB IDs: 2IDZ (inhibitor bound

complex) and 1BVR (native substrate bound complex). Similar to previous work (Dias et al.,

2007), the following active site residues were modeled as flexible/mutable: Ile 16, Ile 21, Phe 41,

Ile 47, Ser 94, Phe 149, Lys 165, Leu 218, Trp 222. Enoyl-ACP reductase binds NADH and a fatty

acyl substrate for its native function. The previously known resistance mutations for isoniazid are

clustered within the NADH binding site (Dias et al., 2007).

Ritonavir-HIV Protease: Ritonavir is a protease inhibitor used against HIV. We utilized the

structures from PDB IDs: 1N49 (inhibitor bound complex) and 1F7A (native substrate bound

complex). The 1F7A structure contains the D25N amino acid substitution but is often used as the

native form of HIV protease in structure-based modeling studies (Altman et al., 2007; King et al.,
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2004). Similar to previous work (Prabu-Jeyabalan et al., 2000; Weber et al., 1989), the following

11 active site residues were modeled as flexible/mutable: Gly 27, Asp 29, Asp 30, Met 46, Gly 48,

Ile 50, Ile 54, Val 82, Ile 84, Gly 126, Ile 146. Mutations in the active site catalytic loop, Asp 25,

Thr 26, and Gly 27, are known to adversely impact HIV protease function; therefore, these residues

were not allowed to mutate during Stage 1.

Methotrexate-DHFR: Methotrexate is an anti-cancer drug targeting human dihydrofolate re-

ductase (hDHFR). We utilized the structures from PDB IDs: 3EIG (inhibitor bound complex) and

1DRF (native substrate bound complex). The structure 3EIG contains two active site amino acid

substitutions (F31R and Q35E). We reverted these substitutions back to wild type using rDEE, fol-

lowed by 5,000 steps of steepest descent unrestrained energy minimization using the sander module

in AMBER. The resulting structure was used as our wild-type inhibitor bound complex. Similar

to previous work (Schweitzer et al., 1989; Volpato et al., 2009), the following 10 human DHFR

residues were modeled as flexible/mutable: Ile 7, Leu 22, Glu 30, Phe 31, Arg 32, Phe 34, Gln 35,

Leu 67, Val 115, Thr 136.

Gleevec-ABL Kinase: Gleevec is an anti-cancer drug that inhibits human ABL kinase. We

utilized the structure from PDB ID: 2HYY (inhibitor bound complex) to model drug binding. The

gleevec-ABL kinase system presented a modeling challenge as a structure of ABL kinase bound to its

native substrate has not been published in the PDB database. In place of the missing structure, we

generated an unbound wild-type receptor by removing the inhibitor from 2HYY. The resulting PDB

structure then was solvated in leap and subjected to 5,000 steps of steepest descent unrestrained

energy minimization using the sander module in AMBER. The resulting unbound ABL kinase

structure was used in the native substrate rDEE pass of Stage 1. As the substrate bound complex

was missing, the value (Ewt,d−Emut,d) was used to determine if the mutant disrupted drug binding

compared to the wild type (see details below). Similar to previous work (Cowan-Jacob et al., 2007;

Protein Data Bank Europe, ), the following 14 residues were modeled as flexible/mutable: Tyr 253,

Val 256, Lys 271, Glu 286, Met 290, Ile313, Thr 315, Phe 317, Met 318, Ile 360, His 361, Leu 370,

Asp 381, Phe 382.

Additional Modeling Details: As a first step to evaluate our search pipeline, we limited our

search to only hydrophobic amino acids (or hydrophobic plus polar neutral for enoyl-ACP reduc-

tase); and we evaluated our ability to recover known resistance mutations involving these amino

acids in our search space. The approach we took allows us to decouple the performance of our resis-

tance scoring from the individual scoring of molecular interactions of difficult to model residues and

provided the best opportunity for validation using known resistance mutations. Residue flexibility

in rDEE was modeled using the Lovell, Richardson, and Richardson’s side chain rotamer library

(Lovell et al., 2000b). Similar to (Georgiev et al., 2006a; Stevens et al., 2006), AMBER energy
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Table 4.1: Predicted Resistance for Isoniazid-TB. All 16 single mutants predicted resistant
by our model are listed. Of the 5 known mutants, 4 were predicted as resistant by our approach.
Another 6 of the predicted 16 are highly likely due to their similarity to known mutants.

Mutation Comments
I16T, I21T, I21V, I47T Known resistance mutations

I16V,I21A, I21W, I21F, I21Y, I47V Plausible, similar to known mutations

K165M, K165Q, F149N Unlikely, K165, F149 mutants may disrupt function (catalytic triad)

F41M, F41L, L218Y Less likely, F41 is important for NADH binding

function (a sum of electrostatic, vdW, and dihedral energy terms calculated using the AMBER

force field) (Weiner et al., 1984b; Cornell et al., 1995b) was used to compute the pairwise energies

between residues. The reduce module in AMBER 11.0 was used to protonate the input structures

in a neutral environment. In the rDEE stage, small molecule ligands were treated as rigid. Finally,

the Lovell rotamer library was used to model the peptide ligand of HIV protease.

4.3 Results And Discussion

We used our two stage search and scoring method to predict resistance mutations in four target sys-

tems. Three of the four searches started with experimentally determined structures of the substrate

and drug bound wild-type complexes (the gleevec-ABL kinase system used only an experimental

structure of the drug bound wild-type complex). None of the four searches used knowledge of

previously published resistance mutations. The goal of these experiments was to demonstrate the

ability of our approach to discover resistance mutations. We evaluated the quality of the identified

candidate resistance sequences by comparison to known resistance mutations. This validation is

only partial; a predicted mutation may indeed be resistant, but to date, it may not have been

experimentally verified nor reported in the literature.
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Figure 4.3: Structures for isoniazid Resistant Mutations. The Enoyl-ACP reductase protein

is shown as cartoon with selected residues and isoniazid rendered in stick form. (Top) Two muta-

tions occurring at Ile 21. Wildtype sequence (green), I21V (pink), I21T (cyan). Both mutations

are known and drug binding is predicted to be disrupted by a loss of vdW contacts (∼1.2 kcal/mol)

in I21V and a loss of electrostatic interactions (∼6.5 kcal/mol) in I21T. (Center) Two mutations

occurring at Ile 47: wild type (green), predicted and plausible I47V mutation (pink), and known

I47T (cyan). A loss of electrostatic interactions (∼1 kcal/mol) is predicted to be responsible for

the disruption of drug binding. (Bottom) A mutation at Phe 41: wild type (green) and the pre-

dicted F41M (pink). Loss of both vdW contacts (∼4 kcal/mol) and electrostatic interactions (∼3

kcal/mol) is predicted. A single isoniazid molecule in dark green is shown in the top and center

panels as the drug does not shift significantly between wild-type and mutant structures. In the

bottom panel, isoniazid’s position in the F41M mutant is shown in pink.

68



Isoniazid Resistance: Isoniazid remains part of the first line treatment for tuberculosis (TB)

worldwide. It is a prodrug activated by the Mycobacterium Tuberculosis’s KatG enzyme to form

the acyl-NADH complex (INH-NAD) that binds the target enoyl Acyl-Carrier Protein reductase

(enoyl-ACP reductase). Enoyl-ACP reductase is a 270 amino acid long protein involved in type

II fatty acid synthesis. For wild-type functionality, the TB enoyl-ACP reductase binds a fatty

acyl substrate and an NADH cofactor. The NADH and fatty acyl binding are prevented by the

competitive inhibitor isoniazid. Numerous point mutations in enoyl-ACP reductase are known to

confer isoniazid resistance, these include I16T, I21T, I21V, I47T, V78A, S94A, and I95P (Parikh

et al., 1999). Five of these mutations (I16T, I21T, I21V, I47T, S94A) fall within our search space.

Our algorithm was used to identify potential resistance mutations in the isoniazid enoyl-ACP

reductase system. Most of the isoniazid resistance mutations involve single amino acid changes.

We therefore restricted our search to at most one simultaneous mutation. In the Enoyl-ACP

reductase system, the 9 active site residues (see Methods) were allowed to mutate to any of the

following thirteen amino acid types: Gly, Ala, Leu, Ile, Val, Phe, Tyr, Trp, Met, Asn, Gln, Ser, and

Thr. This set includes the nine hydrophobic amino acids A, F, G, I, L, M, V, W, and Y and four

polar neutral amino acids N, Q, S, and T. The polar neutral amino acids were included because a

number of known resistance mutations involve mutations to Thr.

In this limited system, the search space contains 117 single point mutation sequences. A total

of 47 sequences passed the native substrate pass (positive design) of the rDEE search indicating

that substrate binding was predicted to lie within acceptable limits. These 47 sequences were then

scored for isoniazid binding using rDEE (negative design). The ∆∆rdee score was calculated for

each sequence. Forty six sequences showed a positive ∆∆rdee score indicating that these candidate

mutations affected drug binding more than they affected the binding of the native substrate. Next,

for each of these 46 sequences, the MM-PBSA method was used to calculate the binding energies

of both the substrate and isoniazid. Sixteen of the initial 117 single point mutants had positive

∆∆ scores for both scoring methods and were categorized as our predicted resistant sequences (see

Table 4.1).

We evaluated the performance of our algorithm in the context of known resistance mutations in

the isoniazid enoyl-ACP reductase system. There are five known resistance mutations among the

modeled sequences. Four of these five mutation sequences are identified among our list of sixteen

candidate resistant sequences (I16T, I21T, I21V, and I47T). Of the twelve remaining predicted

resistant mutation sequences, six occur at positions I21 (I21A, I21W, I21F, and I21Y), I16 (I16V)

or I47 (I47V) and can be considered plausible based on their similarity to the known resistance

mutations. Of the remaining six mutations, both F41M and F41L are less likely to confer resistance.

F41 is hypothesized to be involved in binding the adenine moiety of both the cofactor NADH and
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isoniazid. Therefore, a mutation at F41, which disrupts drug binding may also impair native

function. Finally, the remaining three mutations K165M, K165Q, and F149N are unlikely to cause

resistance, since both F149 and K165 have been implicated in the catalytic triad for the enoyl

ACP reductase. For example, experimental evaluation of a number of single mutants of K165,

including K165A and K165M indicates that NADH binding is severely affected, inhibiting native

function (Parikh et al., 1999). The structures obtained after the energy minimization step of stage

2 of three known resistance mutations (I21V, I21T, and I47T), one plausible mutation (I47V), and

one unlikely resistance mutation (F41M) are shown in Figure 4.3.

Of the five known isoniazid resistant mutation sequences, only one, S94A, was not identified by

our method. A review of our analysis identifies that S94A was pruned at the native substrate pass.

The mutation was predicted to impair native substrate binding by 3.74 kcal/mol, which was more

than the allowed threshold of 1.5 kcal/mol. Interestingly, the S94A mutation is known to confer

resistance through the loss of water mediated bonds involving Ser (Pantano et al., 2002). The native

substrate pass likely had difficulty modeling this interaction because although solvent is modeled

in Stage 2, there is no explicit water model in our rDEE phase of Stage 1. In summary, four of

five known active site resistance mutations were recovered by our method, while an additional six

predicted mutations have plausible mechanisms of resistance. The predictions are significant at 5%

(p-value ≈0.0018).

Ritonavir Resistance: HIV protease is an aspartyl protease essential for HIV replication. Most

protease inhibitors bind the active site and prevent interaction with the native peptide substrate.

Our model consisted of HIV protease, the inhibitor ritonavir, and a native binding peptide. We

allowed up to two simultaneous mutations at eleven active site residues (see Methods). Residues

were allowed to mutate to the following nine hydrophobic amino acids: Gly, Ala, Leu, Ile, Val, Phe,

Tyr, Trp, and Met. A total of 787 mutation sequences out of 3771 passed our native substrate

filter. 720 of these sequences made it through the drug pass and were rescored using MM-PBSA.

177 mutation sequences had positive ∆∆rdee and ∆∆pbsa scores and were output as predicted

resistant mutation sequences. These sequences are discussed below and a complete list can be

found in Table 5.6. The extremely large amount of HIV protease sequence and screening data

complicates the evaluation of our model. To simplify comparison we constructed two validation

sets. Our first validation set is derived from the HIV Drug Resistance Database (Rhee et al.,

2003; Shafer, 2006). It contains the 28 known single and double residue mutations that lie within

our defined search space and confer at least 2.5-fold resistance to ritonavir (Table 4.2). In this

context, z-fold resistance indicates that the IC50 of ritonavir for the mutant is z times higher than

that for the wild type. This first set of mutations is the best supported set of known resistance

mutations in the literature. We refer to the first set as the Gold Standard Set. Because this is
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Table 4.2: Gold Standard Validation Set for Ritonavir Resistance in HIV protease.
The validation set of 28 known single and double point ritonavir resistance conferring mutations
obtained from HIV-DB are listed in order of fold resistance. Only the mutants in modeled residues
where the fold-resistance was more than 2.5 are included. The prediction column indicates the
prediction result of our algorithm (R: predicted resistance sequence, S: predicted sensitive).

Mutation Prediction Fold Res. Comment
M46I/V82A S 400 Does not pass substrate filter.
V82A/I84V R 400
I54A/V82A R 212

I54V/I84V S 201 Does not pass Stage 2. I54V/I84FL predicted resistant.
I54V/V82F R 128
I54L/V82A R 118
M46I/I84A S 67 Does not pass substrate filter.
M46I/I84V S 48 Does not pass substrate filter. M46L/I84V predicted Resistant.

M46L/V82A R 45
I54L/I84V S 29 Does not pass Stage 2. I54L/I84Y is resistant.

I54V/V82A R 22
G48V/V82A S 15 Does not pass substrate filter.
M46I/V82F S 15 Does not pass substrate filter.

V82A R 11
I54M/V82A R 9.6

I54V S 8.8 Does not pass Stage 2.
M46L/I84V R 8.4

I50V S 8.2 Does not pass Stage 2.
V82F R 8.0

M46L/V82L R 5.8
M46L/I54L S 5.5 Does not pass Stage 2. M46L/I54M predicted Resistant.
M46I/I50V S 5.2 Does not pass substrate filter.

I54L S 5 Does not pass Stage 2.
I84V R 4.5
I54M S 4.4 Does not pass Stage 2.
M46I S 4 Does not pass substrate filter.
V82L R 3.1
M46L S 2.5 Does not pass Stage 1
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a somewhat conservative list we also created a second set of plausible mutations using 17 single

residue mutations. These single residue mutations are known to confer resistance to at least one

protease inhibitor and are within our search space. They include: D30GY, M46IL, G48MV, I50V,

I54LMV, V82AFLM, I84FLV (Brenner et al., 2000; Rhee et al., 2003; Rhee et al., 2010; Shafer,

2006; Stoffler et al., 2002; Wang et al., 2007). In this notation any single amino acid code after

the residue number is a valid single point mutation (i.e., D30GY indicates that D30G and D30Y

are both separate resistance mutations). Our second validation set consists of the 138 single and

double residue mutations that can be constructed using this set of 17 amino acid substitutions. For

example, the double mutant V82A/I84L is in the second set of plausible mutations because both

V82A and I84L are resistance conferring. In contrast to the first validation set, not all mutation

combinations in the second set have been experimentally verified. The constructed combinations

are plausible because the constituent mutations are known to display synergistic resistance. We

refer to the second validation set as the Plausible Validation Set.

Gold Standard Validation Set. Of the 28 known resistance mutations in the first validation

set, 13 are identified by our method as predicted resistant sequences with positive ∆∆rdee and

∆∆pbsa scores. This represents an enrichment factor of approximately 10 (28/3771 positive in the

entire search space compared with 13/177 positive in the search results, p-value 0 at 5% ). The 15

non-identified mutations were pruned at one of the search stages. Six were eliminated in the native

substrate pass because the rDEE based prediction of native binding energy was affected by more

than the allowed 1.5 kcal/mol. Figure 4.5 shows a recovery plot and ROC curve. At our threshold

of 1.5 kcal/mol approximately 75% of the known resistance mutations yet only 18% of the entire

search space makes it through the native substrate pass. By relaxing the native substrate binding

threshold from 1.5 to 4.0 kcal/mol the numbers are approximately 85% of the known resistance

mutations and 25% of the entire search space respectively. Therefore, by modifying this threshold,

the user can adjust the number of sequences screened for resistance.

Plausible Validation Set. Of the 138 single and double mutants in the plausible validation

set, 40 are identified among our list of candidate mutation sequences. This represents an enrichment

factor of 6.2 (138/3771 positive in the entire search space compared with 40/177 positive in the

search results). An interesting phenomenon involves secondary or compensatory mutations. We

employ a strict native substrate binding cutoff to ensure that only mutants capable of binding the

native substrate are considered for resistance. Some of the known single point mutants such as

M46I and D30Y do not pass this filter. However, allowing the freedom to incorporate a second

and potentially compensatory mutation allows double mutants greater ability to maintain near

native binding. Thus, numerous double point mutants that include a known single point resistance

mutation pass the substrate filter and are further screened. A total of 89 mutation sequences or

50.3 percent of our 177 output sequences fall into this category.
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Seven of these mutants are combined with known mutant D30Y and four include known mu-

tant I50V. Fourteen of the 89 compensatory mutation sequences identified by our search include a

combination of V82 and I84 (V82A/I84YM, V82Y/I84LF, V82W/I84LF, V82M/I84Y, V82L/I84Y,

V82G/I84FLV, V82I/I84F, and V82F/I84YM). There is experimental support for several protease

inhibitor resistance mutations involving this pair (Boden and Markowitz, 1998; Hou and Yu, 2007).

A total of 48 of the 177 mutation sequences predicted by our model are neither covered by the

Plausible Validation Set nor by the described compensatory phenomenon. These 48 sequences may

be false positives or unknown novel true positives. A list of all 177 mutants can be found in Ta-

ble 5.6.

Methotrexate Resistance: Human DHFR is a frequent chemotherapeutic target. It plays an

important role in cell proliferation through its involvement in folic acid metabolism and the pro-

duction of purines. In its native state, DHFR catalyzes the production of tetrahydrofolate from

dihydrofolate and the electron donor NADPH. The chemotherapeutic agent methotrexate (MTX)

inhibits cell proliferation by binding DHFR approximately one thousand times more tightly than

the native folate. Resistance to methotrexate is widespread and arises both from the upregulation

of DHFR and from the introduction of point mutations in the DHFR protein. Unfortunately, it

is not clear which amino acid substitutions are primarily responsible for conferring resistance. In-

stead, methotrexate resistance is associated with a range of single and double amino acid mutations

at several active site ‘hotspots’.

As in the previous two cases, each active site residue could mutate to the hydrophobic amino

acids: Gly, Ala, Leu, Ile, Val, Phe, Tyr, Trp, and Met. We allowed up to two simultaneous mutations

at the ten active site residues (see Methods). This defines a search space of 3258 mutation sequences.

Resistance conferring mutations are known to occur at DHFR residues Ile 7, Leu 22, Phe 31, Phe

34, Asp 35, and Val 115. Four of these residues, positions 22, 31, 34, and 35, are mutation hotspots

where empirical observation suggests that individual mutations at these residues can confer MTX

resistance (Ercikan-Abali et al., 1996; Volpato et al., 2007b; Fossati et al., 2008; Volpato et al.,

2009). Two-point mutations, where each mutation occurs in these hotspots, are also known to be

MTX resistant (Volpato et al., 2007b; Volpato et al., 2009). In the absence of a verified and concise

list of known resistant mutations, we define a Plausible Validation Set as the mutation sequences

with one or two amino acid substitutions involving only residues 22, 31, 34, and 35. The Plausible

Validation Set contains 441 or 13.5% of the search space’s 3258 mutation sequences.

Our search produces 272 mutation sequences with a positive ∆∆rdee score. 75 single and

double point mutations had positive ∆∆ scores for both rDEE and MM-PBSA scoring methods

and compose our set of predicted resistant sequences. The Plausible Validation Set contains 18

of these 75 sequences (24%). This represents an approximately two-fold enrichment in identified

sequences over their native abundance (13.5%). The enrichment is statistically significant at 5%
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Figure 4.4: Structures for Ritonavir Resistance Mutants. HIV protease is shown as a
cartoon with selected residues and ritonavir in stick form. In all panels, the mutant structures
have been superimposed on the wild type structure (green). In all panels, ritonavir drawn in dark
green corresponds to the wild type; otherwise its color reflects the corresponding mutant. (Top
Left) Known single point mutants V82A (cyan) and V82F (pink) are displayed. For V82A, loss
of vdW interactions (∼1.5 kcal/mol) is predicted to be the cause of disrupted ritonavir binding.
Small changes in both vdW and electrostatic interactions are what cause disrupted binding in
V82F. (Top Right) Known single point mutants I84V (cyan) and I84F (pink) are displayed. For
both mutants loss of vdW interactions (∼1 kcal/mol) is the predicted cause of impaired ritonavir
binding. (Bottom Left) The structure of known double mutant V82A/I84V (cyan) is shown. Major
loss of vdW (∼2.5 kcal/mol) in the mutant structure along with a small loss of electrostatics (∼1
kcal/mol) is predicted to cause disruption of drug binding. (Bottom Right) The structure of
predicted double mutant V82G/I84V (cyan) is shown. Major loss of vdW (∼3 kcal/mol) as well as
a small loss of electrostatics (∼1 kcal/mol) is predicted to cause disruption in ritonavir binding.
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Figure 4.5: Retrieval of HIV mutants. (Top) Percent of retrieved known mutants from Gold
Validation set (red curve) as well as all the mutants included in the search space (blue curve). The
x-axis represents the change in native substrate binding energy of the mutant compared to the wild
type. Also shown is the native substrate pass threshold, set to 1.5 kcal/mol from the wild type
(vertical black bar). A higher x value indicates a greater loss of binding compared to the wild type.
The value at x = 0 indicates that these sequences were predicted to have a higher than wild-type
affinity for the native substrate in the substrate pass. (Bottom) Percent of true positives (i.e.,
known mutants from Gold Validation set) is drawn as a function of false positives (i.e., all other
mutants from search space).
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(p-value ≈ 0.009). A complete list of all 75 predicted mutations appears in Table 4.5. Beyond the

mutation hotspots listed above, the profile of MTX resistance becomes a gray area. For example,

mutations in Ile 7 are known to pair with hotspot mutations at positions F31, F34, and D35 to

produce resistant mutants (Schweitzer et al., 1989; Volpato et al., 2009). Of our 75 predicted

resistant sequences, 24 contain a mutation in residue 7. This may be a true positive, or may simply

be noise. In summary, our model was able to identify an enriched set of resistance mutations

corresponding to known resistance hotspots in the methotrexate- DHFR system.

Gleevec Resistance: In the treatment of chronic myelogenous leukemia (CML), the tyrosine

kinase domain of the BCR-ABL fusion protein is inhibited by the highly selective chemotherapeutic

drug gleevec. Point mutations in the kinase domain can cause gleevec resistance. The most well

known of these mutations is the T315I “gatekeeper mutation” that confers resistance to both

gleevec and all second generation tyrosine kinase inhibitors. We conducted a search of single point

mutations among the fourteen active site residues (see Methods). As in the previous cases, we

allowed residues to mutate to the following nine hydrophobic amino acid types: Gly, Ala, Leu, Ile,

Val, Phe, Tyr, Trp, and Met.

Unlike the previous three systems, there is no experimentally determined structure of the protein

bound to its native substrate. Therefore, the gleevec system serves as a test of the feasibility of our

method to identify potential resistance mutations in the not uncommon case where a structure of

the native substrate protein complex is unavailable. Our approach for Stage 1 was to replace the

use of the native substrate complex with the unbound apo protein. This approach is somewhat

conservative. It will only identify mutation sequences that negatively affect drug binding without

affecting the inherent structure of the active site. There is no guarantee that the identified mutation

sequences will maintain native binding. The list of predicted resistant sequences is therefore likely

to contain an increased number of false positives; but, the sensitivity for identifying resistant

sequences should be approximately the same. In the Stage 1 native substrate pass, a gap free list

of mutation sequences with energies no worse than 1.5 kcal/mol of the wild-type apo protein is

identified. In the Stage 1 drug pass and Stage 2, the ∆∆ score is approximated as Emut,d − Ewt,d,

where, a positive score indicates a mutant with weaker affinity for the drug. This is the approach

taken in the remainder of this section.

There are 117 sequences considered in the mutation search. A total of 32 sequences passed

the apo protein stage of the rDEE search (i.e., by not affecting the energy of the apo protein by

more than 1.5 kcal/mol). Surviving sequences were evaluated for gleevec binding and a total of 19

sequences had a positive ∆∆rdee score. Of these 19 mutants, 13 had a positive (Emut,d − Ewt,d)

score (Stage 2) and were categorized as our predicted resistant sequences (see Table 4.3).

The set of predicted resistant sequences correctly includes the gatekeeper mutation T315I.
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Table 4.3: Predicted Resistance for Gleevec-ABL Kinase All 13 single mutants predicted
resistant by rDEE and MM-PBSA are given. The clinically well-known T315I gatekeeper mutation
is predicted to confer resistance to gleevec by our approach. Two of the predicted mutants are
known to be resistant in vitro and an additional two are highly likely due to their similarity to
known mutants.

Mutation Comments
T315I Known gleevec resistance mutation

T315V, T315M Experimentally confirmed to confer resistance in in vitro studies

(Corbin et al., 2002; US Patent No. 7326534, )
Y253L, Y253M Plausible, Y253F causes decreased susceptibility to gleevec

M290L, E286LMY Unlikely, possible ATP binding site(Corbin et al., 2002)

V256L, L370M, H361M, F382W Unlikely, residue function is not well-known

In addition, the set also contains two sequences, T315V and T315M, reported to confer gleevec

resistance in in vitro studies (Corbin et al., 2002; US Patent No. 7326534, ). The set also contains

four mutations at positions 290 and 286, namely M290L and E286LMY. There is evidence to

suggest that both M290 and E286 are possibly involved in ATP binding; therefore, mutations in

these residues while impairing gleevec binding, can also result in an inactive kinase (Corbin et al.,

2002). This prediction is understandable as our search did not have access to the native substrate

complex and therefore only considered gleevec binding. The predictions are statistically significant

at 5% (p-value ≈0.006).

Ponatinib Resistance: The T315I gatekeeper mutation is the dominant mechanism of

tyrosine kinase resistance; however at least one drug, ponatinib, has been shown to overcome this

mutation (Zhou et al., 2011). As a short second experiment, we performed a single point mutation

resistance analysis for ponatinib. Similar to experimental studies (Zhou et al., 2011), the following

nine residues were modeled as flexible: Tyr 253, Glu 286, Thr 315, Phe 317, Met 318, Ile 360, His

361, Asp 381, and Phe 382 (PDB ID: 3OXZ); and each was allowed to mutate to the following set

of nine hydrophobic residues: Ala, Phe, Gly, Ile, Leu, Met, Val, Trp, and Tyr. As in the gleevec

experiment, a native substrate bound structure of tyrosine kinase was not available; therefore,

we predicted resistance using the same modified scoring procedure we utilized for gleevec. Our

approach predicts that T315I is indeed sensitive to ponatinib. A total of six single point mutants

were categorized as resistant to ponatinib and included: F317LM, D381I, F382ILM. In summary,

despite not having an experimental structure of the protein bound to its native substrate, our

method was able to identify several known resistance mutations for gleevec, including the T315I

gatekeeper mutation. Furthermore, in additional experiments with ponatinib, our method correctly

identified T315I as ponatinib sensitive.

Finally, in order to further quantify the effects of a missing substrate bound structure, similar to

the case of ABL-kinase, we repeated the Isoniazid-enoyl ACP Reductase experiments without the
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bound substrate. A total of 49 sequences passed Stage 1 of the pipeline. Compared to the initial

16 predicted mutants, a total of 21 were predicted to be resistant to isoniazid in absence of the

substrate. These included the following: I16V, I21AFGTVW, I47TV, F41LM, S94N, F149LNT,

K165MNQ, L218Y, W222MY. As expected, there was a slight increase in the number of false pos-

itives when compared to the full experiment.

4.4 Conclusion

This chapter introduced a two-stage structure-based search and scoring procedure for identifying

resistance conferring mutations. This technique pairs an efficient restricted Dead-End Elimination

based search with the more accurate MM-PBSA scoring method. Positive design ensures that can-

didate mutations maintain the protein’s native function while negative design identifies mutations

with significantly reduced affinity for the inhibitor. The output of the two-pass search is an en-

riched list of possible resistance mutations. It is more efficient to validate this ‘short list’ than the

brute-force approach of testing all possible active site mutations. It is our hope that the type of

approach presented in this chapter can provide a priori knowledge of drug resistance. The model

can also be used to prioritize lead compounds and protein targets based on the ease with which

resistance can arise.

Computational methods, like the one presented in this chapter, are most effective if they can

maximize the number of true positives while minimizing the number of false positives. In our case,

this corresponds to not predicting a resistant mutant as being sensitive. Of course, in the absence

of exhaustive knowledge of experimentally verified true positives, it is difficult to completely assess

performance. In our testing, we constructed a number of validation sets using known or likely

mutation sequences. We demonstrated our technique using four well-known systems. In all four

cases, our technique produced a set of predicted mutation sequences enriched with known resistant

sequences. Our method was successful in both single point and double point mutation searches.

Three of the four systems utilized experimentally determined structures of the protein in complex

with the native substrate as well as with the drug. One system did not have an available experi-

mental structure of the native substrate protein complex. For this system, we replaced the missing

complex with the structure of the apo (unbound) protein and approximated the ∆∆ score. The

fact that the method was still able to recover well known resistance mutations suggests that in some

cases resistant mutants can be predicted despite having only partial structural information. We

also note that individual components of the method presented here have been previously validated

in a number of ways. First, dead-end elimination is provably accurate and guarantees to find the

global optimum. Second, previous studies have reported a number of successful DEE based re-
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designs (Filikov et al., 2002; Gielens et al., 2007; Looger et al., 2003a; Maglia et al., 2008; Novoa de

Armas et al., 2007). Plus, AMBER and MMPBSA have been extensively used in literature to

study molecular dynamics and binding. Finally, the pipeline used to obtain binding energies using

MMPBSA and AMBER in Stage 2 has previously been validated by (Ferrari et al., 2007) and

reported to have reasonable correlation with experimental binding energies.

The technique presented here is one step towards a general purpose computational tool. As

such, it is not without limitations. Structural models employing approximations of interaction

energies should not be interpreted as ground truth. Computational models are generally most

useful when used in conjunction with wetlab testing. There are three primary directions for future

work. First, we want to refine our ability to gracefully handle the situation where, as in our tyrosine

kinase example, an experimental structure of the native substrate protein complex is not available.

Second, the ability to model larger scale and allosteric type conformational changes could allow

identification of mutations beyond the active site. Finally, it would be useful to close-the-loop by

coupling our computational model with feedback from wetlab testing of the predicted mutation

sequences. For a detailed discussion and description of possible future work, see Chapter 6.

In conclusion, our results on four diverse drug-target systems indicate that structure-based

methods like the one presented in this chapter can be useful in identifying resistance mutations in

drug targets. Since no prior knowledge of resistance is needed, our approach can be employed as a

first step to probe resistance in systems where information regarding drug resistance is minimal or

nonexistent.
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Table 4.4: Predicted Resistance for HIV. All 177 mutants predicted as resistant by our model.

D29Y/I84V D29Y/V82FGW I146GMV
D30A/I146M D30A/V82LM D30F/I146V
D30F/I54M D30G/I146M D30G/I50FLM

D30G/I54LM D30G/V82LM D30L/I146M
D30L/I84Y D30L/V82M D30M/I84Y

D30V/I146M D30W/I146G D30Y/I146MW
D30Y/I50FLMY D30Y/I54LM D30Y/I84LM
D30Y/V82LM I50A/V82M I50F/I146G

I50F/I184Y I50F/V82I I50G/I146W
I50G/V82L I54G/I146M M46L/I84M
I50G/I84LM I50V/I146W I50G/I54M

I50V/V82AFLW I50L/I146VG I50L/I84Y
I50L/V82FWY I50V/I146GVW I54A/V82AM

I54G/V82L I54L/I84Y I54L/V82AGWY
I54M/I146GLV I54M/I84ALVY I54M/V82AFGLMWY
I54V/I146GV I54V/I84FL I54M/I146G

I54M/I84V I54L/I146G I54V/V82AFGLWY
I84A/I146M I84FV I84F/I146MV

I84L/I146GVL I84M/I146G I84V/I146V
I84Y/I146MW M46F/I54M M46L/I146V
M46L/154M M46L/I84VM M46L/V82AGLM

M46W M46W/I146MV M46W/I54MV
M46W/V82AILM M46Y/I146M M46Y/I54L

M46Y/I54M M46Y/I84LM M46Y/V82LM
V82AFGYL V82A/I146GMV V82A/I84LMVY

V82F/I146MV V82F/I84FLMY V82G/I146MV
V82G/I84FLMVY V82I/I146GV V82I/I84F

V82L/I146GLV V82L/I84FY V82L/I146M
M46L/150L V82M/I146G V82M/I84Y

V82W/I146M V82W/I84FLMY V82Y/I84FLM
V82Y/I146M
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Table 4.5: Predicted Resistance for DHFR. All 75 mutants predicted as resistant by our
model.

E30M/Q35Y F31M/Q35F F31W/F34L
E30M/V115M F34M/Q35FLY I7A/F34M
F34M/L67M F34Y/V115G I7L/V115M
I7M/F34M I7M/T136V I7MV
I7M/E30M I7M/L22IMV I7M/L67IM

I7M/Q35LWY I7M/V115GIM L22M/F31M
I7VW/L22M I7W/V115IM I7V/V115IM
L22M/Q35W L22M/T136V L22A/F31Y
L22A/V115M L22F L22F/E30LM

L22F/F31LMY L22F/F34M L22F/L67M
L22F/Q35Y L22F/V115IM L22G/V115M

L22M/F31MY L22M/L67IV L22M/Q35LY
L22M/V115AG L67I/V115M L67V/V115M
Q35F/V115M Q35L/V115M Q35M/V115M
Q35W/V115M Q35Y Q35Y/L67M
Q35Y/T136V Q35Y/V115IM V115IM

V115M/T136A L22M/V115I
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Chapter 5

Evolution of Drug Resistance

5.1 Introduction

The structure based methods of Chapter 4 probe binding energy shifts between the native substrate

and drug, arising as a result of point mutations, to model resistance in a drug-target system.

However, the mechanism through which resistance mutations are acquired is primarily stochastic

in nature, namely evolution. Point mutations arise in the wild type DNA, and resistance evolves

via these point mutations. Thus, irrespective of how resistant the final mutant is, the path taken

from the wild-type to the final mutant holds additional information about resistance. For example,

the length of the path from the wild type to a resistance mutation can determine, in part, how

likely the mutant is in nature. A mutant that requires fewer mutations can evolve quickly and is

more likely to be seen than a mutant that requires a larger number of mutants. In addition, the

quality of the paths i.e. the fitness of the intervening mutants can be another factor that determines

the likelihood of a resistance mutation. Consider, for example, the following scenario where two

double point mutants m1 and m2 are equally resistant. However, all paths from wild type to m1

contain an intermediate single point mutant that is susceptible to the drug. Mutation to this single

point mutant will be immensely deleterious to the pathogen under drug pressure. Thus, it would

be unlikely for the pathogen to sample m1 since all paths from the wild type to m1 are blocked

by drug sensitive mutants. Since the structure-based models of previous chapters do not take into

account the mutational mechanism by which the resistance mutation is accumulated, both m1 and

m2 will be considered equally resistant and plausible by them.

In this chapter, I employ a simple Markov-chain based model to evolution of resistance. This

model combines a mutational mechanism at the DNA level with the structural models of Chapter

4. This evolutionary model is then applied to the case of resistance evolution in HIV protease.

As resistance to a single inhibitor develops, treatment is often geared towards combination
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therapy where multiple inhibitors are combined to create a drug cocktail (Majori, 2004; Spanagel

and Vengeliene, 2013). Combination of multiple drugs can theoretically cover a large section of the

available mutational space such that development of resistance is significantly harder than in the

case of a single inhibitor. Furthermore, adherence to a drug regimen is often one of the aspects

affecting treatment success and evasion of drug resistance as well (Huang et al., 2011; Krakovska

and Wahl, 2007a; Rosenbloom et al., 2012; Tam et al., 2008). As patients fail to take the prescribed

drugs, the selective pressure exerted by the drug is temporarily lifted. In such a case, the virus

might have an opportunity to sample new mutations which were previously prevented under drug

pressure. This can create new paths likely to be sampled by evolution such that mutants that were

previously unreachable, might be accessible now. Thus, under less-than-perfect drug adherence,

the virus has an increased opportunity to mutate and create drug resistant variants. Finally, the

evolutionary model presented in this chapter will be applied to probe evolution of drug resistance

in HIV protease under drug cocktails and various drug adherence strategies.

5.2 Methods

Evolution can be intuitively considered as a random walk on the genotypic space (mutation space)

where DNA mutations cause transitions between different genotypic states (mutants) (McCandlish,

2011). Under drug pressure the ability of each mutant to confer resistance to the drug determines

how beneficial the mutant is for the pathogen, if sampled by the mutational process. Thus resistance

acts as a measure of natural selection in such an evolutionary process, controlling how likely a

mutant is to survive. This evolutionary model is described below.

5.2.1 A Markov-Chain Based Model

To model the underlying DNA mutations, each mutant is represented as its genotype. Thus for each

mutant at the amino acid level, there are multiple mutants at the genotype level. For instance,

a mutation to phenylalanine at the amino acid level translates to two distinct mutants at the

genotype level, one for each coding genotype of phenylalanine: TTT and TTC (see Chapter 1).

Each genotype is represented by a single state in the Markov chain (thus for each amino acid

mutation there are multiple genotypes). A transition or a bi-directional edge exists between two

states a and b if b can be reached by making a single DNA point mutation in a, and vice versa.

Since we are working in the genotype space, there are only four point mutations corresponding

to the DNA bases: A,T,G and C. All single point DNA mutations are considered equally likely.

Hence, all transitions, if one exists, are equally likely (transition probability is 0 otherwise). During

the course of simulations, the next state b is chosen according to the distribution of transition
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probabilities at the current state a. Thus, in the scenario where all DNA bases are equally likely,

the next state b is chosen according to a uniform distribution.

Once a transition is made, the move is accepted or rejected using the probability of fixation

pfix described in equation (5.2). The formula in equation (5.2) can be obtained using a diffusion

approximation to the evolutionary Wright-Fisher process and is taken from (Fisher, 1930; Wright,

1931; Kimura, 1962). This fixation probability is a function of si→j , which is a measure of natural

selection for genotype j relative to genotype i or its selection coefficient relative to i. In this way,

by employing relative selection coefficients, the probability of fixation intuitively models whether or

not evolution would select for the particular mutant j just chosen by the transition. Thus a mutant

j that increases chances of survival i.e. increases resistance compared to the current mutant i, has a

higher chance of being selected as compared to a mutant that either marginally improves or reduces

chances of survival (Fisher, 1930; Kimura, 1962). It is worth noting that selection coefficients are

always pairwise and calculated against or relative to another genotype. Thus selection coefficient

is always a measure of fitness for a genotype j relative to another genotype (mutant or wild type).

In this work, the notation si→j is used to indicate the selection coefficient of genotype j relative to

genotype i; whereas sj represents the selection coefficient for genotype j relative to the wild type.

Finally, the terms fitness and si are used interchangeably.

Under drug resistance, natural selection can be represented by the degree of resistance of a

mutant, and governs how likely it is to be selected for by evolution, once visited. In Chapter 4,

binding energies of the mutant with its native substrate and the drug were used to determine if

the mutant was resistant or susceptible. Here, these binding energies for a mutant i are used to

generate a selection coefficient that measures its resistance conferring potential and represents its

relative fitness to the wild type. The following equation follows (Wylie and Shakhnovich, 2011)

closely.

si = e(Ewt,s−Ei,s)−(Ewt,d−Ei,d) − 1 (5.1)

Equation 5.1 assumes that mutations in the gene being modelled determine the overall fitness of

the organism. However, when the gene being modelled is an essential gene e.g. HIV protease, this

is a reasonable assumption since mutants that affect function of the protease gene are likely to have

an effect on overall viral fitness.

The selection coefficients are then converted into a probability of fixation of mutant j (Kimura,

1962), when a mutation in i changes it into j. The intuition is that a beneficial mutant has a

much higher probability of being selected/fixed, whereas a deleterious mutant is seldom fixed by

evolution.

pfix =
1− e−2si→j

1− e−2Nesi→j
(5.2)

where Ne is the effective population size and si→j is the relative difference in fitness of mutants j

84



and i, and is given by:

si→j =
sj + 1

si + 1
− 1 (5.3)

where si and sj are selection coefficients of i and j relative to the wild type calculated using

Equation 5.1. A derivation of Equations 5.1 and 5.3 is provided in the Appendix. An Ne of 1000

was used for simulations reported in this chapter which is in agreement with the known effective

population size of HIV under drug pressure (Leigh-Brown, 1997; Drummond et al., 2002; Seo et al.,

2002; Achaz et al., 2004; Shriner et al., 2004; Althaus and Bonhoeffer, 2005). For the sake of

completion, we also note that simulations were repeated for different values of Ne including 104,

105, 106, 107, and similar results were obtained.

Figure 5.1: Distribution of Selection Coefficients. A histogram of selection coefficients for
the protease inhibitor lopinavir is presented. Selection coefficients for all possible mutants in the
V82-I84 model are shown. The selection coefficients are generated using equation 5.1. A large
percentage of mutations is deleterious (selection < 0), and a significant number is lethal (selection
= -1).

The evolutionary Markov-chain based method described above was used to simulate evolution

in HIV protease. Two sets of experiments were performed: first, on a smaller test-system consisting

of only two active site positions for HIV for validation purposes; and second a full scale active site

system for HIV protease. Use of first system was intended to help verify our model.

V82-I84 System For this system, we used two active site positions from HIV protease namely

I84 and V82. As the total number of nucleotide triplets (codons) is 61, a total of 61*61 or 3721
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genotypes were present in this system. Each of these genotypes represented a state in our model.

These 3721 genotypes translate to a total of 400 possible mutants that are distinct at the amino

acid or protein level. Selection coefficients for all these mutants were calculated using equation 5.1.

A histogram of the selection coefficients for protease inhibitor lopinavir is shown in Figure 5.1 as an

example. A large number of the mutants are deleterious with selection coefficients less than 0, and

a significant number are lethal. This is consistent with the observation that a significant portion

of possible mutations do not confer resistance to the drugs.

Figure 5.2 shows a 3D map of this V82-I84 mutational system of HIV protease, both with

and without the drug pressure. This map represents a fitness landscape (Wright, 1932; Kauffman,

1993; Stadler, 2002; Armstrong and Tidor, 2012). Each point on this fitness landscape represents

a genotype (mutant or wild type), and the z-axis represents the selection coefficients or the fitness

of that genotype. Each of the 3721 genotypes are represented in this landscape. In the presence of

a drug the selection coefficients used were calculated using Equation 5.1. Selection in the absence

of drug was calculated as :

si = e(Ewt,s−Emut,s) − 1 (5.4)

The landscape under no drug shows does not show significant positive peaks, indicating that

without drug pressure wild type is among the fittest genotypes. This behaviour changes drasti-

cally as the drug is introduced and we see fitness peaks for certain mutants indicating that under

drug pressure, resistance conferring genotypes have an advantage over the wild type. However, a

large number of mutants are still susceptible to the drug and are deleterious. Lastly, the results of

simulations on the V82-I84 system under lopinavir are shown in Figure 5.3. We used an ensemble

of 10,000 runs and the simulation started in a wild type genotype in each run. A maximum of

1000 steps were allowed. As expected, the virus improves its fitness as it takes steps in the Markov

chain. The fitness at step s across n runs was calculated using the following formula:

Fs =
∑
m

pmsm (5.5)

where pm is the fraction of times mutant m was observed in n runs, and sm is its selection

coefficient. For the lopinavir results above, n = 10, 000.

Full HIV Active Site System The next set of experiments were performed on a larger system

consisting of the full active site of HIV protease as modelled in Chapter 4. The data generated

by resistance prediction pipeline of Chapter 4 for HIV protease was used. Since each mutant

genotype represents a state in our model, the full scale active site system consisting of 11 residues

corresponds to a total of 433 distinct genotypes. However, the methods of Chapters 3 and 4
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Figure 5.2: Fitness Landscape Top: Fitness landscape without the drug pressure is shown.
The selection coefficients are calculated using only the substrate. Middle: Fitness landscape under
lopinavir. The high selection coefficient ridge represents mutants V82D and V82G; under lopinavir
both mutants combine well with mutations at I84 in our model. Bottom: Fitness landscape under
ritonavir. Administration of the drugs significantly alters the fitness landscape. All mutants in
V82-I84 system are included. All 61 coding codons at each position are included so each point in
the landscape represents the genotype of the mutant formed by combining the codon at position
V82 with codon at position I84. The low fitness extrema at codons 58-61 in all three landscapes
represent prolines.
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Figure 5.3: A Walk on Fitness Landscape. A greyscale representation of the lopinavir land-
scape is drawn. Each point represents a genotype; white implies a highly beneficial mutant, whereas
black is lethal and corresponds to a selection coefficient of -1. The red dots indicate where the virus
is at a particular point in simulation. The walk starts at the wild type (selection coefficient of
0;grey) and steadily improves fitness until it reaches the highly fit region around step 200 and stays
there for the rest of the simulation.

employ efficient DEE based pruning techniques to quickly eliminate large portions of this space

from consideration. This implies that for a large section of the possible mutation space, binding

energies are never calculated explicitly. Hence, selection coefficients for these mutants cannot be

computed with the available data. However, the structural models only eliminate mutants that

are considered deleterious or sensitive to the drug. Thus, these mutants are highly unlikely to be

selected by evolution and can possibly be treated as a single object in evolutionary simulations.

To deal with the large, highly deleterious sections of the mutational space, we introduce a

low-fitness state in our model. This low-fitness state is assigned a selection coefficient of -1.0,

reflecting its highly deleterious nature. A large number of mutant genotypes are collapsed into

this single low-fitness state in our full active site model. These low-fitness mutant genotypes include

all mutations for which selection coefficients cannot be calculated because they were pruned and

not explicitly evaluated by the resistance prediction pipeline described in Chapter 4.

To determine the effects of this approximate low-fitness state on the evolutionary simulations,

a low-fitness state was incorporated in the smaller V82-I84 system. Since, selection data for all

mutants included in V82-I84 system was available and all mutants were initially modelled explic-

itly, the effect of a low-fitness state approximation could be evaluated in this system. A number

of experiments (see Figure 5.4 ) were performed on this system, and the results indicate that col-

lapsing of mutant genotypes into a single low-fitness state is a well-tolerated approximation for our

evolutionary model.
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Figure 5.4: Introduction of a Low Fitness State Fitness of the virus at each iteration under
ritonavir is drawn. An ensemble of 5000 runs of the simulation was used. Each run had 1000 steps.
Top: Fitness of the full model (blue) and the low-fitness approximation (red) is displayed. Bottom:
A zoomed in view of the Top plot, showing fitness for 50 steps. The blue curve represents the
full model and the red is low-fitness approximation as before. All mutant genotypes with selection
coefficients below -0.7 were collapsed into a single low-fitness state. The low-fitness approximation
behaves similar to the full simulation. A number of other thresholds for low-fitness were also tried
(data not shown). Under all thresholds, the low-fitness approximation was well tolerated. Only
mutations at two residues, namely V82 and I84, are modelled.
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Table 5.1: Gold Standard Validation Set for Ritonavir Resistance in HIV protease.
The validation set of 28 known single and double point ritonavir resistance conferring mutations
obtained from HIV-DB are listed. Only the mutants in modelled residues where the fold-resistance
was more than 2.5 are included.

M46I/V82A V82A/I84V I54A/V82A
I54V/I84V I54V/V82F I54L/V82A
M46I/I84A M46I/I84V M46L/V82A
I54L/I84V I54V/V82A G48V/V82A

M46I/V82F V82A I54M/V82A
I54V M46L/I84V I50V
V82F M46L/V82L M46L/I54L

M46I/I50V I54L I84V
I54M M46I V82L
M46L

5.3 Results

The Markov chain based evolutionary simulations described in Methods were used to observe the

evolutionary behaviour of resistance in HIV protease. All results described in this section pertain to

the full active site of HIV protease. All simulations started in a wild type genotype. The simulations

were allowed to run for a total of 3000 steps, at which point all simulations had converged. An

ensemble of 5000 individual simulation runs has been used to report the results unless otherwise

noted. We note that we also performed simulations for 4000 and 5000 steps and similar results were

obtained. The system under consideration was the full active site of the HIV protease as modelled

in Chapter 4. For an active site of 11 residues, a total of 22000 mutant sequences, which are distinct

at the amino acid level and have a maximum of two mutations, fall under this search space (
(

11
2

)
* 20

* 20). The methods of Chapter 4 only screen mutants further if the substrate binding of the mutant

is not impaired by more than 1.5 kcal/mol compared to the wild type binding. This corresponds to

all mutants that pass the native substrate pass of Stage 1. All single and double point mutants that

fall under this category were included in the evolutionary simulations ( 787 mutants). Equation 5.1

was used to determine the selection coefficient of each mutant. The binding energies were derived

using MMPBSA similar to Stage 2 of Chapter 4. The resulting landscape had 185 mutants that

were resistant to ritonavir i.e. had a selection coefficient greater than 0. A list of these mutants

is found in Table 5.6 at the end of this chapter. The rest were sensitive to ritonavir. A selective

coefficient of 0 was assigned to the wild type genotypes.

Figure 5.5 displays the fitness landscape under ritonavir used for evolutionary simulations. Each

node in the graph is a mutant present in the landscape. For visual simplicity, the landscape is drawn

at the amino acid level even though the evolutionary simulations are performed at a genotypic level.
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Table 5.2: Mutual Information between Models of Resistance and HIV DB Mutual
information between different models of resistance and the gold standard dataset from Stanford
HIV DB is measured. Structure refers to the structural algorithm presented in Chapter 4 (see
Section 5.3), whereas Evolution is the evolutionary model presented in this chapter. As a control,
mutual information between Mutation and HIV db is also listed. Mutation here refers to evolution
in the absence of selection (see text).

Mutation (alone) Structure (alone) Evolution (Structure+Mutation)
0.01 0.22 0.32

There are 787 nodes, each of which represents a mutant of HIV protease. An edge between nodes

indicates that it is possible to mutate from one node to the other using a single DNA mutation. All

edges are bi-directional. The colours on the nodes indicate whether a mutant is resistant or not,

and are a function of the selection coefficients. Red nodes indicate a deleterious mutation (ritonavir

sensitive) whereas green ones are resistant and beneficial. All mutants considered resistant by the

structural models (and hence with selection coefficients greater than zero) are thus represented as

green in this landscape. A list of these mutants is found in Table 5.6. Finally, the low-fitness state

is not displayed.

Predicting Resistance using Evolution The structural models of Chapter 4 treat resistance as

an interplay of binding energies between the native substrate and the drug. If a candidate mutant is

able to disrupt the drug binding more than it disturbs the native substrate binding, it is considered

a potential candidate for resistance. However, as indicated earlier, the paths that a pathogen needs

to take from the wild type genotype to the target mutant hold additional information about the

feasibility of resistance. Thus incorporating such evolutionary information can potentially improve

the prediction and categorization of resistance mutations by the structural methods. In order to

test this hypothesis, we compared the performance of the structural model of Chapter 4 against

the evolutionary model described in Section 5. A list of HIV protease mutants predicted to be

resistant by the structural model is provided in Table 5.6. For the evolutionary model, all mutants

selected by evolutionary simulations were considered to be resistant by the model. Table 5.3 lists

these mutants.

For model evaluation, the set of ritonavir resistant HIV protease mutations from HIV DB

(see Table 5.1) was used as the set of true positives. Any mutant not appearing in this set was

considered a false positive. Table 5.2 shows the mutual information calculated between the HIV DB

gold standard and the predictions by different models. The structural model alone is a reasonable

predictor of resistance when compared against the gold standard; however a significant improvement

in this performance is seen when a mutational model is combined with the structural model to

generate an evolutionary framework. A mutational process in the absence of selection was also

simulated for comparison purposes. Since no selection was involved, a transition to state i in these
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Figure 5.5: HIV Protease Fitness Landscape Under Ritonavir Top: The HIV fitness land-
scape is displayed as a graph where each node is a mutant of HIV protease. An edge between nodes
indicates that a single DNA mutation can convert one into the other. The colour of the nodes
represents the selection coefficient of the mutant under ritonavir calculated using Equation 5.1,
red: sensitive and green: resistant. Wildtype is highlighted in yellow. All mutants with substrate
binding within 1.5 kcal/mol of the wild type are displayed. Bottom: Part of the HIV fitness
landscape selected by evolution is shown. Only a subset of beneficial mutants i.e. those resistant
to ritonavir are sampled. True positives sampled by evolutionary simulations are shown in yellow.
The networks were generated using Cytoscape (Shannon et al., 2003).
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mutation only simulations was accepted or rejected with equal probability. It is evident that the

random mutational process alone, i.e. mutation that does not take into account the structural

aspects of resistance, is a poor indicator of resistance, as expected.

D30L/V82M*

V82M*

wt*

D30L*

wt#

I146V#

V82A#

V82A/I146V#

Figure 5.6: Beneficial, Unreachable Double Mutants. Two of the scenarios in which a
beneficial double mutant is unlikely to be sampled by evolution are shown. Left: The path to the
double mutant passes through deleterious (drug-sensitive) single mutants. Right: The intervening
single mutants are more beneficial than the double mutant.

Figure 5.5 shows the entire fitness landscape that was included in the simulations. As mentioned

earlier, this landscape contains 787 single and double point mutants. The part of this landscape

selected by the evolutionary simulations is shown in Figure 5.5, Bottom panel. A few things are

immediately clear. First, as expected, the evolutionary simulations only select the mutants that

have a selective advantage i.e. the ritonavir resistant mutants. Second, evolution only selects a

small percentage of the beneficial mutants. A total of 185 mutants in the original network were

ritonavir resistant or evolutionary beneficial under ritonavir. However, evolutionary simulations

only selected ≈80 of these mutants. A list of these mutants is found at the end of this chapter (see

Table 5.3).

It is worth noting that the evolutionary model selects 12 of the 14 true positives from the

structural model (i.e. all the gold standard resistance mutations that were predicted as resistant

by the structural model). On the other hand, a 60 percent reduction in false positives between the

structural and evolutionary model was seen. These false positives are mutations that appear to

disrupt drug binding while maintaining near native substrate binding, and hence are categorized

as resistant by the structural model. However these mutations do not appear in the HIV DB,

indicating that the mutations have either not yet been seen or reported in an isolate or are rarely

seen.

There can be a number of potential causes for these false positives. First, structural modelling

is an approximation of the underlying biophysical realities. Hence, some mutants predicted to be

resistant might not be resistant in practice due to inaccuracies in modelling. Second, the mutant

might be a rare mutant or has a side effect due to which it is not seen commonly and/or is

not deposited in the HIV DB etc. However, the significant reduction in false positives when an
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evolutionary model is applied suggests that a large number of these false positives might be mutants

that are not easily reachable from the wild type via single mutations.

This can happen in a number of different ways. For instance, in a scenario where all paths to the

resistant target mutant go through fitness valleys, it is highly unlikely that the target mutant will be

sampled by evolution. This can happen when the target double mutant is highly resistant, however

the intermediate single mutants are both sensitive to the drug, thereby giving rise to fitness valleys.

Figure 5.6 (Left) depicts such a scenario: the double mutant D30L/V82M is categorized as resistant

by the structural model. However, both of the intervening single mutants D30L and V82M are

categorized as sensitive by the structural model. Thus no highly likely path to D30L/V82M exists,

and the mutant is not sampled by the evolutionary simulations. A similar situation arises when the

paths to the target double mutant go through fitness peaks. In this scenario, the intervening single

point mutants have a selective advantage over the target double point mutant, therefore making it

highly unlikely that the double mutant will be sampled. Figure 5.6 (Right) depicts this scenario.

The double mutant V82A/I146V is categorized as resistant, and has a positive selection coefficient.

However, the paths to V82A/I146V go through the single mutants V82A and I146V, which are

both highly resistant single mutants. Therefore, the mutational step from these single mutants to

the double mutant requires a fitness sacrifice, making it unlikely for the evolutionary process to

sample it.

A non-equlibrium process It was postulated earlier on in this chapter that the clinically well

known mutations are possibly selected since they are easier to reach by an evolutionary process.

Figure 5.7 shows the distribution of the clinically known and unknown mutants as observed during

the course of our evolutionary simulations. In this context, a known mutation is one that appears

in the HIV DB (or the gold standard set of mutations), whereas an unknown mutation is one that

is categorized as resistant by the structural models and selected by the evolutionary simulations.

It is evident that as the simulation progresses, the percentage of known mutations compared to

the unknown ones increases, until it plateaus and then decreases. Thus the known mutations

are sampled earlier in the evolutionary simulations, indicating that these mutations are possibly

easier to reach by evolution and appear quickly, and are thus more widely seen in clinical practice.

The unknown mutations that are resistance conferring according to our structural models tend to

dominate the simulation towards the end. This can indicate that majority of these mutations are

harder to reach by evolution. It is also worth noting that in clinical practice, prevalence of drug

resistant mutations in a patient will render the treatment ineffective, thereby prompting a change

in the prescribed drug. Thus, the evolutionary process in practice might never have the chance to

explore these otherwise promising resistance candidates that are harder to reach.

Patient Trajectories Patient trajectories from HIV DB were also used to analyze results of

the evolutionary simulations (Rhee et al., 2003; Shafer, 2006). These trajectories consist of HIV
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Figure 5.7: Occurrence of Known Mutations in Evolution. Percentage of known and un-
known mutations selected by evolutionary simulations is plotted. In this context, known mutations
are limited to those occurring in the gold standard set from HIV DB. Known mutations domi-
nate the beginning of the evolutionary simulation indicating that these are easier to reach. As the
evolutionary simulation progresses, more unknown mutations are sampled.
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protease sequence data obtained from infected patients over a span of time and represent the

evolutionary paths taken by the virus to acquire resistance. In order to facilitate comparison with

the evolutionary simulations performed in this work, patient trajectories where mutations occurred

in the modelled protease active site and consisted of the gold standard mutations (Table 5.1)

were selected. Furthermore, any trajectories where multiple mutations appeared between two

sequences, were excluded. Since the available patient trajectory data is sparse for ritonavir, and

significant cross resistance is often observed between protease inhibitors (Kozal, 2004), patient

data under other protease inhibitors was also included. The resulting set had 5 patient trajectories

namely: wt → V82A, wt → M46L, wt → M46L → M46L/V82A, wt → I50V and wt → V82A

→ I54V/V82A. Of these, M46L is the most highly visited single mutant, making wt → M46L

as the most frequently sampled transition in our simulations. Similarly, wt → V82A is the top

12th trajectory sampled in the simulation, whereas wt → M46L → M46L/V82A is the 17th most

frequently sampled trajectory. Similarly, wt → V82A → I54V/V82A is found among the top 50

most frequently sampled trajectories. The evolutionary simulations did not sample wt → I50V.

This is possibly due to a miscategorization of I50V as ritonavir sensitive by the structural method.

Finally, it is worth noting that for an active site of 11 residues, a total of ≈8910 trajectories that

consist of single and double point mutants that are hydrophobic, exist (11*9*10*9). Since 5 of these

trajectories are reported in HIV DB, we expect ≈0.028 trajectories to show up in the 50 trajectories

selected by evolution by random chance (5/8910 * 50). On the other hand, four of these trajectories

are represented in the top 50 trajectories sampled by our evolutionary simulations. This represents

an enrichment factor of 143 and is statistically significant at 5% (p-value 0).

While these results comparing the actual patient sequences against the evolutionary simula-

tions are limited in nature, the fact that these trajectories could be retrieved by our evolutionary

simulation indicates that significant information about evolution of resistance in patients can be

obtained, even when using simple evolutionary models. A list of top paths from the evolutionary

simulation is presented at the end of this chapter (see Table 5.5).

Compensatory Mutations Evolutionary simulations like those presented in this Chapter might

also be used to identify the primary and compensatory mutations in a mutant. In this context, a

primary mutation is a single point mutation that can confer resistance on its own. On the other

hand, a compensatory mutation is a secondary mutation that can augment the resistance conferring

capacity of the first mutant either by further impairing drug binding, improving substrate binding

or both (Levin et al., 2000; Handel et al., 2006). However, such a compensatory mutation is not

resistant on its own. In the HIV protease simulations performed, resistance conferring primary

mutations in residues M46, I50, I54, V82 and I84 (see Table 5.6) were often paired with compen-

satory mutants. We find that in a scenario where a double mutant comprises of a primary and

compensatory mutation, the primary mutation appears first, whereas the compensatory mutation
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occurs next. A total of 25 such double point mutations were sampled during the evolutionary

simulations. The trajectories were modelled using a binomial distribution, with success defined

as the accumulation of the primary resistance mutation first. Probability of success was calculated

independent of selection (i.e. by using the underlying mutational process alone). All observations

were significant at P = 0.05 with Bonferroni correction for multiple hypothesis testing applied. A

list of these mutations can be found in Table 5.4 presented at the end of this chapter, with the

primary resistant conferring mutations highlighted in bold.

5.3.1 Evolution of Resistance under Drug Cocktails:
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Figure 5.8: Distribution of Selection Coefficients Histograms of selection coefficients under
ritonavir (Top) and ritonavir-nelfinavir-lopinavir cocktail (Bottom) are shown. A significant peak
at -1 is found for the cocktail indicating that a large number of previously resistant mutants are
sensitive to the cocktail.

Use of drug cocktails is an important part of therapy for HIV. These drug cocktails combine a
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number of different drugs for increased efficacy and to overcome resistance. In order to study the

evolution of resistance under a drug cocktail, Equation 5.1 is modified as follows:

si = e(Ewt,s−Ei,s)−mind[(Ewt,d−Ei,d)] − 1 (5.6)

Under a single drug, a mutant confers resistance if the drug binding is affected more than

the substrate binding. Thus, in order to confer resistance to a drug cocktail, the mutant must

be resistant to all the drugs. Furthermore, under a drug cocktail, multiple drugs are competing

for binding, both with the substrate and with each other; thus the substrate binding should be

compared against the drug that binds the mutant with the lowest binding energy (the most effective

drug in the cocktail against the mutant). The min over the second part in the exponent captures

this behaviour.

A protease inhibitor cocktail consisting of ritonavir, lopinavir and nelfinavir (RNL) was used in

the evolutionary simulations. Addition of these additional protease inhibitors changes the fitness

landscape of the protease. Similar to the previous section, all 787 mutants predicted to bind the

native substrate within 1.5 kcal/mol of the wild type were used in resistance calculations. Using

Equation 5.6, a total of 57 mutants were found to be resistant i.e. they had positive selection coef-

ficients. This is in contrast to the 185 resistance conferring mutants found for ritonavir, indicating

a reduction in resistance when a cocktail is applied. Figure 5.8 shows the distribution of selection

coefficients for both ritonavir and the RNL cocktail on the simulated landscape. A significant shift

towards the deleterious region in general (selection coefficients less than 0) can be seen for the

cocktail.

The evolutionary landscape for RNL cocktail is shown as a graph in Figure 5.9. A total of 787

mutants are displayed, with each mutant being a single node. The colour of the nodes indicates the

fitness or the selection coefficient of the mutant, with red being lethal and green being beneficial.

Compared to the evolutionary landscape under ritonavir (see Figure 5.5), a significant increase in

the number of red nodes (and hence negative selection coefficients) is seen reflecting the general

shift towards increased sensitivity under the cocktail. Figure 5.9 shows the section of this landscape

selected by the evolutionary simulations. Similar to the evolutionary simulations under ritonavir

alone, it is obvious that a significantly smaller portion of the landscape is selected by evolution

compared to that predicted to be beneficial by structure alone. Under ritonavir, a total of ≈ 80 or

about 44 percent of the beneficial landscape was sampled by evolution. On the other hand, 11 out

of 57 nodes or about 19 percent of the beneficial mutational space is explored under the cocktail.

This points to an interesting property of the cocktails so far as resistance is concerned. A cocktail

does not work by simply reducing the number of resistance conferring mutants. Instead, the use

of multiple drugs in a cocktail seems to eliminate the mutational paths needed by evolution to

sample resistance conferring mutants. Thus a cocktail prevents resistance by blocking off beneficial
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Figure 5.9: HIV Protease Fitness Landscape Under a Protease Cocktail Top: The HIV
fitness landscape is displayed as a graph where each node is a mutant of HIV protease. An edge
between nodes indicates that a single DNA mutation can convert one into the other. The colour of
the nodes represents the selection coefficient of the mutant under a cocktail of ritonavir, nelfinavir
and lopinavir (Equation 5.6) with green as beneficial and red as deleterious. Wildtype is highlighted
in yellow. All mutants with substrate binding within 1.5 kcal/mol of the wild type are displayed.
Bottom: Part of the HIV fitness landscape selected by evolution is shown. Only a subset of beneficial
mutants i.e. those resistant to the ritonavir-nelfinavir-lopinavir cocktail are sampled. The networks
were generated using Cytoscape (Shannon et al., 2003).
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segments of the evolutionary landscape. A similar trend is also shown by Figure 5.10. The figure

plots the average fitness across 5000 runs, through the evolutionary simulation. It is evident that

under the cocktail, fitness evolves much slowly compared to the fitness under a single drug.
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Figure 5.10: HIV Fitness under a Cocktail Average fitness (Equation 5.5) through the evo-
lutionary simulation is plotted. The red line is fitness under ritonavir alone. Fitness under the
ritonavir-nelfinavir-lopinavir cocktail is displayed in blue. As expected, fitness rises much slower
under the cocktail pointing towards increased efficacy of the cocktail compared against ritonavir
alone.

5.3.2 Resistance under Varying Levels of Drug Adherence:

Adherence to a drug regimen can potentially effect therapy outcome (Huang et al., 2011; Krakovska

and Wahl, 2007a; Rosenbloom et al., 2012; Tam et al., 2008). Less than perfect drug adherence

creates periods of fluctuating selection during the evolutionary process; as the drug doses are missed,

the underlying landscape is under no drug selection, whereas as drug is resumed again, selective

pressure due to the drug resumes. In order to study the effects of this fluctuating selective pressure,

the evolutionary simulations were repeated with an additional input parameter k to specify the

absence (k = 0) or presence of drug (k = 1) at each step of the Markov chain. In the presence of a

drug, the selection coefficients used were calculated as before (see Equation 5.1). To represent the

case when the drug was missed, selection was calculated as :

si = e(Ewt,s−Emut,s) − 1 (5.7)

Equation 5.7 is a modified version of Equation 5.1 with the drug component excluded. Adher-
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ence levels of 70, 75, 80, 85 and 90 percent were simulated, where adherence level indicates how

often the drug was taken. Hence, an adherence level of 90 indicates that 10 % of times, drug

doses was missed. Other than the overall adherence level, the consecutive numbers of time a drug

dosage is missed or the gap length might also affect the overall outcome of the drug regimen. Gap

lengths of 10, 20, 50, 100 and 200 were used with all adherence levels. Thus a total of 25 simulation

experiments (5 adherence levels each with 5 gap lengths) were performed.

Previous work exploring the effects of drug adherence on therapy outcome has mostly focused

on reverse transcriptase and integrate inhibitors, and prolonged gaps in therapy or fluctuating ad-

herence is known to adversely affect therapy outcome (Huang et al., 2011; Li et al., 2012; Krakovska

and Wahl, 2007b; Rosenbloom et al., 2012; Tam et al., 2008). However, somewhat differing opin-

ions about adherence and protease inhibitors have been reported. For instance, (Krakovska and

Wahl, 2007b; Rosenbloom et al., 2012; Tam et al., 2008) report an increase in virological failure

for decreased adherence for various protease inhibitor based therapies. On the other hand (Rosen-

bloom et al., 2012; Tam et al., 2008) have reported a minimal effect on therapy outcome when

adherence is affected for some protease inhibitors. In the experiments performed, size of the visited

landscape grew as adherence was decreased from 100 percent and gaps were introduced. However,

in the current application of our evolutionary model to evolution under ritonavir, no correlation

of the explored evolutionary landscape with the gap length or adherence levels was found (see

Figure 5.11).
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Figure 5.11: Mutants explored for varying adherence levels and gap sizes Number of
mutants explored as the adherence level and gap size are changed. Adherence levels of 70 percent
(blue), 80 percent (green) and 90 percent (red) are displayed. No correlation was found between
adherence level, gap size and size of explored landscape and fitness.
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5.4 Conclusion

In this chapter a simple evolutionary model to probe resistance was presented. This model uses

a Markov chain based implementation of the evolutionary process, and incorporates resistance

mutation scores obtained via structural models of Chapter 4 to calculate evolutionary fixation

probabilities. Thus the model combines both the mutational and structural aspects of resistance.

Adding mutational information can be crucial in some cases since paths leading from the wild type

to a target mutant can offer insights into the feasibility of a particular resistance candidate. Use of

this evolutionary model on HIV protease as a test system demonstrated that the evolutionary model

is indeed a better model of drug resistance than structure alone. This is in part owing to the fact

that evolutionary model quickly rules out the mutants that appear structurally promising but lie

at the end of highly unlikely evolutionary paths e.g. those involving deleterious mutants or fitness

sacrificing steps. This evolutionary model was also used to examine evolution of resistance under

drug cocktails and under suboptimal adherence strategies. We find that under drug cocktails, as

expected, portions of landscape beneficial under a single inhibitor are converted to those deleterious

under the cocktail. More importantly, we find that a much smaller portion of that beneficial

landscape under the cocktail is accessible. This hints at the possibility that a cocktail is efficient

not simply because more of the evolutionary space is covered, but also because most previously

likely evolutionary paths become unlikely indicating that good resistance candidates are harder to

reach. This observation can possibly be included in optimal cocktail design (see Chapter 6).

While dependence of fitness on adherence was also tested in a number of experiments, we find

that adherence has little to no effect under ritonavir. This observation is in qualitative agreement

with a few previous studies that note that perfect adherence might not be determinant of treatment

success under some protease inhibitors.

While the evolutionary method presented here improves on the structural methods of Chapter

4 to model drug resistance, it is not without its limitations. First, since this method uses binding

energies generated using structural methods to calculate selection coefficients, it is also susceptible

to the limitations affecting the structural components. Second, the method presented in this

chapter is an approximation of a full evolutionary population dynamics simulation. Instead, this

model treats the entire population as a single viral particle that moves from the wild type to different

mutants. Finally, the formulae presented in this chapter do not explicitly take into account the

dosage and half lives of the drugs involved. This potentially affects the scoring function for a drug

cocktail as well as the adherence simulations. Incorporation of these two features, while not straight

forward, can provide further insights. For a detailed description of future work, see Chapter 6.
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Table 5.3: Mutants Visited by Evolution All HIV protease mutants selected by evolution are
listed. See Figure (5.5, Bottom).

D29Y/I84V D29Y/V82F D29Y/V82G
D30A/I146M D30A/V82L D30G/I146M
D30G/V82L D30G/V82M D30Y/I146M
D30Y/I84L D30Y/V82L I146G

I146M I146V I50V/I146V
I50V/V82A I50V/V82L I54L/I146G
I54L/V82A I54L/V82G I54M/I146G
I54M/I84A I54M/I84L I54M/I84V
I54M/V82A I54M/V82F I54M/V82L
I54M/V82Y I54V/I146G I54V/I146V
I54V/I84F I54V/V82A I54V/V82F
I54V/V82L I84F I84F/I146M

I84L I84L/I146G I84L/I146V
I84V I84V/I146V M46L

M46L/I146V M46L/I84M M46L/I84V
M46L/V82A M46L/V82G M46L/V82I
M46L/V82L V82A V82A/I146G
V82A/I146M V82A/I84L V82A/I84M
V82Y/I84L V82F V82F/I146V
V82F/I84L V82F/I84Y V82G

V82G/I146M V82G/I146V V82G/I84F
V82G/I84L V82G/I84M V82G/I84V
V82I/I146G V82I/I84F V82L
V82L/I146G V82L/I146V V82L/I84F
V82L/I84Y V82M/I146G V82W/I146M
V82W/I84L V82Y V82Y/I146M
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Table 5.4: Double Mutants with Compensatory Single Mutants
D30A/I146M D30G/I146M
D30Y/I146M I50V/I146V
I54V/I146V I54V/I84F
V82I/I84F D30Y/I84L
I54M/I84L D29Y/I84V
I54M/I84V M46L/I84M
M46L/V82I I50V/V82A
I54L/V82A I54M/V82A
I54V/V82A V82A/I84M
D29Y/V82F I54M/V82F
I54V/V82F D29Y/V82G
I54L/V82G V82G/I84M
D30A/V82L D30G/V82L
D30Y/V82L I50V/V82L
I54M/V82L I54V/V82L
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Table 5.5: Top Trajectories in Evolutionary Simulations

wt→M46L wt→I84V
wt→M46L→M46L/V82L wt→V82F
wt→I84V→D29Y/I84V wt→V82L

wt→I146M wt→M46L→M46L/I84M
wt→I146V wt→I146M→I146M/D30Y
wt→I84F wt→V82A

wt→I84F→I84F/I146M wt→V82G
wt→V82F→D29Y/V82F wt→M46L→M46L/V82G
wt→V82F→V82F/I54V wt→M46L→M46L/V82A

wt→I146V→I146V/V82L wt→I84V→D29Y/I84V
wt→M46L→M46L/V82G wt→V82F→I54V/V82F
wt→M46L→M46L/V82A wt→I146V→V82L/I146V
wt→V82F→V82F/I146V wt→V82A→I50V/V82A
wt→I84V→I84V/I146V wt→ I146V→I50V/I146V

wt→ V82A→M46L/V82A wt→ V82A→V82A/I84L
wt→ V82G→D29Y/V82G wt→ I146V→V82G/I146G

wt→ I84F→V82I/I84F wt→ V82G→M46L/V82G
wt→ I146V→V82F/I146V wt→ V82F→V82F/I84L

wt→ I84F→I54V/I84F wt→ I84L→D30Y/I84L
wt→ V82L→D30Y/V82L wt→ I146M→D30G/I146M
wt→ I146V→I84V/I146V wt→ I146V→V82L/I146V
wt→ V82F→I54M/V82F wt→ I146V→V82L/I146V
wt→ V82G→V82G/I84L wt→ V82A→I54L/V82A
wt→ I146M→I84F/I146M wt→ V82G→V82G/I146V
wt→ I84L→V82A/I84L wt→ V82L→D30G/V82L
wt→ I84V→I54M/I84V wt→ V82F→I54M/V82F
wt→I146V→I54V/I146V wt→ I84V→M46L/I84V
wt→ V82G→V82G/I84M wt→ M46L→M46L/V82I
wt→ V82G→V82G/I146M wt→ V82L→M46L/V82L
wt→ M46L→M46L/V82I wt→V82G→V82G/I84L
wt→I84V→I54M/I84V wt→V82A→I54V/V82A

wt→V82A→I54M/V82A wt→V82L→D30A/V82L
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Table 5.6: Predicted Resistance for HIV. All mutants considered resistant in the HIV land-
scape.

D29Y/I84V D29Y/V82FGW I146GMV
D30A/I146M D30A/V82LM D30F/I146V
D30F/I54M D30G/I146M D30G/I50FLM

D30G/I54LM D30G/V82LM D30G/I146W
D30L/I146M D30L/I84Y D30L/V82M
D30M/I84Y D30V/V82M D30V/I146M

D30W/I146G D30Y/I146MW D30Y/I50FLMY
D30Y/I54LM D30Y/I84LM D30Y/V82LM
I50A/V82M I50F/I146G I50F/I184Y
I50F/V82I I50G/I146W I50G/V82L

I54G/I146M M46L/I84M I50G/I84LM
I50V/I146W I50G/I54M I50V/V82AFLW
I50L/I146VG I50L/I84Y I50L/V82FWY

I50V/I146GVW I54A/V82AM I54G/V82L
I54L/I84Y I54L/V82AGWY I54M/I146GLV

I54M/I84ALVY I54M/V82AFGLMWY I54V/I146GV
I54V/I84FL I54M/I146G I54M/I84V
I54L/I146G I54V/V82AFGLWY I84A/I146M

I84FV I84F/I146MV I84L
I84L/I146GVL I84M/I146G I84V/I146V
I84Y/I146MW M46F/I54M M46L/I146V

M46L/V82I M46AV/I54M M46L/150L
M46L/154M M46L/I84VM M46L/V82AGLM

M46LW M46L M46L/I54V
M46W/I146MV M46W/I54MV M46W/V82AILM
M46Y/I146M M46Y/I54L M46Y/I54M
M46Y/I84LM M46Y/V82LM V82AFGYL

V82A/I146GMV V82A/I84LMVY V82F/I146MV
V82F/I84FLMY V82G/I146MV V82G/I84FLMVY

V82I/I146GV V82I/I84F V82L/I146GLV
V82L/I84FY V82L/I146M V82M/I146G
V82M/I84Y V82W/I146M V82W/I84FLMY

V82Y/I84FLM V82Y/I146M
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Chapter 6

Future Directions

6.1 Conclusions

The goal of this thesis was the development of methods that predict resistance a priori. In partic-

ular, prediction of resistance conferring mutations occurring in the active site of the target protein

was desired. Furthermore, the aim was also to design a method that can predict this resistance

with limited or no prior knowledge about drug resistance in a particular system.

In Chapter 3, an efficient protein redesign algorithm was presented that can be applied to

smaller or restricted redesigns and consequently to drug resistance. In Chapter 4, this algorithm

was combined with MMPBSA in a hierarchical approach to predict drug resistance. The efficacy

of this approach was demonstrated on four different drug target systems. In all four cases, this

method was able to correctly predict majority of the known mutants as resistant. In all cases,

additional novel mutants were also predicted. Finally, in Chapter 5, an evolutionary model that

combines sequence with structure was presented. This evolutionary model incorporates the process

of mutation occurring at the sequence level along with its structural effects to better model drug

resistance. It was shown that resistance mutations that are likely to occur in clinical practice are

often those that can be easily reached during evolution. Thus, overall the methods presented in

this thesis form a pipeline that can be used to predict resistance a priori (i.e. before it is observed

in patients/clinical practice) in a drug target system. Finally, the approach presented is general

in nature i.e. it can be applied to any drug target system where structures of the target protein,

native substrate and the drug are available, and it does not rely on prior information regarding

resistance in the system under consideration.

While the results of the current approach are promising, it is worth noting that a number

of approximations were made by the structural and evolutionary methods. Consequently, a few

limitations to this work exist. First, the results presented in this thesis were limited to single and

107



double mutants only. However, the methods presented in this thesis can be applied to probe mutants

farther away from the wild type as well. The mutational search space grows combinatorially as

the number of allowed mutations grows, and consequently the structural model will take longer

to complete. However, as demonstrated in Chapter 3, even for these larger number of allowed

mutations, rDEE search finished in less than 12 hours for the studied systems. It is worth noting

that resistance is often limited to small number of residue changes. Furthermore, previously known

resistance mutations known for most systems consist of 1 or 2 mutations only, thus limiting available

validation data to single or double mutants. Second, for the systems tested for resistance in this

thesis, the allowed set of residues was limited to either hydrophobic or hydrophobic plus polar

neutral. This was motivated by a number of factors including the difficulty of scoring functions to

score charged residues as well as scarcity of available validation data. Future work should expand

on the possibility of including these harder to score residues to determine possible pitfalls, as well

as possible residue-specific corrective measures for resistance predictions. One possible direction for

this may be experimentation with various energy functions and force fields to determine the best

ways of evaluating charged residues in context of resistance. Finally, proteins are flexible entities

that sometimes undergo large conformational changes to accomplish a task (Prabu-Jeyabalan et al.,

2006). The methods presented in the current work do not take into account protein flexibility at

this scale. It is, however, worth noting that some degree of flexibility is incorporated by methods

of Chapter 4 in the form of side chain rotamers and minimization. On occasion, approximations

in modelling such as this can result in erroneous calculations of the binding energy and affect

accuracy. An example of this phenomenon would be a highly flexible protein, where a mutant

seems to disrupt substrate binding, however significant conformational changes in the protein can

allow the substrate to bind better. If this conformational change is not captured by a computational

method, the substrate binding energy is likely to be miscalculated and the mutant flagged as lethal

or deleterious when, in reality, it is not so. Section 6.2 presents some extensions to the current

work to address this issue. Third, the evolutionary model of Chapter 5 does not involve full scale

population dynamics, instead it treats the entire population as a single particle. In addition, a

single mutation at the nucleotide level is allowed during each step of the Markov chain and its

effects on fitness are evaluated. In practice, multiple simultaneous mutations, though unlikely,

might occur as well.

Finally, resistance can be conferred in a number of different ways. Of these, the most direct and

common way is by the introduction of point mutations in the active site of the target protein. This

is the mechanism of resistance that has been modelled in this work. However, the goal of this thesis

did not involve modelling of other mechanisms of resistance such as compensatory mutations away

from the active site (Foulkes-Murzycki et al., 2007; Mittal et al., 2012), over expression of efflux

pumps, and over or under expression of compensatory genes and drug breakdown by bacterial
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enzymes. Thus, the methods presented in this thesis are not directly applicable to resistance

arising through these mechanisms. However, Section 6.2 presents possible extensions to this work

to address resistance emerging in other ways.

6.2 Future Work

As the limitations of the approach presented have been discussed in the previous section, future

directions addressing some of these limitations as well as building on the work performed in this

thesis are provided in this section.

The methods presented in Chapter 4 model resistance as a function of binding energies for the

drug and native substrate. During modelling, a single substrate is explicitly accounted for and used.

For a number of drug target proteins, multiple ligands bind at the same location or close to the

native substrate binding site. An example of this is the ATP binding site that overlaps the native

substrate binding site for various proteins. This implies additional constraints on the mutant

protein, since it needs to maintain near wild type binding with all the native substrates, while

disrupting drug binding. Thus, knowledge of these additional ligands can be incorporated in the

modelling process to improve accuracy. A possible approach to achieve this would be the addition

of a filtering step that analyzes bindings of the predicted resistant mutants against other ligands

and eliminates the ones that disturb binding with these additional ligands. Another example of

such multi-ligand binders are proteins that bind ligands possessing a specific template. An example

of these are the viral proteases that bind a wide range of peptide ligands to cleave them. These

proteases often recognize a specific template in these peptides. This behaviour can be captured in

a number of ways by a scoring process. First, one can create a template ligand structure for native

substrate binding evaluation. For instance, a peptide template might be created by converting all

residues that are not in the template to alanines or glycines. Alternately, the scoring procedure

itself can be modified to emphasize interactions with the template locations higher than those for

non-template locations: thereby capturing the binding with template ligand better.

Incorporating protein flexibility during structural modelling is crucial for accuracy, yet it re-

mains computationally prohibitive. However, employing full fledged molecular dynamics (MD)

encompassing large time scales (i.e. those that capture large scale conformational changes) can be

inefficient, and in most cases, such large scale conformational changes might be unlikely to occur.

The methods of Chapter 4 sacrifice some modelling accuracy for efficiency by using a hierarchical

approach. Side chain flexibility in the form of rotamers is allowed during Stage 1; and while Stage

2 incorporates additional flexibility including minimization, full scale MD is not incorporated. Fur-

thermore, even if Stage 2 was modified to incorporate MD, large scale conformational changes can

occur on time scales which will make it infeasible to perform a full MD simulation for each mutant.
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This is particularly the case for proteins such as membrane proteins and various kinases that un-

dergo large conformational changes. Thus, mutations occurring in the protein must be compatible

with all the target conformations. A mutant that disrupts one conformation is unlikely to occur in

nature since it is likely to inhibit protein function. Finally, proteins might occupy multiple states

such as phosphorylated or unphosphorylated, protonated or neutral etc. Along with conformational

changes, these state changes can also be crucial such that a candidate mutant has to be compatible

with all states of the protein. Thus, redesign algorithms that take conformational flexibility and

multiple biochemical states into account can be employed for improved accuracy. For instance,

multiState DEE (Yanover et al., 2007) is an attempt to incorporate multiple target states when

looking for possible redesigns. Similarly, algorithms can be designed that take into account multiple

conformational targets for mutation searching. These multi-target approaches can then be used as

the first stage of a hierarchical resistance modelling algorithm, such as that presented in Chapter 4.

Alternately, the algorithm presented in Chapter 4 can be executed in parallel, with each execution

searching for mutants compatible with a unique conformational target. Then, an intersection of

these parallel pipelines will be the mutants compatible with all target folds/conformations.

Drug cocktails are an important part of therapy in many diseases including HIV and various

cancers. Chapter 5 presented a scoring function to determine whether a particular mutant confers

resistance to a drug cocktail or not. The intuition behind the scoring function was that a mutant has

to escape all drugs in the cocktail to be truly resistant to the cocktail. While this logic is intuitive in

nature, the scoring function presented in Chapter 5 weighs all drugs in a cocktail equally. However,

in practice, different doses of drugs are often combined to create a cocktail implying potentially

varying contributions to the scoring system. A scoring function that uses differing contributions

from each drug, possibly weighed by drug dosages, can be more useful. Future work can thus focus

on finding the optimal dosage for each contributing drug in a given cocktail to minimize resistance

to the cocktail.

Design of an optimal cocktail that minimizes emergence of drug resistance can aid therapy

significantly. Chapter 5 presented evolutionary fitness landscapes as observed under various drugs

and drug cocktails. In addition, we find that under drug cocktails, evolutionary paths are blocked

by deleterious mutations, so that improving fitness under a cocktail becomes harder as compared

to under a single drug. This points to another goal for optimal cocktail design. Future work can

be directed at the design of optimal cocktails that focus on limiting the evolutionary mutant space

available for the pathogen to escape to. Use of evolutionary landscapes and a priori knowledge

of drug resistance can be potentially combined with stochastic search algorithms to search for an

optimal cocktail that evades resistance.

Another exciting area for future work is the design of escape proof treatment strategies i.e.

those that preclude drug resistance. In this context, an escape proof treatment strategy can be
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designed to drive the viral population into a predetermined set of mutants M . This set of mutants

M can be chosen such that all mutations leading the virus out of M are highly unlikely or lethal.

In this way, the viral population on M is evolutionarily trapped. If the target set of mutants M

is so chosen that it is susceptible to an existing drug (or cocktail) D, viral population on M can

essentially be eliminated using D, without allowing it to develop resistance.

A further application of methods presented in Chapter 5 can be that of vaccine design or

escape proof vaccines. An example of this is provided using HIV vaccine. The vaccine is a cocktail

of antigens (e.g from HIV envelope protein) that produce HIV antibodies in the patients and

strengthen the immune response to an HIV infection (Rerks-Ngarm et al., 2009; Gamble and

Matthews, 2010). One can imagine creating an evolutionary landscape for the HIV envelope gene

(or the antigens included in the vaccine) to examine regions of this landscape where the virus

can escape to. Each antibody produced as a result of the vaccine injection covers a part of this

landscape (i.e. strains susceptible to the antibody). Thus, the antibodies generated as response to

the vaccine can be considered as a drug cocktail that exerts a selective pressure on the virus. We

can then examine parts of this landscape that are not sensitive to any available antibody. These

areas of the landscape represent HIV mutant strains that will escape the HIV vaccine since no

antibody affects them. This knowledge can then be used to identify further antigens that can be

added to the vaccine such that the antibodies produced cover the maximum area of the evolutionary

landscape, making HIV vaccine escape proof.

Adherence is modelled in Chapter 5 as a fluctuating selective pressure. Our model does not

take into account questions of drug half life, its dosage or its interactions with other drugs being

administered. Future work should attempt at creation of a hybrid model that incorporates the

evolutionary simulations described in this thesis with a mathematical model (Huang et al., 2011;

Rosenbloom et al., 2012). Such a hybrid model will thus combine explicit structural information

with a model of drug half life and dosage to better model when and how resistance starts to arise

along the course of treatment.

Finally, prediction of a priori resistance in drug targets can guide the drug design process.

First, it can aid in ranking lead compounds (candidate drugs) such that the lead compounds for

which resistance evolves easily are ranked lower. In addition, knowledge of resistance a priori can

potentially be used to redesign lead compounds so that it becomes difficult to evolve resistance

to them. Future work can be aimed at such lead redesigns. The structural methods presented in

this thesis provide bound structures of the mutants and drug as their output. These structures

can potentially be analyzed to identify areas of the lead compound (drug) contributing to drug

resistance. A redesign method could then incorporate this knowledge to redesign the lead compound

and eliminate or improve these resistance susceptible areas.
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Appendix A

Approximate Calculation of Selection

Coefficients

For a wild type enzyme wt and a mutant a, the rate of reaction under Michaelis-Menten kinetics

is given by:

V0,wt =
Vmax[S]

Km,wt(1 + [I]/Ki,wt) + [S]
(A.1)

V0,a =
Vmax[S]

Km,a(1 + [I]/Ki,a) + [S]
(A.2)

where Km is the Michaelis constant, Ki is the dissociation constant for the inhibitor and [S] and

[I] are the substrate and inhibitor concentrations respectively. Furthermore, Vmax is the maximum

reaction velocity and is given by Vmax = E0kcat, where E0 is the enzyme concentration and kcat is

the turnover number.

Similar to (Wylie and Shakhnovich, 2011), we define selection to be a function of the wild type and

mutant fitness/growth rate:

s =
ba
bwt
− 1 (A.3)

where ba and bwt represent the fitness or growth rates of the mutant a and wild type respectively.

Assuming that fitness of the virus is dependent on the reaction rate, selection becomes a function

of V0,wt and V0,a.

s ≈ V0,a

V0,wt
− 1 (A.4)

Furthermore, we assume that the Vmax is the same for both the wild type and mutant proteins.

This is a reasonable assumption since a resistant conferring mutant should maintain native function.

(Furthermore, for the case of HIV protease, experiments conducted in Chapters 4 and 5 did not

112



allow any mutations in the catalytic triad to avoid disruption of kcat. )

Substituting values of V0,wt and V0,a into Equation A.4, we have

s =
Km,wt(1 + [I]/Ki,wt) + [S]

Km,a(1 + [I]/Ki,a) + [S]
− 1 (A.5)

At large inhibitor concentrations, Equation A.5 can be approximated by:

s ≈ Km,wt/Ki,wt

Km,a/Ki,a
− 1 (A.6)

=
Km,wtKi,a

Ki,wtKm,a
− 1 (A.7)

Finally, at equilibrium Km equals the dissociation constant. Assuming Km,g ∝ eEg,s as well as

Ki,g ∝ eEg,d where g is either wild type or mutant protein and Eg,s is the energy of the protein

with its native substrate and Eg,d is the binding energy with the drug, we get:

s ≈ eEwt,seEa,d

eEwt,deEa,s
− 1 (A.8)

Rearranging, we get

sa ≈ e(Ewt,s−Ea,s)−(Ewt,d−Ea,d) − 1 (A.9)

While the derivation provided above uses the wild type, without loss of generality, the formula

can be used for any two mutants as well. In such a case, Equation A.9 reduces to:

sa→b ≈ e(Ea,s−Eb,s)−(Ea,d−Eb,d) − 1 (A.10)

We claim that sa→b can be determined by using the selection coefficients of a and b with respect

to the wild type alone by using the following alternate formula:

sa→b =
sb + 1

sa + 1
− 1 (A.11)

Use of Equation A.11 is computationally attractive, since the selection coefficients for all mutants

need to be computed with respect to wild type alone. These selection coefficients can then be

combined using Equation A.11 to calculate the selection coefficient sa→b as a mutation is made

from a mutant a to another mutant b.

Using Equation A.9, the selection coefficient of the mutants a and b with respect to wild type

is given by:

sa = e(Ewt,s−Ea,s)−(Ewt,d−Ea,d) − 1 (A.12)
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sb = e(Ewt,s−Eb,s)−(Ewt,d−Eb,d) − 1 (A.13)

Substituting these values in Equation A.11, we get

sa→b =
e(Ewt,s−Eb,s)−(Ewt,d−Eb,d) − 1 + 1

e(Ewt,s−Ea,s)−(Ewt,d−Ea,d) − 1 + 1
− 1

= e(Ewt,s−Eb,s)−(Ewt,d−Eb,d)−(Ewt,s−Ea,s)+(Ewt,d−Ea,d) − 1

= eEwt,s−Eb,s−Ewt,d+Eb,d−Ewt,s+Ea,s+Ewt,d−Ea,d − 1

= e−Eb,s+Eb,d+Ea,s−Ea,d − 1

= e(Ea,s−Eb,s)−(Ea,d−Eb,d) − 1

which is the formula provided by Equation A.10.
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Appendix B

Resistance Mutations Predicted by

MM-GBSA

Table B.1: Predicted Resistance for Gleevec. All mutants predicted resistant by MM-GBSA
are listed.

Y253FLM V256L E286LY
M290L I313V T315IMV
I360V L370M D381F

F382W

Table B.2: Predicted Resistance for Isoniazid. All mutants predicted resistant by MM-GBSA
are listed.

I16TV 121AFGLTVW F41ILMTV
S94TV F149LT K165M
L218Y W222FLM
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Table B.3: Predicted Resistance for Ritonavir. All mutants predicted resistant by MM-GBSA
are listed.

D29Y/I84V D29Y/V82FGWY D30A/I146M
D30A/V82LM D30F/I146V D30F/I54M
D30G/I146MW D30G/I50FLM D30G/I54LM
D30G/V82LM D30L/I146M D30L/I84Y
D30L/V82M D30M/I84Y D30V/I146M
D30V/V82M D30W/I146G D30Y/I146MW

D30Y/I50FLMY D30Y/I54LM D30Y/I84LM
D30Y/V82ILM I146GMV I50A/V82M

I50F/I146G I50F/I84Y I50F/V82I
I50G/I146W I50G/I54M I50G/I84LM
I50G/V82LM I50L/I146GV I50L/I84Y

I50L/V82FWY I50V/I146GVW I50V/V82AFLW
I54A/V82AM I54G/I146M I54G/V82L
I54L/I146G I54L/I84Y I54L/V82AGWY

I54M/I146GLV I54M/I84ALMVY I54M/V82AFGLMWY
I54V/I146GV I54V/I84FL I54V/V82AFGLWY
I84A/I146M I84FLV I84F/I146MV
I84L/I146GV I84M/I146GL I84V/I146V
I84Y/I146MW M46A/I54M M46F/I54M

M46LW M46L/I146V M46L/I50LMV
M46L/I84MV M46L/V82AGILM M46V/I54M

M46W/I146MV M46W/I54MV M46W/V82AILM
M46Y/I146M M46Y/I54LM M46Y/I84LM
M46Y/V82LM V82AFGLY V82A/I146GMV

V82A/I84LMVY V82F/I146MV V82F/I84FLMVY
V82G/I146MV V82G/I84FLMVY V82I/I146GV

V82I/I84F V82L/I146GLMV V82L/I84FY
V82M/I146G V82M/I84Y V82W/I146M

V82W/I84FLMWY V82Y/I146M V82Y/I84FLM
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Table B.4: Predicted Resistance for Methotrexate. All mutants predicted resistant by MM-
GBSA are listed.

E30A/F34L E30I/V115M E30M/Q35Y
F34A/Q35Y F34G/V115LM F34LM/L67M
F34Y/V115G I7L/V8IM I7MVW
I7M/E30LM I7M/L22FIMV I7M/L67IMV

I7M/Q35LMWY I7M/V115AGIM I7V/L22F
I7V/L67M I7V/Q35Y I7W/L22M
I7W/V115I I7W/V115M L22A/V115M

L22F L22F/E30LM L22F/F34ALM
L22F/L67M L22F/Q35WY L22F/T136LV

L22F/V115ILM L22G/V115M L22M/L67IMV
L22M/Q35FLMY L22M/V115AG L22V/Q35Y

L22V/V115I L22W/E30M L22W/L67M
L22W/Q35Y L22Y/Q35Y L67I/V115IM

L67M L67M/T136V L67M/V115I
L67V/V115M Q35F/V115M Q35L/V115IM
Q35M/V115M Q35W/V115IM Q35Y
Q35Y/L67M Q35Y/T136V Q35Y/V115I

Q35Y/V115M V115IG V115M/T136A
L22M/F31Y L22F/F31LMY L22A/F31MY
L22M/F31M E30L/F31ML E30I/F31ML
F31W/F34L F31M/Q35Y F31L/Q35YM

F31LM/Q35F F31LM/L67M F31M/L67I
F31L/L67V F31LM/T136A
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