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Classic Bioinformatics topics!

• consensus sequences 
• regular expressions 
• PWMs / PSSMs / matrix models

• Motif scanning / matrix matching
• De novo motif finding

• profile HMMs
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Biology of cis-regulation
• Gene regulation at the level of transcription is a major factor in the 

1) response to cellular environment 

2) diversity of cell types in complex organisms 

3) evolutionary diversity of morphology

Major Mechanism:

Sequence specific 
DNA binding proteins



AGCGGAAAACTGTCCTCCGTGCTTAA

What bases does this protein prefer to bind?

Berman et al.: The Protein Data 
Bank. Nucleic Acids Research, 28 
pp. 235-242 (2000).

Bioinformatics. 2000 Jan;16(1):16-23.
DNA binding sites: representation and discovery.
Stormo GD



8 GATA sites 
from SCPD 
database

(i) GATAAG with one mismatch allowed

(ii) GRTARN where R represents A or G and 
N represents any base

“consensus” sequence or motif

“regular expression” 
for string matching:

G[AG]TA[AG][ACGT]

string matching 
with mismatches 
(a.k.a. alignment)



Probabilistic models of regulatory motifs 
(sequence families, consensus patterns)
• Represent the sequence pattern quantitatively using a statistical 

model

8 GATA sites 
from SCPD 
database

data matrix, X 
(w x |A|)



C

7 1

p(A) = 7 / 8 

≡ f A

Probability, p

7/8 is the 
‘maximum
likelihood’ 
estimate… 

L = p(X|model) = fiΠ Xi

i

log[L] =          log fiΣXi
i

Let the data be X = (7,0,1,0)

∂
∂f log[L] =             = 0Σ

i

Xi
fi

fi =1Σ
i

fi =
Xi

ΣXii

How to make the 
model of 
sequence 
specificity?



Probabilistic motif model

f = (fA, fC, fG, fT)

Multinomial
P(X|f1) 

f2 = (0, 0, 1, 0)

Multinomial
P(X|f2) 

f1 = (0, 1, 0, 0) f2 = (0, 0.7, 0.3, 0)

Multinomial
P(X|f3) 

Probabilistic motif models 
are represented as 
“sequence logos”
(Schneider et al. 1986)



Probabilistic models of regulatory motifs 
(sequence families, consensus patterns)
• Represent the sequence pattern quantitatively using a 

statistical model
• Identify “matches to the motif” or instances using a 

likelihood ratio score (Naïve Bayes classification)

Sequence of length w
Likelihood 
ratio score



Probabilistic models of regulatory motifs 
(sequence families, consensus patterns)

AAAAtranscription

Post-translational 
regulation

splicing

translation

RNA stability
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Relate motif to strength of selection:
Halpern & Bruno 1998

Patterns of genetic variation 
quantitatively reflect preservation 
of motifs by natural selection

Human Exon  
data (c. 2007)

Moses et al. 2003



5. Amplify DNA
6. Fluorescently Label
7. Hybridize to chip

ChIP-chip and ChIP-seq

5. Amplify DNA
6. Fractionate
7. NGS 

ChIP-chipChIP-seq

Can be used to measure binding of 
transcription factors to the entire genome



Allelic imbalance in ChIP-seq
Look at peaks in liver of a Heterozygous Mouse 

data from Mike Wilson c. 2011

HNF6 (from Lannoy et al. JBC 1998)
AAAAATCAATATCG r.hnf-3b -126/-139
CTAAGTCAATAATC m.ttr -105/-92
TGAAATCAATTTCA r.pfk-2 prom. -211/-198
AAAAATCCATAACT r.pfk-2 GRUc 1st intron
AGAAGTCAATGATC m.hnf-4 -389/-376
TTTAGTCAATCAAA r.pepck -258/-245
TTTTATCAATAATA r.a2-ug -183/-196
CAGAATCAATATTT r.cyp2c13 -41/-54
AAAAATCAATATTT r.cyp2c12 -36/-49
TCTAATCAATAAAT m.mup -132/-119
ATAAATCAATAGAC r.tog -208/-221
CAAAGTCAATAAAG r.a-fp -6103/6090

I used these 10 columns



Alignment block 1 of 2 in window, 34758754 - 34758795, 42 bps 
B D            Mouse  gctca-tttgatgaggacagaa-aaagtcaatagaaccaagtga
B D              Rat  ggtcg-tttgatgagaacagaa-aaagtcggtagaacaaagtga
B D     Kangaroo rat  aaccattttgatgagaagagag-aaaatcaataggacaaagtga
B D   Naked mole-rat  catcattttgatgagatcagaa-aa--tcaataggacaaagtga
B D       Guinea pig  agtcatctttgtgagggcagaa-aa--tcaataggacaaagcaa
B D         Squirrel  agccatttcaatgagaactggg-taaatcaataggacaaagaga
B D           Rabbit  agtcattttgatgagaacagag-aaaacca--tagataaagtga
B D             Pika agtcattttgatgagaatagag-aaacccaataagataaagtga
B D            Human  a------ttgatgagaatggag-aaaatcaataggacaaagtga
B D            Chimp  agtcattttgatgagaatggag-aaaatcaataggacaaagtga
B D          Gorilla  agtcattttgatgagaatggag-aaaatcaataggacaaagtga
B D        Orangutan  agtcattttgatgagaatggag-aaaatcaataggacaaagtga
B D           Gibbon  agtcattttgatgagaatggag-aaaatcaataggacaaggtga
B D           Rhesus  agtcattttgatgagaatggag-aaaatcaataggacaaagtga
B D           Baboon  agtcattttgatgagaatggag-aaaatcaataggacaaagtga
B D         Marmoset  agtcattttgatgagaatggag-aaaatcaatcggacaaagtga
B D  Squirrel monkey  agtcattttgatgagaatggag-aaaatcaattggacaaagtga
B D      Mouse lemur  catcattctgataagaatggaa-aaaatcaataggacaaagtga
B D         Bushbaby tgtcattttgataaagatggag-aaaatcaataggccaaagtga
B D              Pig  agtcgttttgacgagaacaggg-aaaatcaataggacaaagtga
B D           Alpaca  agtcattttgatgagaacagag-aaaatcaataggacaaaggga
B D          Dolphin  agtcattttgatgagaacaggg-aaaatcaataggacaaagtga
B D            Sheep  agtctttttgatgagaacaggg-aaaatcaataggacaaagtga
B D              Cow  agtctttttgatgagaacaggg-aaaatcaataggacaaagtga
B D              Cat  agtcattttgaggagaacagagaaaaatcaataggacaaagtgc
B D              Dog  agtcattttgatgagggcagag-aaaatcaataggatagagtgc
B D            Panda  agtccttttgatgagagcagag-aaaatcaataggacaaagtgc
B D            Horse  agtcattttgatgaaaacag---aaaatcaataggacaaagtga
B D         Microbat a--------tacgagaacagag-gaaatcaatagaa-aaagtga
B D          Megabat agtcattttgacgagaacagag-aaaatcaataggacaaaatga
B D            Shrew  agtccttttgaggagaacagagagaaatcggtgcgacaaaatga
B D         Elephant  -gcaattttgaagagaacagag-gaaatcaataggacaaagtga
B D           Tenrec -gccgttttgaagagaacagag-gaaatcaataggacagtgtga
B D          Manatee  -gccattttgaaaagaacagag-gaaatcaataggacaaaatga
B D        Armadillo  -gtcattttgatgagaacagag-aaaatcaataggacaaagtga
B D            Sloth  -ttcaatttgatgagaacagag-aaaatcaataggacaaagtga

Between Slc16a12 (monocarboxylic acid transporter) and Pank1 (liver CoA biosynthesis)chr19:34758655-34758994
rs31029568

HNF6:

ref=A  var=G 1/1:99:52:0:255,157,0:1

70 reads with ‘A’
10 reads with ‘G’

In do40:

AAGTCAATAG 
AAGTCAGTAG 

ref:
var:

S=7.56
S=5.40

rs31029568 ∆S=2.16

Binomial tests: 
Zf=0.5 =    6.7
Zf=0.99 = −10.3

Heterozygote

Homozygote, 
1% error

Strong evidence for 
imbalance in the direction 
predicted by binding affinity

Q>20

HNF6 peak score=162.35



Alignment block 1 of 2 in window, 39813380 - 39813412, 33 bps 
B D            Mouse  cgtgagcaaata-----t----aatcaaccaaagca-ca--tgag
B D              Rat  tgtgagcaaata-----c----aatcaatcagagca-caagagag
B D   Naked mole-rat  cataagcaaaca-----cgatgaatcaatcaatgca-ta--ggtg
B D       Guinea pig  cataagcaaata-----cggtgaaccaatcaatgtg-ta--gcca
B D         Squirrel  cagaagcaaagg-----c----aatgactcaatgca-ca--gcag
B D           Rabbit  cacaagcaaata-----c----aatgaatcaatgca-tg--agtg
B D            Human  cacaagcaaata-----t----aatgaatcaatgca-ta--gccg
B D            Chimp  cacaagcaaata-----t----aatgaatcaatgca-ta--gccg
B D          Gorilla  cacaagcaaata-----t----aatgaatcaatgca-ta--gccg
B D           Gibbon  cacaagcaaata-----t----aatgaatcaatgca-ta--gctg
B D           Rhesus  cataagcaaata-----t----aatgaatcaatgca-ta--gcgg
B D           Baboon  cataagcaaata-----t----aatgaatcaatgca-ta--gcgg
B D         Marmoset  caagagcaaata-----c----aatgaatcaatgca-ta--gccg
B D  Squirrel monkey  cacgagcaaata-----c----aatgaatcaatgca-ta--gccg
B D          Tarsier  cacaagtaaata-----c----aattaatcaatgca-tg--gcag
B D      Mouse lemur  cacaagcaaatattatgc----aatgaatcaatgca-ta--gcaa
B D         Bushbaby cacaagcaaata-----c----catgagtcaatgca-ca--gcag
B D       Tree shrew  cat-agcaaata-----t----aaggaatcaatgca-tc--gcag
B D              Pig  cac-agcaaaca-----c----aatgaatcaatgca-ta--gaag
B D           Alpaca  cacaagcagacg-----t----agctgagcaggacgcta--tgag
B D          Dolphin  cacaagcaaata-----c----aataaatcaaagca-ta--gaag
B D              Cat  cataagcaaata-----c----aatgaatcaacaca-ta--gaag
B D              Dog  cacaagcaaaca-----c----aatgaatcaatgca-tt--gccc
B D            Panda  cacaagcaaata-----c----aatgaatcaaagca-ta--gaag
B D            Horse  cacaagcaactg-----c----aatg---------a-tt--gaag
B D         Microbat c--acgcaaata-----c----aataaatcaatgcc-ta--gaag
B D          Megabat caaaagcaaaca-----c----aatgaatcaatgcc-ta--gaag
B D         Elephant  cacaagcaaata-----c----actgaatcaacgca-ta--gaag
B D          Manatee  cgcaagcaaata-----c----aatgaatcagtgca-ta--gaag
B D        Armadillo  cacaagcaaata-----g----aatgaatcaaggca-ca--gaag

Not near any genes of known functionchr1:39813171-39813514 
rs47325601

HNF6:

ref=C  var=T 1/1:99:32:0:255,96,0:1

21 reads with ‘C’
59 reads with ‘T’

In do40:

TAATCAACCA 
TAATCAATCA 

ref:
var:

S=4.54
S=6.71

rs47325601 ∆S= −2.16

Binomial tests: 
Zf=0.5 =    4.2
Zf=0.99 = −65.4

Heterozygote

Homozygote, 
1% error

Strong evidence for 
imbalance in the direction 
predicted by binding affinity

Q>20

HNF6 peak score=301.85



R² = 0.1259
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De novo motif-finding with the 
probabilistic model

Motif finding

AGGAAAATTTCATTATTCGTAGCTTAACATGGCAAAAACGAGAAAGACATAGAGTCAAAA

CCGATGACTCGTTCTGGAAAAAGAAGAATAATTTAATTACTGACTCAACTAAAATCTGGA

ATGGAGGCCCTTGACATAATCTGAAGTGACTCAAAGTTCGTAGAAGGTAAATGCGCCTAC

GTTGGAACCTATACAACTCCTTGTCAACCGCCGAGTCAGGAATTTTGTCCAGTATGGTAT

• Search for statistically enriched sequence 
families in non-coding DNA

• DNA sequences contain some w-mers from 
the motif model, and some from the 
background model



Mixture model



A two-component Mixture Model

T C GT CA C T

Each position in the sequence is drawn from a multinomial 
representing the background or a position in the motif

We assume that…



A two-component Mixture Model

Each position in the sequence is drawn from a multinomial 
representing the background or a position in the motif

T C GT CA C T

Motif ?

p(C|Z=motif)     p(C|Z=bg)

We need:

A A



A two-component Mixture Model
Unobserved indicator variables determine whether each position is drawn 
from motif or background component

E.g., MEME

Each position in the sequence is drawn from a multinomial 
representing the background or a position in the motif

T C GT CA C T

p(C|Z=motif)     p(C|Z=bg)

We need:

A A

Bailey TL, Elkan C ISMB, pp. 28-36, AAAI 
Press, Menlo Park, California, (1994.)

Z



Even though there are “hidden” variables, it’s still possible to write the 
likelihood and find Maximum-Likelihood estimates for 

p(X|Z=motif)                p(X|Z=bg)

A A

Using various optimization schemes :

Stormo GD, Hartzell GW 3rd. Proc Natl Acad Sci U S A. (1989) Feb;86(4):1183-7. 

Lawrence CE, Reilly AA. Proteins. 1990;7(1):41-51. 

Lawrence CE et al. Science. (1993) Oct 8;262(5131):208-14.

How to estimate parameters?



EM notes
• Guaranteed to increase the likelihood at each 

iteration

• Can get stuck in local maxima

• Non-linear gradient ascent – can be very fast

• Usually not possible to derive analytic updates for 
all parameters

• General formulation based on graph theory allows 
application to complex models



Unsupervised classification

• Classification when you don’t have a training set 
is called “unsupervised”.

• Finding motifs “de novo” is a form of unsupervised 
classification (or clustering)

• Fundamentally hard problem because motifs 
appear by chance in long enough sequences

See e.g., Zia & Moses 2012



Motif models so far assume all fixed 
width, w

• Many biological patterns have variable lengths
• Especially important for protein families and domains 

(but also for some TFs, e.g., p53)
• Like the residues, insertions and deletions have 

position-specific preferences



Profile Hidden-Markov Models

• Probabilistic model with three types of states

• The states are ‘hidden’, but they explain the 
sequences that we observe



TAT

TACT

T



Profile Hidden-Markov Models

• How to get the parameters?
– For HMMer (Pfam) this is usually done starting with a 

(manual) alignment and priors
– GLAM2 offers unsupervised estimation of HMMs, also 

relies heavily on priors



Wheeler et al. BMC Bioinformatics 2014



What are priors?

Why are priors so important for profile 
HMMs ?





• For DNA/RNA, it’s not as important what priors you 
use, but you still need something that gives 
psuedocounts

• For proteins, without priors, models of highly variable 
protein motifs/domains with few known examples will 
always be overfit



How do we put a prior on DNA 
or protein data matrices? 

We need a prior belief about the 
multinomial parameters?

Dirichlet distribution 
(3 dimensional distribution is illustrated, for DNA we need 
4 dimensions and for protein we need 20 dimensions)

Parameters of the 
Dirichlet distribution



fi =

Xi

ΣXii

p(A) = 7 / 8 

≡ f A

7/8 is the 
‘maximum
likelihood’ 
estimate… 

X = (7,0,1,0)

Dirichlet distribution Parameters of the 
Dirichlet distribution

Observed residues

Xi

ΣXii

Xfi =
Modified from 
Sjolander et al. 1996

With priors, we have a “Bayesian” 
estimator: mean posterior estimate

Ԧߙ ൌ ሺ3,2,2,3ሻE.g., If 

p(A) = 10 / 18 = 5 / 9 

≡ f A

Where did I get these parameters?



• For proteins, a single column of parameters in not 
enough
– Biochemical similarity
– Surface vs. core
– Secondary structure vs. disordered
– And more

• Amino acid probabilities in proteins have a very 
complicated distribution, and these are not uniform 
across the protein sequence

• Sjolander et al. 1996 trained a 9-component mixture of 
Dirichelet priors (Blocks9)

Use a mixture of 
Dirichlet distributions!



The mixture of Dirichlet prior



Profile Hidden-Markov Models

• How to get the parameters?
– For HMMer (Pfam) this is usually done starting with a 

(manual) alignment and priors
– GLAM2 offers unsupervised estimation of HMMs, also 

relies heavily on priors
• How to scan DNA/RNA/Protein sequences?

– HMMer uses forward algorithms (after some speedup tricks)

– GLAM2 uses an alignment based approach



Scoring DNA/proteins sequences with an 
HMM

• We want to calculate the probability of a sequence, X, given 
our profile HMM model, and compare this to a background 
model. 

• In general, multiple paths through an HMM can give us the 
same sequence (unlike for a PSSM)

• We need to sum over all of the possible paths through the 
model, weighting each by their probability

• This is done using the “forward algorithm”



Forward algorithm for HMMs

• Even though there are exponentially many paths, they 
are all made out of the same pieces. 

• The trick is to add up the probability of all the paths 
that can get you to this point in the HMM, but don’t 
keep track of all of the paths.

• Example of “dynamic programming”



T C GT CA C T

௓௜ܨ ൌ ௜ሻܼ|݅	݈݅ݐ݊ݑ	ሺܺ݌ ൌ ሺ݌ ௜ܺ|ܼ௜ሻ ෍ (ሺܼ௜|ܼ௜ିଵ݌	௓೔షభ௜ିଵܨ
௓೔షభ∈ሺ௠௔௧௖௛,௜௡௦,ௗ௘௟ሻ

ܼ௜

௜ܺ

ܼ௜ିଵ

Step 1: Recursively 
fill a n x 3 matrix

Forward algorithm for HMMs

ܺ௡

ܼ௡

݌ ܺ ܯܯܪ	݈݂݁݅݋ݎ݌ ൌ ሻ݊	݈݅ݐ݊ݑ	ሺܺ݌ ൌ ෍ ௓௡ܨ
௓∈ ௠௔௧௖௛,௜௡௦,ௗ௘௟

‘transition’ probabilities 
between hidden states

Step 2: Add up the 
likelihoods at the last state



How does HMMer score sequences?
The null model is a one-state HMM configured to generate “random” sequences 
of the same mean length as the target sequence, with each residue drawn from 
a background frequency distribution (a standard i.i.d.  model:  residues are 
treated as independent and identically distributed). 

p(X | profile HMM)

p(X | background HMM)
Log



Classic Bioinformatics topics!

• consensus sequences 
• regular expressions 
• PWMs / PSSMs / matrix models

– Motif scanning / matrix matching
– De novo motif finding

• profile HMMs



Questions for Glam2 discussion

• What is the prior model for indels in Glam2?
• How does the Glam2 model differ from a profile HMM?

– Why does this make it easier to estimate parameters?
• What’s the difference between an alignment-based 

score and the full Forward algorithm?
• What is the optimization strategy used by Glam2? 

Why not use EM?


