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Abstract 

We describe the Yeast Kinase Interaction Database (KID, 

http://www.moseslab.csb.utoronto.ca/KID/), which contains high- and low-throughput 

data relevant to phosphorylation events. KID includes 6,225 low-throughput and 21,990 

high-throughput interactions, from greater than 35,000 experiments. By quantitatively 

integrating these data, we identified 517 high-confidence kinase-substrate pairs that we 

consider a gold standard.  We show that this gold standard can be used to assess 

published high-throughput datasets, suggesting that it will enable similar rigorous 

assessments in the future.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Background 

 

Protein kinases constitute one of the largest protein families, accounting for 

approximately 2% of eukaryotic genomes.   Kinases catalyze the transfer of phosphate 

groups to proteins thereby influencing their activity, localization, stability, conformation 

and/or ability to interact with other proteins [1]. The yeast genome encodes 127 protein 

kinases, 20 of which are required for cellular viability [2, 3]. At least 30% of the yeast 

proteome [4] is estimated to be phosphorylated, yet only a small portion of these 

phosphorylation events have been associated with their cognate kinase [5]. In fact, 

PhosphoGRID  database (Ver1.0) reported over 5000 phosphorylation sites in 2010, 

amongst 1500 proteins in both high-throughput (HTP) and low-throughput (LTP) 

datasets in yeast, 90% of which have not been associated with either a function or a 

regulatory kinase [6]. Since many phosphorylation events are highly transient or occur in 

the context of specific physiological conditions, it is difficult to capture kinase-substrate 

interactions. Furthermore, redundancy and promiscuity of protein kinases (particularly in 

vitro) can often complicate biochemical analysis. 

 

Many targeted and HTP approaches have been used to link kinases and substrates in 

budding yeast: 1) the use of analogue-sensitive kinase alleles for in vitro phosphorylation 

assays [7, 8];  2) the interrogation of proteome chips with purified kinases to identify 

rosters of proteins phosphorylated in vitro [5, 9]; 3) affinity purification to discover kinase-

associated proteins [10-13]; 4)  systematic genetic screens to identify genes that 

functionally interact with kinases [14-16]. Given the differences in the ability of large-

scale datasets to capture kinase-substrate relationships and the number of different 

experimental approaches used to associate kinases to their targets, there is a 

requirement for both accurate quality assessment for HTP datasets through assembly of 



reliable gold standards and systematic data integration of information in the literature 

with HTP datasets.  

 

Significant efforts have been made in this regard including: 1) PhosphoELM, a database 

of experimentally verified phosphorylation sites in all eukaryotic proteins [17, 18]; 2) 

PhosphoSite, a literature-curated database that compiles post-translational modifications 

with a focus on phosphorylation in all organisms [19]; 3) NetworKIN [20], a database that 

integrates consensus substrate motifs of human kinases with in vivo phosphorylation 

sites, protein-protein interaction networks and kinase domain sequences in order to 

quantitatively predict cellular kinase-substrate relationships; 4) PhosphoGRID, which  

includes information from the literature on in vivo phosphorylation sites for all yeast 

proteins and assigns the appropriate kinase or phosphatase responsible for each 

phosphorylated residue [6]. All of these databases focus on consensus sites and 

phosphorylated residues.  However, there is also considerable experimental information 

about kinase-substrate relationships at the protein level that is not easily represented in 

these databases.  On the other hand, databases such as BioGRID [21, 22] which stores 

all protein and genetic interactions, do not represent the additional specific biochemical 

experiments that are performed in order to determine kinase-substrate relationships. 

 

We sought to systematically amalgamate interaction information from many 

experimental approaches -- genetic, biochemical and physical -- with the specific goal of 

defining a bona fide interaction between kinases and substrates.  We reasoned that a 

database designed to compile a reliable gold-standard for kinase-substrate interactions 

would require: 1) a means of distinguishing upstream and downstream interactors of 

kinases, kinase activators and regulatory subunits or co-activators and complex 

components; 2) a measure of the directionality of genetic interactions involving kinases 



(e.g. suppression, dosage lethality and dosage suppression); 3) a means of including a 

quantitative measure of the significance of a biochemical interaction; 4) a method for 

producing a score that reflects the quality of the evidence in the literature supporting a 

kinase-substrate relationship. 

 

To address these issues, we developed Yeast KID, the first literature-curated database 

for kinases which integrates a series of HTP and LTP, genetic, physical, and 

biochemical experimental evidence with the goal of establishing known kinase-substrate 

relationships. KID enables not only the assembly of tailored gold standards of kinase-

target pairs, but also provides a ranked score for assessing the quantity and quality of 

evidence supporting each pair. KID features a user-friendly interface that amalgamates 

all genetic, physical, and biochemical HTP data involving yeast kinases, providing easy 

access for integrative analysis and more complex bioinformatic approaches to study 

kinase pathways. 

 

 Results and discussion 

 

Database features 

Content 

Yeast KID reports interactions between 127 kinases (Table S1 in Additional file 1) and 

genes/proteins in a hierarchical manner (Figure S1 and S2 in Additional file 2). Entries 

are focused on experimental categories pertaining to substrate identification. LTP and 

HTP kinase interactions are combined in a single table format, based on 31 biochemical, 

physical, and genetic categories (Figure S1 and S2 in Additional file 2). For the purpose 

of Yeast KID, we define a kinase-gene interaction as any evidence that links a kinase to 

another gene or protein, which includes genetic, biochemical, physical or phenotypic 



experimental evidence. Table S2 in Additional file 1 shows the distribution of the number 

of kinase-gene interactions reported for each kinase in Yeast KID. The average number 

of unique interactors is 210, with a range from 883 for Slt2 and Bck1 to 16 for Rio1. The 

database includes 6,225 LTP and 21,990 HTP kinase-gene interactions, with 100% 

coverage of the kinome for HTP and approximately 85% coverage for LTP categories. 

With 108 LTP literature-curated kinases, Yeast KID reports high quality data compiled by 

our group after reviewing over 5000 publications, with approximately 1800 PMIDs 

entered into the database. Because multiple PMIDs may support a single kinase-gene 

interaction under the same category, KID contains over 35,000 entries in total. Curation 

guidelines were consistently followed to create a unified database (see Materials and 

methods, Figure 1). However, kinases of certain cellular processes are less represented 

in the LTP categories. For example, kinases of the mating pathway and DNA replication 

are highly under-represented, while most cell cycle regulatory kinases have been 

completely curated for LTP interactions in the latest version of KID.  

 

Display 

The KID database uses a web interface where kinases and their interacting 

genes/proteins are connected through a distinct PMID, displayed as a checkmark (Figure 

S1 in Additional file 2). Interactors and kinases are displayed in the first and second 

columns of the table respectively, while the remaining columns represent experimental 

categories. The interface includes a colour box (left side of display) that allows selection 

of interactions in one or more experimental categories (same colour, OR) or overlapping 

interactions of two or more categories (different colour, AND), with inclusion of additional 

categories (Light Green) or exclusion of specific categories (White). We incorporated 

AND logic for multiple colour sets such that (blue OR blue) AND (green OR green) would 

select the overlap between all interactions selected in either blue category with any of 



the interactions coloured in either green category (Figure S1 in Additional file 2). Each 

category can be singularly selected or removed, allowing for overlap analysis between 

datasets individually, or in combination. The complete dataset can be downloaded by 

clicking on the “Search” button, without indicating any kinase, gene or KID score 

threshold in the score box. Definitions of all experimental categories and the functions of 

each button can be viewed directly on the site by clicking on a bubble icon close to each 

category or function.  

 

Interface for queries and searches 

We designed the KID interface to facilitate searches for a variety of interactions relevant 

to kinase biology. All searches can exploit the colour box system to include multiple 

queries with specific experimental output displays, either individually or in combination 

(Figure S1 in Additional file 2). For example, all interactions pertaining to one or more 

kinases can be queried using the “Search” button. Using this application, all interactions 

for all kinases in the query ID will be displayed in alphabetical order and with the relevant 

PMID. Overlapping interactions involving specified kinases or the kinases associated 

with a list of genes/proteins can be acquired using the “Compute Kinase Overlap” or the 

“Compute Gene Overlap” buttons respectively.   

The number entered in the “Score” box in the KID interface determines the lower 

threshold of display. The score is a measure of the strength of evidence associating a 

kinase-substrate pair, and is arbitrarily set to -5 as the default (see below for more 

information about the KID score).  We recommend using KID scores corresponding to a 

P<0.01 (currently 6.73) for high quality kinase-substrate gold standards and P<0.05 

(currently 4.72) for less stringent lists of kinase-substrate pairs. KID automatically sorts 

the output interactions of a search from the highest to lowest scoring kinase-substrate 

pair, except for overlap searches involving multiple kinases or genes, as noted above.  



Each search creates tab-delimited (.txt) and Cytoscape-compatible [23] network files that 

can be downloaded for other forms of visualization. All evidence for each kinase-

gene/protein pair is presented via a green checkmark that when clicked, displays the 

PMID, first author information and more detailed curator notes (Figure S1 in Additional 

file 2). A unique feature of the KID interface is the capacity to perform detailed searches 

using specific experimental categories.  

 

The KID score  

 

The variety of different experimental approaches used in defining a kinase-substrate pair 

creates a challenge in accurately associating a substrate to a particular kinase [24]. In 

fact, many kinase-substrate pairs are supported by a small number of experiments that 

are not usually consistent across kinases or substrates.  For example, some proteins are 

difficult to purify for in vitro kinase assays, while other bona fide substrates fail to show a 

phosphorylation-dependent change in mobility following SDS-PAGE. Hence, there is a 

need for a quantitative approach that defines confidence in kinase-substrate pairs based 

on the quality and quantity of experimental evidence of different types.  

One approach to combining experimental evidence is the sum of the total number of 

interactions, used in the unified database, BioGRID [21, 22]. Also, BioGRID has recently 

reported a new scoring system, which assigns more value to physical rather than genetic 

interactions (1.5 points for physical and 1 point for genetic) [21, 22].  Although generally 

useful, we reasoned that this approach may not be optimized for scoring kinase-

substrate relationships for a number of reasons: 1) it is unclear whether the number of 

experiments supporting a particular kinase-gene/protein connection is a useful measure 

of whether a protein is an in vivo kinase substrate; 2) databases such as BioGRID 

include more general experimental categories in their curation method that apply to all 



genes, rather than specific phosphorylation assays, and may not  be of sufficient 

specificity to accurately assess a kinase-substrate relationship; 3) a larger weight for 

physical rather than genetic interactions may not be appropriate for the typically transient 

physical interactions associated with kinases and their substrates [25].  

We addressed these issues in Yeast KID by including a hierarchical classification of 

experimental categories, specifically designed to be relevant for kinase-substrate 

interactions (Figure S2 in Additional file 2). Using a positive training set of well-defined 

kinase-substrate pairs, we computed log-likelihood ratios which summarize the weight 

for each experimental category (Table S3 in Additional file 1, Figure S3 in Additional file 

2, see Materials and methods).  These weights are then summed to give a KID score 

that represents a measure of the strength of existing evidence in the literature supporting 

a kinase-substrate relationship. The weight of each experimental category will change as 

more interactions are entered (Figure S3 in Additional file 2).  

 

Based on the data currently in KID, most HTP categories had a small but significant 

contribution to the KID score, except for the in vitro phosphorylation category, which 

made a large contribution. This bias likely reflects large datasets describing in vitro 

targets for the well studied Pho85 and Cdc28 cyclin-dependent protein kinases (Cdks), 

which have been surveyed for in vitro substrates using analogue-sensitive alleles [7, 8].  

By contrast, many LTP categories performed well in identifying kinase-substrate pairs 

from our training set, with the highest scoring categories being in vitro kinase assays, 

site-directed mutagenesis, in vitro phosphorylation site mapping and phospho-shifts, all 

biochemical assays of the enzymatic activity of a kinase. However, no single category 

contributes sufficiently to the score to call a kinase-target pair at the stringent cutoff, 

which reflects the intuition of experts that no single currently available experimental 

method is sufficient to conclusively define kinase-substrate relationships.  



 

To test the capacity of the newly defined KID score to identify known kinase-substrate 

pairs, we performed a 10-fold cross validation (Table S3 in Additional file 1). For this 

cross validation, we separated the data into ten bins. For each cross-validation step, a 

single bin was used as the test set while the other nine were being used to estimate the 

weights for each category. To understand the trade-off between sensitivity and 

specificity, we computed an ROC curve (true positive and false positive rates of each 

method at different thresholds, Figure 2a). The predictions for every test set in each of 

the cross-validations were summed to produce the final curve. At a set false positive 

rate, multiple true positive rates can be obtained and we display the worst true positive 

rate (Figure 2). For additional clarity, we have removed additional points by only 

displaying the maximal false positive rate at intervals of true positive rates.  

 

To compare the KID score to other possible scoring schemes, we compared the 

performance of the following scoring methods in predicting kinase-substrate pairs using 

the positive training set: i) the number of interactions reported in BioGRID [21, 22], ii) the 

BioGRID general scoring scheme [21, 22], iii) the number of interactions reported in 

Yeast KID, and iv) the KID score. Performance was tested by calculating ROC and 

precision-recall curves (Figure 2a,b). We note that the precision appears low, but the 

expected precision of a random classifier in this data is <1 x 10-4.  This analysis shows 

that using a score based on the phosphorylation-specific and more detailed curation, 

Yeast KID performs better at identifying the positive training set (Figure 2). Specifically, 

BioGRID identified 25% of kinase-substrate pairs in our positive training set, while KID 

identified 90% of known targets (<2% false positive rate). Furthermore, while counting 

the number of interactions in KID performs moderately well, the KID score is still more 

sensitive in identifying a kinase-substrate pair against a set of random pairs.  



We next plotted the top kinase-interacting pairs reported in BioGRID against the top 

pairs reported in Yeast KID, to ask whether the same pairs were identified. While there 

was overlap amongst the top interactions in both databases, the two scores identified 

distinct kinase-interacting pairs; 248 interactions were shared amongst the top 517 pairs 

in both databases.  Together with the higher predictive performance of KID score (Figure 

2), we conclude that the top scoring interactions in Yeast KID most likely identify a more 

confident gold standard set of protein kinase-substrate interactions than what could be 

identified from more general interaction databases. 

 

We note that the KID score is highly dependent on the initial positive training set and 

only calculates the likelihood that an interaction belongs to the initial positive training set 

as opposed to a random pair from our database. In theory, the larger and the more 

accurate the initial positive training set, the more confidence we have that the score  

accurately reflects the strength of evidence supporting a kinase-target pair. We carefully 

chose the positive training set by including over 120 kinase-target pairs representing 

20% of the stringent gold standard pairs reported in this study, with coverage of 40 

kinases in order to minimize the scoring bias. However, the score cannot account for 

internal biases in published experiments. For example, more labor-intensive assays are 

obviously less represented in publications. Also, there may be a bias for well-studied 

kinase-target pairs. In a similar vein, interactions that are tested but result in negative 

outcomes are often not represented in publications and are not curated. Also, inevitable 

inconsistency in coverage of data from each publication during the curation process, 

may contribute to variability in the KID ranking. Thus, the KID score displays a relative 

rather than absolute ranking which is dependent on the initial positive training set (Table 

S3 in Additional file 1). Finally, the KID score is most likely a conservative measure for 

evidence supporting a kinase-substrate pair, because uncharacterized kinase-target 



pairs may exist among the kinase-substrate interactions that we assume to be negative. 

This means that the KID score is most likely an underestimate of the strength of 

evidence supporting a kinase-substrate pair in comparison to random pairs in the space 

of all possible interactions. 

 

Applications 

 

Defining a gold standard kinase-substrate set using KID scores 

We used the calculated KID score to compile a ranked list of 517 kinase-substrate pairs 

(stringent KID score cutoff of 6.72; false positive rate <2%) which we define as the “gold 

standard” pairs of kinase-substrate interactions.  At this cutoff, the KID score performs 

significantly better than the binary BioGRID score in identifying known positive training 

set kinase-substrate interactions (90% versus 25% of true positives at the same false 

positive rate, (Figure 2)). The gold standard defines a highly connected network of 

kinase-substrate interactions with a bias towards well-studied cell cycle regulatory 

kinases, Cdc28 and Pho85, and the polo-like kinase Cdc5 (Figure 3a, Figure S4 in 

Additional file 2). This bias likely reflects several factors: 1) the availability of large scale 

datasets for in vitro substrates of Pho85 and Cdc28  [7, 8]; 2)   the importance of 

phosphorylation as a mechanism of cell cycle regulation (90 targets with 222 

phosphorylated residues reported in PhosphoGRID [6]); 3) over-representation of 

experiments on biologically predominant kinases such as CDKs in the yeast literature.   

There were 6 substrates on average for each kinase in our gold standard, ranging from 

70 reported targets of Cdc28 [26] to no clear substrates for 37 kinases.  

 

We next compared the quality of our gold standard to a recently compiled list of yeast 

kinase-substrate pairs used to analyze genetic interaction data, obtained from assessing 



genetic interactions between kinases, phosphatases and selected regulators [15]. 

Results of this analysis are depicted as a Venn diagram in 3b.  The two lists overlapped 

by 58% (301 kinase-substrate pairs) while 139 pairs scored too low in KID to be 

considered a gold standard kinase-substrate pair. We failed to identify 103 interactions 

in the Fiedler et al standard during our curation process.  Since PMIDs were not reported 

for this dataset, it was difficult for us to reconcile these results.  123 interactions in 

Fiedler et al, belong to the 19 kinases that were not curated for LTP interactions in KID. 

The low overlap between the two gold standards highlights the importance of systematic 

curations in conjunction with appropriate scoring schemes in defining a useful 

benchmark for quality assessment of HTP datasets. 

 

The KID score quantification can be used to rank targets of kinases that fall below the 

stringent cutoff. For example, many kinase-gene pairs that we curated fall below our 

stringent cutoff, but the relationship is supported by many lines of evidence.  Further 

characterization of the candidate genes with high KID scores (through complementary 

experimentation according to pre-existing data in KID) may confirm novel targets of 

kinases. Since the KID score is a relative ratio for kinase-gene/protein pairs and 

provides a ranking scheme, it can predict the likelihood that one gene is regulated by 

one kinase versus all other kinases. The KID provides a means to quantify literature-

curated evidence connecting kinases and other proteins for target prediction.  

 

Comparison of HTP assays in the coverage of interaction space and in identifying gold 

standard kinase-substrate pairs 

One important application of a kinase-gold standard is assessment of the quality of HTP 

datasets.  Recently, a systematic comparison of HTP and LTP experiments using 

physical interaction data as a test case [27] revealed that HTP physical interaction 



datasets are comparable in quality to their LTP counterparts.  We performed a similar 

analysis comparing HTP and LTP kinase interactions data from each of physical, 

genetic, biochemical and localization experiments curated in Yeast KID, both individually 

and as a whole.  

 

[i]  Overlap between genetic, biochemical and physical interaction datasets 

We first assessed the quality of existing HTP data in identifying their relevant LTP 

interactions curated in KID. In general, HTP phosphorylation datasets were enriched for 

phosphorylation targets detected by LTP assays. Particularly, in vitro phosphorylation 

assays using analogue-sensitivity alleles [7, 8, 28] and HTP assays indicating general in 

vivo dependency on a kinase were highly enriched for proteins identified by an 

equivalent LTP assay (Figure S5 in Additional file 2). Both HTP physical interaction and 

genetic interaction datasets were also enriched for interactions found by a LTP assay of 

the same type, although the HTP physical interaction data performed slightly better in 

this test. (Figure S5 in Additional file 2).  We reason that this difference may largely 

reflect the relative size of each dataset.  Genetic interaction datasets are ~10-fold larger 

than HTP protein interaction datasets (with over 11000 interactions), while the amount of 

data for genetic, biochemical and physical assays in the LTP literature is comparable 

(Figure 4a).  By contrast, HTP co-localization studies showed no overlap with LTP co-

localization (Figure S5 in Additional file 2). While LTP co-localization studies define the 

localization of two differentially marked proteins simultaneously, we defined HTP co-

localization if two proteins were localized to the same sub-cellular compartment, 

excluding all cytoplasmic and nuclear data [29].   

 

Despite the high enrichment of HTP genetic, physical and biochemical assays for LTP 

data of the same type, many LTP interactions were not captured by the HTP methods 



suggesting that HTP and LTP datasets generally have different coverage of the 

interaction space. The lack of overlap may also reflect the technical nature of HTP 

assays that typically survey all kinases under the same conditions, rather than directed 

approaches which involve experiments functionally tailored to the kinase of interest.  

Only a handful of genes were present in all three sets of HTP data, suggesting 

differential coverage by the three types of HTP data as well (Figure 4b). While LTP data 

had more overlapping pairs between genetic, physical and biochemical assays, the 

reported data is only a fraction of the total data present in the literature.  

 

[ii] Assessment of all HTP datasets in identifying the KID gold standard set 

We used the KID gold standard to test the relative ability of each individual HTP dataset 

to identify kinase targets.  We computed the enrichment of gold standard kinase-

substrate pairs identified by each dataset (which we defined as true positives for this 

analysis), considering the number of interactions tested for each dataset (Figure 5) (See 

Materials and methods). The most informative dataset in terms of both number of 

kinase-substrate pairs identified and the fold-enrichment in the gold standard was a 

recent survey of protein-protein interactions involving kinases identified by a modified 

protein pull-down approach in combination with mass spectrometry [13]. Yeast two-

hybrid datasets were also highly enriched for kinase-substrate pairs [30, 31], but 

identified far fewer targets (true positives) than the protein-protein interaction datasets 

[10, 11, 13, 32].  

 

Overall, phosphorylation and physical interaction datasets performed better than genetic 

interaction datasets in identifying the KID gold standard kinase-substrate pairs. Although 

correlations of genome-wide genetic interaction profiles (SGA correlations) [16] and HTP 

Synthetic Dosage Lethal (SDL) screens (Sharifpoor S. et al: Functional wiring of the 



yeast kinome revealed by global genetic network motif analysis, submitted) are enriched 

for gold standard kinase-substrate pairs, other genetic datasets alone are not informative 

in defining these relationships [15].  Since kinase-substrate relationships involve a direct 

physical interaction, it stands to reason that biochemical and physical interaction assays 

are more likely to directly identify links between kinases and their targets. Also, genetic 

interaction datasets are currently largely populated with synthetic lethal interactions 

which often identify genes that function in parallel pathways, and not substrates in the 

same pathway [16].  

 

Clustering kinases based on their functional targets 

 

While yeast kinases have been previously classified based on their sequence similarity 

[2, 33], there has been no systematic attempt to quantitatively classify kinases based on 

their targets. Since KID scores are relative across all kinase-gene/protein pairs, we 

reasoned that by calculating the correlations of all kinase pairs, we could functionally 

classify groups of kinases involved in similar processes based on their targets. We used 

only binary values to calculate correlations between the kinases in the gold standard in 

our analysis; two kinases were correlated if they shared the same target(s). Therefore, 

the correlation analysis considers only the most confident targets of a kinase, rather than 

all possible targets. The magnitude of the KID score was not used for correlation 

assessment.  

 

We displayed the results of our analysis as a network diagram that describes the sub-

categories of kinases in the gold standard based on their targets (Figure 6). The edges 

(weighted by binary correlations) estimate the relative overlap of two kinases 

(represented as nodes) in regulating the same cellular substrates. The highly connected 



network shows that most kinases in the gold standard share at least one target with 

another kinase. Furthermore, the diagram illustrates the complex buffering of kinase 

pathways, particularly in the cell cycle group, since most kinases are highly correlated 

with several overlapping targets. Spatial organization of the groups of kinases suggests 

a cellular model whereby the cross-talk between different cellular processes is mediated 

through specific kinases (Figure 6). Results from the clustering analysis suggest a 

complex model that agrees with recent findings in a large-scale kinase proteomic study 

highlighting the complex interplay between kinase pathways [13].  

 

Our correlation analysis discovers known functional relationships involving kinases.  For 

example, the organization of the network suggests that the Snf1 kinase links 

transcription to glucose signaling, consistent with the well-established role of Snf1 in 

regulating transcriptional repression at promoters of genes required for growth on non-

fermentable carbon sources [34-36]. Also, the network revealed multiple links between 

the high osmolarity glycerol (HOG) pathway (required for growth on osmotic stress) and 

the cell wall integrity (CWI) pathway, consistent with the high level of cross-talk known to 

occur between the two regulatory pathways in vivo [37]. For example, multiple genes 

show dependency on both the Slt2 and Hog1 kinases that regulate CWI and HOG-

responsive genes respectively. Our functional analysis shows that they also share 

multiple targets and corroborates previous reports that suggest a model whereby Slt2 

phosphorylation is dependent on the Hog1-activating kinase, Pbs2 [38-40]. 

 

We next tested whether highly correlated kinases are more likely to be functionally 

involved in the same biological processes [41]. We plotted an edge-weighted network 

diagram of all correlated kinases and searched for functional similarity of nodes within a 

proximal cluster using Gene Ontology (GO) terms (Figure 6). To define sub-clusters for 



functional analysis, we reorganized the network, placing each node in the closest sub-

cluster based on correlation values. We saw that the calculated correlations are an 

excellent measure of functional similarity for kinase pairs (Figure 6), defining specific 

functional categories, further confirming that our ranking system is a valid relative score 

for functional kinase-substrate pairs.  

 

 

Conclusions 

 

KID can be used to assess and compare the quality of new HTP approaches in 

identifying: [1] kinase-substrate pairs; [2] LTP interactions of the same type and; [3] the 

overlap with other HTP and LTP approaches. In addition, using the sophisticated search 

functions, filtering methods and user-friendly outputs, KID will provide a universal search 

system and repository for all datasets in HTP and LTP literature pertaining to yeast 

kinases.  

 

Materials and methods 

 

Database Content 

We defined 31 different types of experimental evidence relevant to defining kinase 

targets in a hierarchically classified format; first by high-throughput or low-throughput 

categories, then sub-classified by physical, biochemical, genetic and phenotypic 

evidence (Figure S2 in Additional file 2). Data inputted for all HTP categories was 

extracted in bulk from the corresponding publications, while the LTP evidence, pertaining 

to specific phosphorylation assays, was inputted directly by a group of expert curators 

(Figure 1).   



We extracted relevant articles for each individual kinase from PubMed by historically 

searching through every article published pertaining to the query kinase. We then 

compared our information with data from BioGRID, to extract additional publications that 

may have been missed during our curation process. Over 5000 publications were 

surveyed up to August 2010 for LTP kinase interactions and all entries were inputted 

with the corresponding PMIDs. Curations were also performed based on definitions for 

the experimental evidences described on the website under each specific category 

(Figure S1 in Additional file 2).  

 

Curation Process 

Bidirectional interactions (e.g. physical interactions, synthetic lethal interactions) were 

entered in both directions, while unidirectional interactions (e.g. biochemical interactions, 

synthetic suppression) were only entered where a phenotype was clearly linked to a 

specific kinase. Evidence for interactions between kinases and other genes or proteins 

were entered with associated PMIDs (“kinase-gene interaction”), including the first 

author and year of publication. Directionality was added as notes where required (e.g. 

dosage lethality) and specific allelic interactions and experimental design were also 

described in more detail in the notes section by the curator. Biochemical data regarding 

upstream regulators of kinases was not curated. If data pertaining to a conclusion was 

not shown in the publication or supplementary material, the evidence was not 

considered valid for entry into the database. Where there was more than one publication 

supporting the same interaction, each PMID was entered separately. For cyclin-

dependent kinases (CDKs) with multiple regulatory subunits, the associated cyclin was 

also curated if specified in the literature. Each curator was supplied with detailed 

guidelines to maintain consistency and was assigned a set of kinases for literature 

curations. However, in the event that a publication included information for more than 



one kinase or between a kinase-pair, data was entered in KID for all kinases from a 

single paper to minimize internal curation errors through internal cross-checks. 

 

 

Quality assessment for each experimental category and definition of KID scores 

To assess the quality of each individual experimental category in identifying kinase-

substrate pairs, we used a simple scoring method that evaluates the likelihood that a 

category of interest identifies a true kinase-substrate pair as opposed to a false positive. 

We assembled a positive training set of kinase-substrate interactions, chosen by the 

curators based on the following criteria from low throughput literature: 1) a defined 

physical interaction between the kinase-substrate pair; 2) the ability of kinase to 

phosphorylate the substrate in vitro; 3) the ability of the kinase to phosphorylate the 

substrate in vivo ; and 4) whether the site or effect of the phosphorylation event was 

known (Table S3 in Additional file 1). The positive training set includes 121 interactions 

for 40 kinases and is not biased for any particular experimental category. We compared 

the frequency of interactions in each experimental category to the frequency expected in 

a negative training set, which we defined to be kinase-protein interactions that are 

unlikely to represent bona fide kinase-substrate interactions. To do so, we had to 

compute the frequency of an experimental data point in each category in a set of 

proteins that are not substrates. Because we rarely know the proteins that are not 

substrates of a particular kinase, defining a negative set is a challenge. To obtain the 

number of experimental data points, we conservatively used all the experimental data 

found in KID that were not part of the positive training set. To compute the relative 

frequency in the negative training set we needed to divide this value by the size of the 

negative training set.  In principle, this would be the total interaction space (all kinases 

multiplied by all genes) minus the set of all bona fide protein-kinase substrate 



interactions. In practice, however, most datasets do not sample the entire interaction 

space (e.g. HTP in vitro kinase assays) and the negative set must be normalized to 

reflect this. Therefore, we considered the HTP negative training set size to be a fifth of 

the total interaction space (1/5 times the number of kinases multiplied by the number of 

genes). The negative training set size for the LTP categories must also be adjusted 

using the same rationale, since LTP experiments have sampled even less of the entire 

interaction space. To determine the size of the LTP negative training set, we calculated 

the ratio of the number of interactions shown by LTP experiments to the number of 

interactions shown by HTP experiments, and reduced the negative training set size for 

the LTP categories by this ratio (HTP negative training set multiplied by the ratio).  

Therefore, we are assuming that HTP and LTP experiments have equivalent power to 

detect kinase-substrate interactions, but that HTP experiments explore a much larger 

space.  By performing these adjustments on the negative training sets, we believe that 

the score represents a relatively unbiased measure of enrichment of the success of each 

category in identifying our positive training set. 

 

The weight for each category is defined as the log ratio of the frequency of a particular 

category of experiment supporting a kinase-substrate pair from the positive training set 

compared to the negative set. For example, if a particular experimental category 

identified 50% of the positive training set but 10% of the negative training set, then the 

score for this category would be approximately the log of (50/10). We represent the 

positive training set as the matrix G, where Gj,i =1, if the  ith experimental category 

reported an interaction between the jth kinase-substrate pair. The negative training set is 

similarly defined as Rj,i where R is the either the HTP or LTP negative training set. The 

score is therefore: 
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where NR and NG are the sizes of the positive and negative training sets discussed 

above. One (1) count was added to each category as a pseudo-count in the positive set.  

In the negative set, NR/NG was added as a pseudo-count, to ensure that the ratio of 

experimental observations to a set size was the same in the positives and negatives, Si 

= 0 for that category. A similar likelihood ratio was recently used by Yu et al [27], without 

the pseudocount or a normalized negative training set. For the jth putative kinase-

substrate pair, the KID score is defined as Kj ji,

i

ixS∑=  

Where xi,j = 1 when the ith experiment was reported for the jth putative kinase-substrate 

pair.  

In order to calculate p-values for the scored interactions, we randomized the evidence in 

each experimental category in the database and scored the randomized database. The 

resulting score distribution was used to obtain p-values. 

 

In Figure 2, for the ROC curve with BioGRID, we have only considered positives which 

were present in either dataset when calculating the true positive rate.  

 

In Figure 5, although the fold enrichment for each dataset is similar to our scoring 

scheme, no estimate of the sampled interaction space is required because most 

datasets indicate the number of tested interactions, except for physical interaction data 



collected using mass spectrometry techniques, for which we assumed full coverage. The 

negative training set size has been adjusted to match their reported interaction space 

coverage (# of tested kinases multiplied by # of tested genes). We note that the scoring 

for each experimental category is an estimate while the enrichment for each dataset is 

exact.  

 

KID Schema 

Figure S6 in Additional file 2 summarizes the overall schema for KID which has a back-

end and front-end composition. The back-end is managed through an in-house user 

control panel administrated by multiple curators. Curators use a relational database 

schema that enforces consistent entries, such that each individual can automatically 

observe previous entries by other curators for any kinase-gene/protein pair. The system 

allows for direct modification, removal or addition of more experimental evidence and 

internal cross validation by curators. Curated interactions are then compiled in a single 

interaction table which, upon data entry or modification, is used to automatically calibrate 

the score function for each category and to generate whole database backups. Also, 

each curator modification is automatically logged for administrative purposes. The front-

end of the database queries the relational database schema via Ajax to allow rapid 

feedback of requested information. The query system allows the whole database to be 

filtered based on multiple entries in various combinations (Figure S1 in Additional file 2). 

The query is then parsed by the server to identify the requested set of interactions, 

which are in turn directly displayed by the KID interface. This generated output can be 

downloaded as a tab-delimited copy or Cytoscape-compatible network file, or directly 

displayed as an interaction network using Cytoscapeweb [42]. 

 

Correlations of kinases based on their targets 



We compiled the targets of all the kinases within our gold standard (stringent cutoff) and 

performed an all-by-all comparison using Pearson’s correlation coefficient. The 

correlation cutoff represents a p-value of 0.05 in the T-test statistics. Results from the 

correlation comparisons were then subjected to a graphical analysis using an edge-

weighted scheme in Cytoscape [23]. Functional enrichment analysis was performed 

using FunSpec, a web-based cluster interpreter for yeast [41].  
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Figure legends 

 

Figure 1. Inputs and outputs of Yeast KID. Organization of information in KID and key 

analytical tools are shown. The interface combines HTP and LTP information into a 

single database that can devise a score as an output for each interaction, in order to 

define the subset of gold standard kinase-substrate pair. Kinase interactions can be 

queried using KID either by querying genes or kinases as single or multiple searches. 

Excel and Cytoscape-compatible display and the ranked score simplify overlap analysis 

and data extraction.  

 

Figure 2. Yeast KID performance in identifying kinase-substrate pairs. (a) The 

graph indicates the true positive rate detected by either the number of interactions 

reported in KID and BioGRID [21, 22] and the top scores reported in both databases for 

kinases, as a function of their false positive rates (ROC curve). Diagonal line represents 

the random assignment of positive classes. Green line shows the cutoff score used for 

the stringent gold standard of kinase-substrate pairs. (b) The precision of either the 

number of interactions and the respective top scores reported in KID or BioGRID [21, 22] 

for yeast kinases, as a function of their recall (equivalent to the true positive rate). The 



performance of a random assignment of positive classes is not shown as it is too low for 

representation. 

 

Figure 3.  Literature-curated gold standard kinase-target pairs predicted by KID. 

(a) Spring-embedded edge-weighted Cytoscape network [23] showing the gold standard 

for kinase-substrate pairs. Kinases (red nodes) are connected to their targets (yellow 

nodes) using the KID score as the strength of the interaction (edges). The network 

includes 517 pairs at the stringent KID score cutoff of 6.73 (P<0.01). (b) Comparison of 

KID gold standard with published gold standard for kinase-substrate interactions [15]. 

The stringent KID gold standard is depicted in yellow while the gold standard published 

in Fiedler et al, 2009 [15] is shown in pink.  The number of interactions that overlap are 

indicated on the diagram.  The large blue circle includes all >26,000 entries in KID, but 

only 517 represent the gold standard.  

 

Figure 4. Comparison of the relative number of genetic, physical and biochemical 

HTP and LTP data for kinases. (a) Bar-graph illustrating the relative number of genetic, 

physical and biochemical interaction in HTP, LTP and both data forms. P-values indicate 

significance of the overlap in a given the interaction space. (b) Overlap of all three 

assays in HTP and LTP methods. LTP data show the largest overlap between genetic, 

physical and biochemical approaches, while HTP data show little overlap. 

 

Figure 5. Relative performance of HTP datasets in identifying known kinase-target 

pairs. Number of gold standard kinase-substrate pairs identified in each dataset is 

plotted against the fold-enrichment of kinase-substrate pairs found in each dataset. Red: 

Biochemical, Green: Physical, Blue: Genetic. See text for details. 

 



Figure 6. Functional classification of kinases in the gold standard based on target 

overlap. Cytoscape edge-weighted force-directed diagram plots the correlation of 

kinases curated in the KID gold standard (nodes), based on similarity of their targets 

(depicted as edges corresponding to correlation scores). Kinases that have multiple 

overlapping targets are more correlated and cluster together in the network. Spatial 

organization of the nodes in the network classifies kinases based on their shared 

interaction profile. P-values indicate enrichment of GO function using FunSpec. Nodes in 

the same functional group are depicted as similar colours. Blue nodes represent 

correlated kinases that do not fall into any functional class. Of the 87 kinases present in 

the gold standard kinase-substrate pairs, 71 kinases share at least one target with one 

or more kinases.  

 

Additional Files 

 

Additional file 1. Supplementary tables. Table S1: List of kinases in Yeast KID. List of 

kinases was compiled from Rubenstein and Schmidt review [2]. Kinases highlighted in 

blue were not curated in full. Table S2: Distribution of kinase interactions in Yeast KID.Of 

the 127 kinases in budding yeast, all have been curated for HTP and 108 have been 

curated in LTP categories in Yeast KID, with the remaining 19 in progress (highlighted in 

blue). The mitogen activated protein kinases (MAPKs) have the highest number of 

interactions, whereas less characterized kinases (Rio1) have only a few interactions 

inputted. Table S3: Positive training set of curated kinase-substrate pairs. List of bona 

fide kinase-substrate pairs defined based on curator’s consensus. PMIDs for all pairs 

and the type of interactions used for selection are shown. 

 



Additional file 2. Supplementary figures. Figure S1: Yeast KID user interface. A 

screen-shot of the Yeast KID homepage is shown. Experimental categories are 

hierarchically displayed and queried individually or in combination using the colour box 

(left). Kinases, genes/proteins or PMIDs can be queried either individually or in 

combination, as single or multiple genes/proteins separated by commas or spaces. For 

multiple queries, overlapping interactions can be searched using the “compute gene 

overlap” and “compute kinase overlap” functions. Definition of each category and 

function is displayed by clicking on the small bubble icon for each category.  See text for 

details. Figure S2: Hierarchical division of Yeast KID categories. Chart showing 31 

experimental categories hierarchically organized in three levels: 1) HTP and LTP 

categories (Green); 2) Overall subdivision of genetic, phenotypic, chemical, physical, cell 

biological or biochemical approaches (blue); 3) Specific experimental assays (purple). 

Figure S3: KID weights of different LTP and HTP experimental categories. Relative 

contribution of different experimental categories in identifying the positive training 

kinase-substrate set. The bar graph indicates the contribution of each category to the 

KID score. Bars highlighted with a red star show significance when comparing 

categories relative to a random assignment of positive classes. The total number of 

interactions entered in each KID category is also presented. Red: Genetic, Pink: 

Physical, Blue: Biochemical, Yellow: Phenotypic, Purple: Cell-biological, Orange: 

Chemical. Figure S4: Distribution of kinase-substrates in Yeast KID. Graph shows the 

distribution of kinase targets reported in Yeast KID at the stringent cutoff (P<0.01). 

Cdc28, Cdc5, Snf1 and Pho85 kinases have the largest number of targets in the 

literature. 37 curated kinases have no targets in Yeast KID at the stringent cutoff and 

were not represented on the graph. Figure S5: Assessing the quality of HTP datasets in 

identifying LTP interactions of the same type. Overlap of reported HTP interactions with 



the respective LTP interactions of equivalent assays. HTP assays enriched for their LTP 

counterparts are shown in bold. P-values indicate significance. Figure S6: KID schema. 

The back-end is managed through a customized user control panel that uses a relational 

database schema to enforce consistent entries. Curated interactions are compiled in a 

single interaction table that is used to calibrate the contribution score for each category 

and the overall KID score. Whole database backups are also generated, including 

logged tracking of curator modifications. The front-end of the database queries the 

relational back-end schema via Ajax, allowing rapid feedback of requested information. 

The customized query system (that allows for multiple inputs) is then parsed by the 

server to find the appropriate interactions to display on the KID interface. KID output can 

be downloaded in three different formats for further data manipulation. 

 

Additional file 3. List of all database interactions (August 2010 update). 
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Additional files provided with this submission:

Additional file 1: Additional File 1_Sharifpoor et al-V11_FINAL_April 2011.xlsx,
42K
http://genomebiology.com/imedia/2015949309539662/supp1.xlsx
Additional file 2: Additional File 2_KID_V12_April 2011.pdf, 510K
http://genomebiology.com/imedia/1625321174539663/supp2.pdf
Additional file 3: Additional File 3-KID interactions_Sharifpoor S et al, 2011.xls,
4787K
http://genomebiology.com/imedia/2958020225369677/supp3.xls
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