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Abstract 

Intrinsically disordered regions (IDRs) are regions of proteins that do not autonomously fold into 

stable secondary or tertiary structures. Though they defy the classical view of proteins as rigidly 

structured macromolecules, IDRs are widespread in living organisms, and are involved in a 

diverse array of functions. The majority of IDRs appear to be rapidly evolving at the level of the 

primary amino acid sequence, which makes it difficult to quantify evolutionary conservation and 

associate these regions with biological function using standard sequence analysis. The aim of my 

thesis research has thus been to understand evolutionary constraint and sequence-function 

relationships in IDRs. Using a functionally characterized IDR in the yeast protein Ste50, I first 

found that highly diverged amino acid sequences can encode conserved phenotypes in IDRs, 

showing that sequence divergence does not necessarily imply functional divergence in these 

regions. Using a phylogenetic comparative framework, I found that the net charge of the Ste50 

IDR, rather than the precise amino acids, is a functional molecular feature that is preserved over 

evolution. I next expanded my evolutionary analysis of IDRs to the yeast proteome, and found 

that most highly diverged IDRs contain many molecular features that are preserved over 

evolution. I summarized the evolution of these molecular features with an "evolutionary 

signature" for each IDR, and found that groups of IDRs with similar evolutionary signatures are 

enriched for specific biological functions. I also found that IDRs with similar evolutionary 

signatures can rescue function in vivo despite negligible sequence similarity. Finally, I used these 

evolutionary signatures to train a statistical model, and found that they can be used to classify 

IDRs for a diverse set of biological functions. I identified the molecular features contributing to 

these functional predictions, and attributed distinct functions to specific IDRs in proteins with 

multiple IDRs. Overall, this work shows that there is rich functional information in IDR 

sequences, and that this information can be revealed through evolutionary analysis.  
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1 General Introduction 

1.1 Abstract 

Intrinsically disordered proteins and protein regions are increasingly appreciated as widespread 

and important for biological function. Understanding their varied functions has been difficult, 

particularly due to their dynamic structures, sequences, and evolution compared to ordered, or 

structured, regions of proteins. Here, I review how intrinsically disordered regions have been 

defined, the process through which they were discovered, and their unique characteristics. I 

discuss the application of quantitative trait evolution to molecular features of disordered regions, 

and how this approach may address some of the challenges associated with understanding the 

sequence-function relationships in these regions. I then describe the facilitation of functional 

genomics research using budding yeasts as a model organism. I conclude this chapter by 

outlining my research objectives and providing an overview of the main findings from this 

thesis. 

1.2 Intrinsically disordered regions 

1.2.1 Discovery and definition 

The “lock and key” model of enzyme function, posited by Emil Fischer in 1894 (Kunz, 2002), 

has had a tremendous impact on our understanding of protein function and its relation to protein 

structure, despite the fact that enzymes were not formally recognized as proteins until the latter 

part of the 1920s (DeForte and Uversky, 2016; Sumner, 1926). The “lock and key” concept was 

solidified when the first three-dimensional protein structure was solved by X-ray crystallography 

a few decades later (Kendrew et al., 1958), perpetuating the view that a stably-folded 3-

dimensional protein structure is necessary for biological function (Redfern et al., 2008; Wright 

and Dyson, 1999). Since that discovery, thousands of protein structures have been solved 

through X-ray crystallography, and the so-called “structure-function paradigm” has taken hold as 

the central dogma of structural biology. However, in recent years, the notion that proteins can 

lack stable secondary or tertiary structures, and that this property could be integral to their 

functions, has become much more widely appreciated (Forman-Kay and Mittag, 2013). These 

so-called “intrinsically disordered” proteins and protein regions have been the subject of 

intensifying research interest since the late 1990s.  
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Intrinsically disordered regions have been “discovered” many times, mainly since they have 

always been considered exceptions to the rule, and because no consistent terminology existed for 

them until a few years ago (Dunker et al., 2013). For example, the prominent disordered protein 

tau was initially called “natively denatured” (Schweers et al., 1994), and many proteins and 

protein regions have been denoted as “flexible”, “mobile”, “natively unfolded” (DeForte and 

Uversky, 2016) and “negative noodles” (Sigler, 1988) in the literature, without any reference to 

“intrinsic disorder”. This meandering in name space reflects both the treatment of disordered 

regions as “anomalies” in the face of the structure-function paradigm, and the fact that they 

occupy a continuum of unstructured states (DeForte and Uversky, 2016).  

1.2.2 Sequences, structures, and functions – commonalities and 
heterogeneity 

As more and more intrinsically disordered regions were reported on in the literature, it became 

clear that they have a biased amino acid composition compared to ordered regions. Hints of this 

first came about in key studies where rule-based and neural network predictors were trained on 

amino acid sequences of disordered regions, spurred by the observation that a disordered region 

in Calcineurin (Kissinger et al., 1995) and several other proteins are devoid of aromatic residues 

(Romero et al., 1997). These studies were then expanded to the Swiss Protein Database, 

identifying thousands of likely disordered protein regions, and achieving a prediction accuracy 

close to that of secondary structure predictors (Romero et al., 1998). Another important study 

that characterized the sequence bias in intrinsically disordered regions compared several 

sequence features of 91 protein regions that were experimentally shown to exhibit hallmarks of 

disorder (e.g. showing characteristics of a random coil, lacking secondary or tertiary structures, 

or having hydrodynamic radii similar to expanded polypeptide chains) to a set of 275 globular, 

ordered proteins (Uversky et al., 2000). This study found that the disordered regions could not be 

distinguished from ordered regions based on their lengths, isoelectric points, and net charge 

alone, but that they were clearly separated from ordered regions based on a combination of high 

net charge and low hydrophobicity (Uversky et al., 2000). Further work established that 

disordered regions are enriched for polar and charged amino acids compared to ordered regions 

(Romero et al., 2001). Since these early studies, it has become increasingly clear that disordered 

regions can be predicted based on their amino acid sequences, with over 70 disordered region 

predictors developed over the last 20 years (Li et al., 2015).  
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Although intrinsically disordered region sequences are clearly demarcated from ordered regions 

in a binary classification framework, they also seem to exhibit remarkable sequence 

heterogeneity within the “disordered” category. For example, many disordered regions are of 

“low complexity” (Cumberworth et al., 2013; Halfmann, 2016; Mier et al., 2019; Romero et al., 

2001; Uversky et al., 2000; Wang et al., 2018; Wootton, 1994), meaning that they are comprised 

of a reduced alphabet of amino acid residues. However, within this subset of disordered regions, 

there appear to be different types of low complexity. One example of this is disordered regions 

that are rich in glutamine and asparagine repeats, and are associated with so-called “prionogenic” 

proteins (Alberti et al., 2009; Halfmann et al., 2011). Other examples include arginine and 

glycine repeats, which are found in RNA binding proteins (P. A. Chong et al., 2018). There are 

also glutamine-rich, proline-rich, or aspartic and glutamic acid-rich disordered regions, which 

have been associated with transcriptional activation domains (Boija et al., 2018; Dennig et al., 

2018; Frietze and Farnham, 2011; Gerber et al., 1994; Klemsz and Maki, 1996). In addition to 

the diversity of low complexity sequences, there are numerous other sequence features that 

distinguish different intrinsically disordered regions, including the presence or abundance of 

post-translational modification sites (Holt et al., 2009; Iakoucheva et al., 2004), as well as 

different charge properties such as a highly negative (Warren and Shechter, 2017) or positive 

charge (Garg and Gould, 2016), or a separation of positive and negatively charged blocks of 

residues (Nott et al., 2015).  

Similarly, although intrinsically disordered regions generally do not fold into stable, 3-

dimensional structures under physiological conditions, they can be heterogeneous in their lack of 

structure. Researchers have long recognized that intrinsically disordered regions occupy a 

“continuum” of unstructured states (Burger et al., 2016; DeForte and Uversky, 2016; Forman-

Kay and Mittag, 2013; Uversky, 2002). An example of a protein on the most disordered end of 

this continuum is Sic1, which remains disordered as it engages in low affinity (but specific) 

interactions with its partner, Cdc4 (Mittag et al., 2008). In the middle of this continuum, many 

proteins exhibit folding upon binding (Vacic et al., 2007; Wang et al., 2013), or, in the case of 

the negative regulator of translation initiation 4E-BP2, folding upon post-translational 

modification (Bah and Forman-Kay, 2016). A protein region on the more “ordered” end of the 

continuum is the nuclear co-activator binding domain (NCBD) of the CREB-binding protein 

(CBP), which acts as a transcriptional co-activator (Kwok et al., 1994). Unlike many disordered 
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regions that rapidly interconvert between different conformations (e.g. Sic1), NCBD samples 

different conformations on a relatively long (millisecond) timescale in solution (Kjaergaard et 

al., 2010). Interestingly, the natural assumption that disordered regions with many weak 

interacting partners remain disordered, while disordered regions with specific interactions fold 

upon binding, was recently challenged. Remarkably, the disordered proteins histone H1 and the 

nuclear chaperone prothymosin-α engage in an ultra-high affinity interaction while remaining 

completely disordered, possibly because of their extreme opposite charges (Borgia et al., 2018).  

Given the range of sequence and structure characteristics exhibited by intrinsically disordered 

regions, it is perhaps not surprising that they are involved in many different functions in living 

cells. The variety of functions that intrinsically disordered regions are involved in has been said 

to rival those of ordered regions, ranging from well-established roles in signaling networks (Holt 

et al., 2009; Martin-Yken et al., 2016; Nguyen Ba et al., 2012; Tompa et al., 2014), to structural 

and signaling components of transmembrane proteins (Busch et al., 2015; Kjaergaard and 

Kragelund, 2017; Meyer et al., 2018; Tusnády et al., 2015) and the nuclear pore (Alber et al., 

2007), to their varied roles in transcriptional (Boehning et al., 2018; S. Chong et al., 2018; 

Minezaki et al., 2006) and translational (Franzmann et al., 2018; Protter et al., 2017) regulation. 

One classical protein function that has not been attributed to intrinsically disordered regions is 

catalytic activity, though it is increasingly appreciated that enzymes often have intrinsically 

disordered regions that play crucial roles in mediating catalysis and substrate binding (Kim et al., 

2018; Reed et al., 2015; Szabo et al., 2019). 

1.2.3 Evolution of IDRs – evidence for negative and positive selection 

One of the key evolutionary studies on intrinsically disordered regions applied the disorder 

prediction algorithm, ‘DISOPRED2’, to  several archaean, bacterial, and eukaryotic genomes 

(Ward et al., 2004). This study established that predicted intrinsically disordered regions with a 

minimum length of 30 amino acids are present across these three kingdoms of life, and that long 

intrinsically disordered regions are particularly widespread in eukaryotic proteomes, with an 

estimated 33% disorder compared to 4% in bacteria. The results from this study have since been 

confirmed with other prediction methods (Peng et al., 2013; Xue et al., 2012), and have been 

accompanied by suggestions that the expansion of intrinsic disorder from prokaryotic to 

eukaryotic proteomes could be reflective of the increased regulatory capacity that is needed to 
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contend with multi-compartment cells. Interestingly, there may also be a correlation with 

disorder and variability or extremity in habitats, as unicellular eukaryotes and viruses display a 

wide variation in their disorder content (Xue et al., 2012). For example, some virus proteomes 

are 7% disordered, whereas others are 77% disordered. Intriguingly, a recent study presented 

evidence in favour of this hypothesis, finding that disordered proteins in so-called 

“extremophile” tardigrades are specifically expressed and necessary for desiccation tolerance 

(Boothby et al., 2017).  

The presence of intrinsically disordered regions across living organisms raises many questions 

about whether and how they persist or expand in genomes through evolutionary time. Many of 

these questions have begun to be addressed through population genomics and comparative 

genomics studies. Based on pairwise genetic distances between homologs, one of the first 

comparative genomics studies on disordered regions found that experimentally verified 

disordered regions in 19/26 protein families are more rapidly evolving than ordered regions 

(Brown et al., 2002). This study corroborated some of the previous anecdotal evidence about 

intrinsically disordered regions being highly diverged compared to ordered regions in individual 

proteins. Further studies found similar results, with intrinsically disordered regions showing a 

much higher tolerance for insertions and deletions (InDels) than ordered regions (Khan et al., 

2015; Light et al., 2013; Tóth-Petróczy and Tawfik, 2013) and overall relaxed purifying, or 

negative selection (Khan et al., 2015). On the molecular level, this implies that there is less 

selective pressure to keep nonsynonymous mutations out of IDRs. An important caveat with 

studies that measure distances between genes using standard models is that intrinsically 

disordered regions are likely not evolving under the same substitution models as ordered regions. 

A study that addressed this point directly used substitution matrices specific for either ordered or 

disordered regions, and found that intrinsically disordered regions are still more likely to tolerate 

evolutionary changes compared to ordered regions when these differences are accounted for 

(Brown et al., 2010). Overall, evolutionary analysis has so far revealed that the presence of 

intrinsically disordered regions is conserved across orthologs, but that there can be considerable 

divergence in the specific amino acids that make up these orthologous disordered regions (Bellay 

et al., 2011; Chen et al., 2006a, 2006b; Colak et al., 2013). However, despite the rapid change in 

amino acid residues in intrinsically disordered regions, there is evidence of conservation for 

amino acid composition (Moesa et al., 2012) and length (Schlessinger et al., 2011).  
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Along with the evidence for negative selection on intrinsically disordered regions, there is also 

evidence for positive selection in these regions, complementing the view that they may be 

sources of evolutionary novelties or could have high “evolvability”. On the molecular level, 

positive selection implies that there is a selective advantage to acquiring nonsynonymous 

mutations. An early study combined population sequence data from Saccharomyces cerevisiae 

and Saccharomyces paradoxus strains, and found a much higher ratio of positively selected 

codons in intrinsically disordered regions as compared to structured regions in these species 

(Nilsson et al., 2011). Recently, another study used a powerful comparative approach to analyze 

mammalian sequences, and found that despite the presence of negative selection, human 

intrinsically disordered regions have a much higher rate of adaptive substitutions than their 

ordered counterparts (Afanasyeva et al., 2018).  

1.2.4 Stabilizing selection on molecular features of intrinsically 
disordered regions  

An interesting hypothesis about intrinsically disordered regions of proteins is that they resemble 

non-coding regions of DNA in their rapid evolution and regulatory functions, and therefore may 

be bound by similar constraints (Landry et al., 2014; Moses and Landry, 2010). Specifically, this 

idea has been applied to phosphorylation sites in intrinsically disordered regions (Landry et al., 

2014; Moses and Landry, 2010), as they display a high rate of turnover and can appear in 

clusters, where their density, but not their specific positions, can be conserved (Beltrao et al., 

2009; Holt et al., 2009; A. C. W. Lai et al., 2012; Moses et al., 2007b). Clusters of 

phosphorylation sites that undergo turnover through evolution are reminiscent of clusters of 

transcription factor binding sites that display turnover, and have been shown to be evolving 

under stabilizing selection (Ludwig et al., 2000). Within this model, specific phosphorylation 

sites can be under weak functional constraint, but contribute to an aggregate property, or 

phenotype, that is under selection. Thus, they could be gained or lost between lineages (Figure 1-

1), leaving signatures of rapid evolution. The function that they contribute to, however, could be 

conserved, as there would be a loss of fitness associated with the loss or diminishment of such a 

function, perhaps beyond a certain threshold.  
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Figure 1-1. The relationship between site phosphorylation, localization and protein functions 

determines how much conservation is expected among species under purifying or stabilizing 

selection. (A) Toy examples of phosphorylation sites (indicated as “P”s) and cluster of sites and 

how they may affect protein functions individually or collectively. Phosphorylation sites regulate 

three putative functions A, B, C. The aggregate function of phosphorylation sites affects the 

fitness function of the protein and thus determines how many possible equivalent genotypes may 

give rise to equivalent functions or fitness. Only few possible examples are shown to illustrate 

the complex relationships expected and their impact on the evolution of phosphorylation profiles 

and many more are possible. (B) Shows a possible fitness landscape for CDK inhibition of Ste5. 

Ste5 inhibition is proportional to the charge (twice the number of phosphorylated residues) in the 

disordered region surrounding the PM domain (Strickfaden et al. 2007). Evolutionary changes 

that create CDK consensus sites ([ST]-P) will increase the strength of the inhibition, while 

changes that destroy consensus sites will reduce the strength of inhibition. The stabilizing 

selection model suggests that as long as the total strength of inhibition is within an acceptable 

range, the exact number and location of phosphorylation sites will drift nearly neutrally. A 

sequence alignment of the disordered regions surrounding the PM domain of Ste5 from S. 

cerevisiae and related yeasts is shown on the right. During evolution consensus sites are gained 

and lost (+ [ST]-P or − [ST]-P) on the phylogenetic tree, leading to a large diversity in number 

and location of phosphorylation sites in this region. Figure from (Landry et al., 2014).  



8 

 

Besides clusters of phosphorylation sites, intrinsically disordered regions contain aggregate 

molecular features within their amino acid sequences such as net charge (Mao et al., 2010; 

Strickfaden et al., 2007), length (Schlessinger et al., 2011), or physicochemical properties 

(Ravarani et al., 2018; Warren and Shechter, 2017) that appear to be important for their 

functions. Thus, it is interesting to posit that these aggregate properties could contribute to 

quantitative traits under stabilizing selection, where a phenotypic “optimum” could shape the 

variation of their aggregate molecular features, as has been found for gene expression (Bedford 

and Hartl, 2009; Charlesworth, 2013; Ludwig et al., 2000). Indeed, there are now several 

examples in intrinsically disordered regions where there is experimental evidence for stabilizing 

selection acting on features such as net charge rather than specific amino acids (Daughdrill et al., 

2007; Lemas et al., 2016; Zarin et al., 2017).  

1.3 Functional genomics using yeast as a model organism (with 
modified text from (Zarin and Moses, 2014)) 

1.3.1 Comparative genomics of yeasts 

Enabled by comparative genomics, yeasts have increasingly developed into a powerful model 

system for molecular evolution. The beginning of ‘comparative genomics’ was a turning point 

for molecular evolution. Two types of genome sequences were most often compared: those of 

‘closely’ related species whose entire genomes could be aligned at the level of the nucleic acids 

(Waterston et al., 2002), and genomes of more ‘distantly’ related species that showed interesting 

variation in lifestyle and physiology, but were close enough that most genes had clear 

orthologues (Aparicio et al., 2002). Because budding yeast was the first eukaryote to have its 

genome completely sequenced (Goffeau et al., 1996), it was naturally at the forefront of the 

comparative genomics work (Cliften et al., 2003; Dujon et al., 2004; Kellis et al., 2003). The 

hemiascomycetous yeast species whose genomes are now available span an evolutionary 

distance similar to that of the chordates (Dujon, 2006), making these genomes a model system 

for animal evolution. 

Comparative genomics vastly expanded the scope of molecular evolution. The availability of 

evolutionary measurements for thousands of genes could be used to evaluate evolutionary 

hypotheses in general, using statistical analysis (Wolfe and Li, 2003) as opposed to analysing 

single genes anecdotally, as had often been done before. Comparative genomics also enabled 
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functional genomics in multiple species, leading to a further expansion of the questions that 

could be tackled: evolution of genome‐wide expression patterns, protein interactions and 

post‐translational modifications. Once available, the comparative sequence and functional data 

could be applied in several areas of interest in molecular evolution. For example, one of the 

fortuitous discoveries made soon after the completion of the yeast genome was the identification 

of a whole‐genome duplication event (Wolfe and Shields, 1997). The comparative data for this 

set of gene duplicates (‘ohnologues’) continues to allow unprecedented large‐scale studies of 

gene duplication and divergence, facilitating studies of classical topics in molecular evolution 

(Kimura and Ohta, 1974). 

Despite the excitement about regulatory evolution, what was known about the evolution of 

non‐coding DNA prior to comparative genomics was largely anecdotal (reviewed in (Wray, 

2007)). Analysis of ‘closely’ related yeast genomes showed that functional non‐coding DNA was 

conserved, but that over longer evolutionary distances there was little conservation of regulatory 

sequences at the DNA level. Gene expression and other genomic data for multiple species have 

supported the idea that gene regulation has changed considerably among yeast species (reviewed 

in (Weirauch and Hughes, 2010); (Wohlbach et al., 2009)).  

Recently, proteomics experiments have begun to characterize the evolution of signalling 

networks, also referred to as regulatory evolution at the post‐translational level (reviewed in 

(Beltrao et al., 2013)). Like transcriptional regulatory sequences, post‐translational regulatory 

sites are apparently largely conserved between ‘closely’ related species of yeast (Holt et al., 2009; 

Nguyen Ba et al., 2012; Nguyen Ba and Moses, 2010). At further evolutionary distances, some 

modifications and interactions show high levels of divergence (Beltrao et al., 2009; Holt et al., 

2009; Sun et al., 2012), while other protein–protein interactions evolve much more slowly (Qian 

and Zhang, 2009). Further research will be needed to determine the major patterns of 

protein‐regulatory evolution, but it is clear that regulatory evolution at levels other than 

transcription is an emerging area (Moses and Landry, 2010), with yeast a leading model system. 

1.3.2 Testing hypotheses about regulatory evolution in laboratory 
experiments with Saccharomyces cerevisiae 

It has become increasingly possible to reconstruct evolutionary history at the molecular level and 

to infer the corresponding changes in cellular function and physiology. This so‐called ‘functional 
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synthesis’ (Dean and Thornton, 2007) holds great appeal to evolutionary biologists, who have 

been historically limited to correlative experiments and statistical inferences. Yeast is an ideal 

organism for mechanistic evolutionary experiments, for several reasons. First, the largely 

tree‐like evolution of yeast genes (Rokas et al., 2003) and bioinformatic resources (such as the 

Yeast Gene Order Browser (Byrne and Wolfe, 2005)) allow molecular history to be 

reconstructed accurately. For example, reconstructed ancestral maltases from a large gene family 

show evidence for multiple mechanisms of diversification, including natural selection on key 

residues that control substrate specificity (Voordeckers et al., 2012). 

Perhaps more importantly, yeast evolution is experimentally accessible. For example, cryogenic 

preservation of intermediate genotypes creates a living record of the dynamic evolutionary 

process (Buckling et al., 2009). In addition, the short generation time of yeast enables techniques 

for systematic, quantitative measurements of fitness (Breslow et al., 2008) and genotype 

frequencies (Gresham et al., 2008; Parts et al., 2011; Taylor and Raes, 2004), allowing 

systematic investigation of evolutionary properties that have been discussed extensively in 

abstract, but have been hard to measure.  

Thus, it is now possible in yeast to: (a) infer specific molecular changes during evolution; (b) test 

functional impacts on protein function and cellular traits; and (c) measure whether those changes 

lead to fitness advantages (at least in the environments that are possible to simulate in the 

laboratory). This implies the prospect of discovering (after centuries of speculation) how 

evolution actually happened (Dean and Thornton, 2007). One of the first and most compelling 

studies to use direct fitness measurements of re‐engineered evolutionary changes was a study of 

the gene duplication of GAL1 and GAL3 within the classical GAL regulatory network (Hittinger 

and Carroll, 2007), which showed direct evidence for fitness increases after gene duplication, 

consistent with ‘escape from adaptive conflict’ (Hughes, 2005). Experimental fitness 

measurements were also used to provide direct evidence that gene expression differences in an 

endocytosis complex (implicated through statistical analysis) in the transition to pathogenicity 

conferred a growth advantage at high temperatures (Fraser HB et al., 2012). Most recently, 

ancestral reconstructions were used to identify specific amino acid changes in the paralogous 

transcription factors Mcm1 and Arg80 that led to subdivision of the ancestral gene function, but 

also (fascinatingly) to avoid interfering with each other through spurious vestigial interactions 

(Baker et al., 2013). 



11 

 

The mechanistic perspective of evolution that is now possible in yeast is still only beginning to 

take hold. However, the early studies in this area have already demonstrated that it will be 

possible to directly address fundamental questions about regulatory evolution using these 

approaches. 

1.4 Research objectives and thesis overview 

The majority of disordered regions of proteins have thus far remained uncharacterized, partly due 

to their fundamental differences with ordered regions of proteins, and a current sparsity of 

methods that take these differences into account. The goal of my thesis has been to understand, 

through functional genomics experiments in budding yeast, as well as computational methods 

and evolutionary analysis, the sequence-to-function relationships in disordered regions. 

Specifically, the aims of this thesis are:  

1. To understand whether highly diverged, orthologous disordered regions are functionally 

divergent, or if disordered regions with highly diverged primary amino acid sequences 

can perform the same functions in a model protein in budding yeast 

2. To explore the extent to which molecular features of highly diverged disordered regions 

are preserved through evolution proteome-wide, and assess their association with protein 

function 

3. To use the evolution of molecular features in disordered regions to predict function of 

specific proteins and disordered regions 

In chapter 2, I find that despite the high divergence in primary amino acid sequences of 

orthologous disordered regions, they can perform similar functions in vivo and confer similar 

fitness. Through evolutionary analysis, I find that rather than preserving the precise amino acids, 

natural selection is preserving a molecular feature (specifically the net charge) of the disordered 

region in question (Zarin et al., 2017). In chapter 3, I apply an evolutionary analysis to the 

budding yeast proteome, and find that the preservation of molecular features in disordered 

regions is a general phenomenon. I find that many disordered regions share sets of molecular 

features that are under selection, and that these “signatures” of evolution are associated with 

specific biological functions (Zarin et al., submitted). In chapter 4, I use these evolutionary 

signatures of disordered regions in a machine-learning framework to predict functions and 

phenotypes of specific proteins and disordered regions. In chapter 5, I provide a general 

discussion about insights that have been made and questions that remain in relation to 

evolutionary analysis, functional annotation, and sequence-function relationships of intrinsically 

disordered regions.  
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Chapter 2 
Selection maintains signaling function of a highly diverged 

intrinsically disordered region 
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2 Selection maintains signaling function of a highly 
diverged intrinsically disordered region 

2.1 Abstract 

Intrinsically disordered regions (IDRs) are characterized by their lack of stable secondary or 

tertiary structure, and comprise a large part of the eukaryotic proteome. Although these regions 

play a variety of signaling and regulatory roles, they appear to be rapidly evolving at the primary 

sequence level. In order to understand the functional implications of this rapid evolution, we 

focused on a highly diverged IDR in Saccharomyces cerevisiae that is involved in regulating 

multiple conserved MAP Kinase pathways. We hypothesized that under stabilizing selection, the 

functional output of orthologous IDRs could be maintained, such that diverse genotypes could 

lead to similar function and fitness. Consistent with the stabilizing selection hypothesis, we find 

that diverged, orthologous IDRs can mostly recapitulate wildtype function and fitness in S. 

cerevisiae. We also find that the electrostatic charge of the IDR is correlated with signaling 

output, and using phylogenetic comparative methods, find evidence for selection maintaining 

this quantitative molecular trait despite underlying genotypic divergence. 

2.2 Significance statement 

Intrinsically disordered regions (IDRs) are widespread, have diverse functions, and are involved 

in human disease. Because standard sequence analysis methods identify little sequence 

homology in IDRs, it’s not currently understood whether (or how) the functions of these protein 

regions are preserved over evolution. Here we show that orthologous IDRs can preserve 

regulatory functions despite near-complete sequence divergence. This suggests that natural 

selection maintains aggregate molecular properties in IDRs, which we propose to be quantitative 

traits. Consistent with this, we find signatures of stabilizing selection on the electrostatic 

properties of IDRs. Thus, in analogy to the rapid evolution of non-coding DNA in eukaryotic 

enhancers, divergence in primary amino acid sequence does not imply functional divergence in 

IDRs. 

2.3 Introduction 

Current predictions suggest that close to 40% of all proteins in eukaryotic organisms are either 

entirely disordered, or contain sizeable regions that are disordered, meaning they do not 
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autonomously fold into defined secondary or tertiary structures (Peng et al., 2013; Ward et al., 

2004). These intrinsically disordered regions (IDRs) are thought to have important implications 

for protein function (Liu et al., 2009; Vavouri et al., 2009), and are known to play regulatory 

roles, often through short linear motifs (SLiMs) that control protein-protein interactions, 

localization, degradation, and post-translational modifications (Forman-Kay and Mittag, 2013; 

Tompa et al., 2014). While proteome-wide studies have provided in silico evidence for 

conservation of length (Schlessinger et al., 2011) and composition (Moesa et al., 2012) in some 

IDRs, reports of increased rates of insertions and deletions (de la Chaux et al., 2007; Khan et al., 

2015; Light et al., 2013; Nido et al., 2012; Tóth-Petróczy and Tawfik, 2013) and amino acid 

substitutions (Brown et al., 2002) in IDRs are indicative of their rapid evolution compared to 

ordered regions. In addition, while some SLiMs are indeed conserved in IDRs (Beltrao and 

Serrano, 2005; Davey et al., 2012; Nguyen Ba et al., 2012), others appear in clusters where 

precise position and number are not conserved (Beltrao et al., 2012; Holt et al., 2009; Moses et 

al., 2007b). Although it is reasonable to assume that conservation of sequence in IDRs is 

indicative of functional conservation of SLiMs, it is more difficult to interpret the functional 

consequences of IDRs that are highly diverged at the sequence level: these may represent either 

non-functional sequences evolving in the absence of constraint, or weakly constrained functional 

elements that are gained or lost in a compensatory manner (undergoing evolutionary turnover [as 

described in (Ludwig et al., 2000; Moses et al., 2007b)]), such that they are not conserved at the 

amino acid sequence level. 

Like IDRs, non-coding DNA often shows relatively rapid evolution and weak constraints at the 

sequence level (Bergman and Kreitman, 2001). Interestingly, IDRs show other parallels with 

non-coding DNA (Beltrao et al., 2013; Moses et al., 2007b; Moses and Landry, 2010). For 

example, non-conserved clusters of phosphorylation sites in IDRs are reminiscent of non-

conserved transcription factor binding sites in enhancers. Although these enhancers and the 

binding sites within them are not conserved, they can lead to the same expression patterns 

(Ludwig et al., 1998). Preservation of expression patterns despite underlying sequence 

divergence in these regions is thought to result from stabilizing selection on quantitative 

phenotypes (Ludwig et al., 2000). Stabilizing selection could allow for quantitative phenotypes 

to be maintained within an optimal range while allowing tolerance of mutations or insertions and 

deletions, as these individually exert weak functional and selective effects (Charlesworth, 2013; 
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Ludwig et al., 2000). Although it is likely that some of these highly diverged IDRs, like non-

coding regions, are either non-functional or sites of lineage-specific evolution (Wray, 2007), at 

least a portion of these IDRs may be performing quantitative functions that are under stabilizing 

selection (Landry et al., 2014).  

In this study, we investigate whether the observed molecular divergence in IDRs implies 

functional divergence, or whether the diversity in these regions could accumulate while 

functional output is preserved under stabilizing selection. Under stabilizing selection, we expect 

that diverged, orthologous IDRs have similar functional outputs, and confer similar fitness. To 

test this, we take advantage of a model IDR that plays roles in multiple signaling pathways in 

Saccharomyces cerevisiae. We show that orthologous disordered regions can recapitulate 

wildtype morphology and quantitative regulatory function. This represents, to our knowledge, 

the first in vivo evidence that disordered signaling protein regions that are highly divergent at the 

primary sequence level can perform similar functions and confer similar fitness. We also find 

that the basal net charge of the IDRs is correlated with the signaling output, and, by applying 

phylogenetic comparative methods to the basal net charge in these IDRs, find evidence for 

selection on this quantitative molecular trait. 

2.4 Results 

2.4.1 An intrinsically disordered region in the adaptor protein Ste50 that 
is involved in multiple signaling pathways is highly diverged at the 
primary amino acid sequence level 

We chose to focus our study on an IDR in the adaptor protein Ste50 that is involved in several 

highly studied MAP Kinase (MAPK) signaling pathways in S. cerevisiae (Figure 2-1a). We 

chose this IDR in part because it is situated between two highly conserved protein domains: the 

Sterile Alpha Motif (SAM) and the Ras-association (RA) domain (Jansen et al., 2001; 

Tatebayashi et al., 2006; Truckses et al., 2006) (Figure 2-1b). We can therefore confidently 

identify the orthologous protein sequence in other hemiascomycete species, even though the 

primary amino acid sequence has diverged rapidly (Figure 2-1b). We find that the Ste50 IDR 

shows only 27.76% (s.d.=11.94) average pairwise percent identity (Figure 2-1c), which is similar 

to scrambled IDR sequences (see methods), which show 24.40% pairwise percent identity (mean 

of 100 simulations), and the 24.26% (s.d.=12.27) pairwise percent identity that we get from 
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aligning randomly chosen non-homologous disordered regions of the same length as the Ste50 

IDR (see methods). The divergence of the Ste50 IDR also appears to saturate with divergence 

time (Appendix Figure 1-1). This rapid divergence is not due to overall divergence of the Ste50 

protein, as the adjacent structured domains show strong conservation at the primary amino acid 

level (SAM: 43.02% [s.d.=9.92]  and RA domain: 83.61% [s.d.=5.28] pairwise percent identity).  

 

Figure 2-1. a) The adaptor protein Ste50 is phosphorylated by multiple MAPKs, which results in 

dissociation of the adaptor and associated proteins from membrane-bound Opy2, and subsequent 

negative regulation of downstream MAPKs. Not all pathway components are shown in the 

schematic. b) Alignment of the Ste50 IDR for hemiascomycetes (displayed using Jalview 

(Waterhouse et al., 2009)). Percentage identity is shown in blue, MAPK phosphorylation 
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consensus motifs ([S/T]P) are boxed in grey. Species names of IDRs that were used for 

downstream functional and fitness experiments are highlighted in red. C) Average pairwise 

percent identity of the real Ste50 IDR alignment (IDR), compared to a distribution of IDRs with 

randomly scrambled residues (scrambled IDRs), the Ste50 Sterile Alpha Motif (SAM), and the 

Ste50 Ras Association (RA) domain. Y-axis shows the frequency of scrambled IDRs. 

 

The Ste50 IDR also represents a good candidate for evolutionary analysis because it contains a 

cluster of MAPK consensus phosphorylation sites (S or T, followed by a P) which contribute to 

signal modulation of MAPK pathways (English et al., 2015; Hao et al., 2008; Yamamoto et al., 

2010). Evolutionary turnover within clusters of phosphorylation sites in disordered regions is 

thought to be widespread (Beltrao et al., 2009; Freschi et al., 2011; Holt et al., 2009; Landry et 

al., 2014; Nguyen Ba and Moses, 2010), and the alignment of Ste50 shows that MAPK 

consensus sites differ in position, spacing, and number, consistent with evolutionary turnover of 

these sites within the IDR (Figure 2-1b). 

2.4.2 Diverged orthologous IDRs recapitulate multiple signaling 
functions in S. cerevisiae 

Phosphorylation of the MAPK consensus sites in the Ste50 IDR results in attenuation of 

signaling by dissociation of the signaling complex from the membrane (Yamamoto et al., 2010). 

Phospho-proteomic studies also indicate phosphorylation of a subset of these sites in standard 

growth conditions (Albuquerque et al., 2008; Bodenmiller et al., 2010; Gnad et al., 2009; Holt et 

al., 2009; Kanshin et al., 2015; Smolka et al., 2007; Soulard et al., 2010), which we refer to as 

basal phosphorylation. To test the function of this region in S. cerevisiae, we therefore made an 

unphosphorylatable mutant, where each consensus site was mutated to alanine (referred to as 5A 

mutant) (see methods). Previous studies have shown that this mutant is defective in Hog1 

signaling dynamics and displays increased basal expression of FUS1, presumably because of 

overactive effector kinases Fus3 and Kss1 (Hao et al., 2008; Yamamoto et al., 2010). In order to 

determine whether or not diverged sequences are divergent in function, we swapped orthologous 

IDR sequences from two yeast species (C. glabrata and L. kluyveri) into S. cerevisiae (see 

methods) and quantified the function of these chimaeric Ste50s compared to the wildtype and 5A 

mutant (Figure 2-2a).   
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Figure 2-2. Diverged orthologous IDRs recapitulate S. cer IDR functions compared to the 5A 

mutant a) Diverged IDRs were swapped with the S. cer IDR and 3 different functional outputs 

were quantified: morphology, basal MAPK (Fus3) signaling, and MAPK (Hog1) signaling 
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dynamics b) Cell morphology clusters along two dimensions. Each point represents one cell for 

which major axis length and circularity features were extracted. Figure shows example plot from 

one biological replicate, where cells have been classified as non-budding, budding, and abnormal 

(see methods for details). c) Average percentage of cells with abnormal morphology for each 

IDR genotype. Error bars represent 1.96 s.e. between 3 biological replicates (average of ~400 

cells per replicate). d) Diverged IDRs mostly recapitulate wildtype basal pFUS1-GFP levels. 

Error bars represent 1.96 s.e. between 6-12 biological replicates (50 000 cells per replicate) for 

each strain. e) Top: representative images of time-lapse movies capturing Hog1-GFP localization 

in co-cultured wildtype and experimental strains (constitutively expressing mCherry and 

mTagBFP2, respectively). Bottom: Diverged IDRs recapitulate wildtype Hog1 signaling 

dynamics. Error bars represent 1.96 s.e. Asterisk represents statistical significance (P<0.01, 

Student’s t-test, N=15-35 cells).  

 

Interestingly, we noticed that the 5A mutant displays abnormal morphology in a small subset of 

cells (Figure 2-2a zoomed-in micrograph, Appendix Figure 1-2 wide field of view), which, to 

our knowledge, was previously unreported. We therefore first tested whether the chimaeric Ste50 

proteins could rescue these abnormal morphologies. We quantified morphology using the length 

of the major axis (a measure to capture the elongated shape of the abnormal cells), as well as 

circularity (a measure to capture the irregular, non-circular shape of the abnormal cells) (see 

methods for details). Along these dimensions, the vast majority of cells fall into two clear 

clusters based on their shape: non-budding cells, which are highly circular and have a small 

major axis length, and budding cells, which are less circular and have a higher major axis length 

(Figure 2-2b). We defined the cells that fell outside of these clusters as “abnormal” cells, and 

quantified the fraction of abnormal cells for each genotype (Figure 2-2c). We found 6.3% 

(s.d.=1.3) abnormal cells in the 5A mutant population, compared to less than 2% (s.d.≤1.5) 

abnormal cells for the wildtype strain and the orthologous, diverged IDRs (Figure 2-2c). We 

therefore conclude that the diverged IDRs quantitatively recapitulate wildtype morphology.  

We then sought to quantify the basal activity of the Fus3 and Kss1 MAPKs, as the IDR is known 

to be involved in negative regulation of these kinases (Hao et al., 2008; Yamamoto et al., 2010). 

We quantified basal MAPK signaling by using a genomically-integrated GFP reporter driven by 
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the FUS1 promoter (pFUS1), a transcriptional target of Ste12, the effector of Fus3 and Kss1 

signaling (Elion et al., 1993; Hagen et al., 1991). As expected, we found that the 5A mutant had 

significantly higher levels of basal pFUS1-GFP expression compared to the wildtype in flow 

cytometry analysis (Figure 2-2d) (see methods). This is consistent with the IDR being important 

for negative regulation of basal Fus3 and Kss1 signaling, as suggested by previous studies (Hao 

et al., 2008; Yamamoto et al., 2010). In contrast, we found that the diverged, orthologous IDRs 

mostly recapitulated wildtype basal pFUS1 expression.  

The Ste50 IDR has also been shown to modulate the dynamics of Hog1 activity following 

activation by osmotic stress. Previous studies have shown that Hog1 is active for a longer 

amount of time when the 5 phosphorylation sites in the Ste50 IDR are mutated to alanine – this is 

thought to happen because of relaxed negative feedback on the HOG (High Osmolarity Glycerol) 

pathway (Hao et al., 2008; Yamamoto et al., 2010). Based on previous work (Ferrigno et al., 

1998), we used Hog1-GFP nuclear localization as a proxy for Hog1 activity. To eliminate 

experimental day-to-day variation in the length of Hog1 activity following stimulation, we 

devised an assay through which we could directly compare Hog1 signaling for different IDR 

genotypes in an identical environment (Figure 2-2e, top). To do so, we constitutively expressed 

different fluorescent proteins in wildtype and experimental (i.e. 5A or orthologous IDR) strains 

to differentially label IDR genotypes in each experiment. We were thus able to co-culture strains, 

and, following addition of stimulus, captured Hog1 nuclear localization for single cells with 

different IDRs in the same field of view through time-lapse imaging (see methods for details). As 

expected, Hog1 in the 5A mutant displayed a significantly slower return to baseline activity 

compared to the wildtype, as evidenced by a longer duration and magnitude of Hog1 nuclear 

localization (Figure 2-2e). However, the diverged orthologous IDRs recapitulated the wildtype 

signaling dynamics, showing no significant deviation from wildtype in the duration and 

magnitude of Hog1 localization. 

2.4.3 Diverged orthologous IDRs rescue fitness in S. cerevisiae 

Having established that the diverged IDRs from other species could perform the known signaling 

functions of the S. cerevisiae IDR, we tested whether they were able to support wild-type growth 

and reproduction. We therefore quantified the fitness of the genotypes carrying diverged 

orthologous IDRs. For this we used a quantitative competitive growth assay, where we directly 
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competed the wildtype strain against all experimental strains (Figure 2-3a; see methods for 

details). We did this by labeling the wildtype with one fluorescent protein (ymCherry or 

mTagBFP2) and the experimental strains with a different fluorescent protein (ymCherry or 

mTagBFP2) and measuring growth of serially diluted, co-cultured cells over time. We found that 

while the 5A mutant displayed a significant fitness defect compared to the wildtype strain (mean 

selection coefficient of -0.038, s.e.= 0.005), the diverged IDRs displayed a much lower fitness 

defect compared to the wildtype strain (mean selection coefficient of -0.014, s.e.=0.004 for 

C.glabrata and -0.012, s.e.=0.002 for L.kluyveri) (Figure 2-3b). This is consistent with these 

IDRs recapitulating not only the function of the S. cerevisiae IDR in vivo, but also recapitulating 

most of the fitness of the wildtype IDR (see Discussion). 

 

Figure 2-3. Diverged orthologous IDRs rescue fitness of wildtype S. cer IDR compared to 5A 

mutant. a) High-throughput quantitative competition assay captures growth rate of co-cultured 

cells over time b) Relative selection coefficients of 5A mutant and orthologous IDRs versus 

wildtype. Error bars represent 1.96 s.e. N=2 for wildtype, N=4 for 5A, C.gla and L.klu IDRs. 
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2.4.4 Basal net charge of diverged sequences is correlated with 
functional output  

Despite the sequence divergence of this IDR in orthologous yeast proteins, the IDRs we tested 

were able to mostly recapitulate function and fitness in S. cerevisiae. This led us to ask if there 

are certain features in the sequence that are contributing to function, and are therefore likely to 

be under selection. Although we know that the 5 MAPK consensus phosphorylation sites are 

important for function in S. cerevisiae (Hao et al., 2008; Yamamoto et al., 2010), the L.klu IDR 

only has 2 consensus sites (Figure 2-1b), and has a similar functional output (basal FUS1 

signaling and morphology) to S. cerevisiae (Figure 2-2). Further, the C.gla and L.klu IDRs 

conferred almost identical fitness in the S. cerevisiae background despite the former having 5 

consensus phosphorylation sites and the latter having 2 (Figure 2-3b). Taken together, these 

results suggest that the number of MAPK consensus phosphorylation sites alone does not explain 

the functional output of the Ste50 IDR. However, the multiply-phosphorylated Ste50 IDR’s 

interactions with membrane-bound Opy2 (Yamamoto et al., 2010) are reminiscent of the Ste5 

disordered signaling region in S. cerevisiae, whose multiple MAPK consensus phosphorylation 

sites are thought to electrostatically modulate its interactions with the membrane (Strickfaden et 

al., 2007). Net charge is also thought to be a general functional property of intrinsically 

disordered regions (Forman-Kay and Mittag, 2013; Uversky, 2013), and has been shown to 

modulate conformational and binding properties of other intrinsically disordered proteins (Mao 

et al., 2010; Mittag et al., 2010; Müller-Späth et al., 2010). We therefore speculated that the 

salient sequence feature influencing the functional output of the Ste50 IDR could be its net 

charge.  

Since our simplest quantitative measure of functional output is the basal expression of pFUS1, 

we correlated this with the basal net charge for each of the IDRs that we tested in our previous 

experiments (Figure 2-4; blue points). We calculated the basal net charge of each IDR by 

considering its net charge (sum of positive and negatively charged residues) including basal 

phosphorylation at up to two SP sites, as mass-spectrometry studies have found that up to two 

serines are phosphorylated in this IDR under basal conditions in S. cerevisiae (as reported in 

(Albuquerque et al., 2008; Bodenmiller et al., 2010; Gnad et al., 2009; Holt et al., 2009; Kanshin 

et al., 2015; Smolka et al., 2007; Soulard et al., 2010)). Therefore, if the IDR has two or more SP 

sites, we assume that two of these serines are phosphorylated under basal conditions, and add a 
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charge of -4 (-2 for each phosphorylation site) to the net charge of the IDR (see methods for 

details). To test the hypothesis that two SP sites are phosphorylated under basal conditions and 

contribute to net charge, we constructed an S.cerevisiae IDR where three out of five [S/T]P 

MAPK consensus phosphorylation sites were mutated to alanine, but two of the [S/T]P MAPK 

consensus phosphorylation sites were mutated to double glutamic acids (EE), as phospho-charge 

mimics (see Appendix Figure 1-3a). By our calculation, this IDR has the same basal net charge 

as the basally phosphorylated wildtype S.cerevisiae IDR. We find that this IDR (which we refer 

to as “WT-charge”) has wildtype-like pFUS1 expression levels (Appendix Figure 1-3b) and 

wildtype-like morphology (Appendix Figure 1-3c), supporting our assertion that basally 

phosphorylated sites in the Ste50 IDR contribute to net charge, which is associated with wildtype 

function.  

In order to further test the correlation between basal net charge and functional output in the form 

of pFUS1 expression, we engineered a series of IDRs broadly falling into the following 

categories: point mutations in the S. cerevisiae IDR, more examples of orthologous IDRs, and 

chimaeric IDRs (Appendix Figure 1-4). We also tested 16 other sequence features that could 

potentially impact the functional output of these IDRs (Appendix Figure 1-5), but only found a 

strong and significant positive correlation (R2=0.69, Bonferroni corrected P=0.001) between the 

basal net charge of these sequences and their functional output (Figure 2-4; black points). The 

positive relationship between charge and signalling is similar to previous evidence from Ste5 

suggesting that an increase in negatively charged residues weakens the interaction of the 

disordered region with the membrane, thus decreasing signal. Taken together, these data suggest 

that the amino acid composition of these sequences can modulate the functional output of the 

IDRs via the basal net charge. 
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Figure 2-4. Basal net charge and MAPK reporter pFUS1-GFP expression are positively 

correlated. Each point represents a different IDR genotype (with blue corresponding to 

previously shown orthologous IDRs, the wildtype S. cer IDR, and the 5A IDR mutant, and black 

corresponding to engineered IDRs with varying phosphorylatable residues, charge, and length). 

Error bars represent 1.96 s.e. 

 

2.4.5 Selection maintains functional output despite divergence at the 
primary sequence level 

We next wanted to understand whether selection is preserving the function of these IDRs, despite 

the apparent divergence at the level of the primary amino acid sequence. Because the basal net 

charge of the IDRs is strongly correlated with their functional output (Figure 2-4), we considered 

this to be a quantitative trait that selection could act on. Stabilizing selection is expected to 

decrease trait variance by removing extreme phenotypes from the population (Bedford and Hartl, 

2009; Hansen, 1997; Lande, 1976). We therefore used a phylogenetic comparative approach to 

test for reduced trait variance, which indicates selective constraint to preserve basal net charge 

across species (Figure 2-5a). To do so, we applied a Brownian motion (BM) model (Felsenstein, 

1973) (see methods) to estimate the evolutionary variance of basal net charge and compared it to 

a null expectation of disordered region evolution without selection on basal net charge.  
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Figure 2-5. Stabilizing selection constrains the evolution of basal net charge in Ste50 a) 

Phylogenetic trees inferred from Ste5 (left) and Ste50 (right) IDRs with constrained resolved 

species topology. Quantitative trait value (basal net charge) for each species is indicated on tree 

tips b) Log evolutionary variance compared between real proteins (black dots) and 1000 

simulated proteins (violin plots) for Ste5 (top) and Ste50. White boxes show interquartile range 

and median. Basal net charge was calculated as the sum of positively and negatively charged 
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residues accounting for basal phosphorylation of two ‘SP’ motifs, and with basal 

phosphorylation of two scrambled ‘PSX’ motifs (‘Scrambled basal net charge (control)’). 

Asterisks indicate statistical significance between the real and simulated proteins (<5% of the 

distribution – 50 proteins).  

 

To obtain an expectation for the evolution of basal net charge in the absence of selection on basal 

net charge, we simulated molecular evolution of the Ste50 IDR. To do so, we used a simulator 

that includes disordered region-specific substitution patterns as well as position-specific local 

evolutionary rates, such that short linear motifs in disordered regions are preserved in the 

simulations through purifying selection (Nguyen Ba et al., 2014, 2012) (see methods). In using 

this simulation as a null expectation, we do include selection that can be inferred from the 

multiple sequence alignments, but do not include additional selection on basal net charge. Thus 

our null expectation includes selection, and deviations from it imply additional selection that is 

not apparent in sequence alignments. (See discussion) 

We then compared the variance in the basal net charge inferred using the BM model on these 

simulated sequences to that inferred for the real Ste50 IDR alignment. We found that the 

variance of the real Ste50 IDR sequences was lower than all simulated sequences (Figure 2-5b, 

turquoise plots). Lower variance in basal net charge for Ste50 implies evolutionary constraint on 

basal net charge, consistent with stabilizing selection.  

To confirm that the findings were not a result of unrealistic assumptions in our simulations, as a 

negative control, we also performed the analysis with positive and negative charges reassigned to 

four different residues (asparagine, glycine, threonine, alanine) than those known to be charged 

under physiological pH conditions (glutamic acid, aspartic acid, lysine, arginine), and assuming 

basal phosphorylation of two ‘scrambled’ phosphorylation sites (‘PSX’ motifs, where X is any 

amino acid other than proline). We found that the evolutionary variance in these negative 

controls (scrambled charged residues and phosphorylation motifs) was not different from the null 

expectation (Figure 2-5b).  

We conducted the same analysis on Ste5, the previously mentioned signalling protein known to 

rely on net charge for functional output (Strickfaden et al., 2007). If selection is acting to 
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preserve basal net charge in the Ste5 disordered region, we also expect reduced evolutionary 

variance relative to simulations. We find similar results for Ste5 as for Ste50 (Figure 2-5b, grey 

plots), consistent with selection preserving its function, and suggesting that the phylogenetic 

comparative approach may be a general method to detect selection on basal net charge in 

diverged disordered regions. 

2.5 Discussion 

To date, experimental studies of protein evolution have focused on structured classes of proteins 

such as enzymes, where point mutations in the primary amino acid sequence are consistently 

coupled with functional divergence (Soskine and Tawfik, 2010). However, the functional 

consequences of evolutionary divergence in intrinsically disordered regions of proteins have 

remained largely unexplored, save for two in vitro studies (Daughdrill et al., 2007; Lemas et al., 

2016).  

In this study, we show that highly diverged, orthologous IDRs can perform similar signaling 

functions and confer similar fitness to a wildtype IDR in Saccharomyces cerevisiae. To do so, we 

took advantage of several quantitative signaling assays, including a dynamic fluorescence–

microscopy experiment that allows comparison of different genotypes in co-culture. This allows 

for quantitative comparisons of signaling dynamics by controlling for imaging and culture 

conditions.  

Using these quantitative assays, we found that the orthologous IDRs did not precisely 

recapitulate wildtype signaling and fitness in S. cerevisiae. Although we chose an IDR that is 

involved in conserved signaling pathways, there could be co-evolution of the orthologous IDRs 

with other proteins in their native signaling pathways or with the rest of the orthologous protein 

itself. Thus, inserting the orthologous IDRs in a S. cerevisiae context could be slightly 

detrimental to their function. This is an important caveat for experimental studies where protein 

regions are expressed outside their native context.    

We found evidence that the electrostatic charge of the Ste50 IDR is correlated with signaling 

output of the mating pathway. Although previous studies had identified the phosphorylation sites 

in this region as being important for signaling (Hao et al., 2008; Yamamoto et al., 2010), we 

found no correlation between just the number of MAPK consensus sites in the IDR and the 
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functional output we tested. We speculate that the phosphorylation sites contribute to the net 

charge of the region, and allow the cell to modulate the charge of the region in response to 

signals. This is consistent with the model for the evolution of phosphorylation sites as a 

mechanism for modulation of charge (Pearlman et al., 2011). The importance of the basal net 

charge of the Ste50 IDR in signaling function is also consistent with recent studies suggesting 

that ‘cryptic’ electrostatic properties encoded in amino acid sequences of IDRs are important for 

their function (Das et al., 2016; Pak et al., 2016). We speculate that the charge of the Ste50 IDR 

affects interactions with the cell membrane as has been demonstrated for Ste5 (Strickfaden et al., 

2007), but understanding the precise biophysical and biochemical properties of the Ste50 IDR 

that translate charge into signaling output is an important area for further study.  

Lastly, by treating the charge as a quantitative trait (Lande, 1976), we were able to apply 

phylogenetic comparative methods (Beaulieu et al., 2012; Felsenstein, 1973; Hansen, 1997) to 

the disordered protein sequences and found evidence that these electrostatic properties are likely 

under stabilizing selection. Because disordered regions show little conservation at the sequence 

level, functional prediction methods based on amino acid sequence similarity have limited 

power. We believe that phylogenetic comparative methods represent a new approach to detect 

functional features within disordered regions. Selection on quantitative traits is often inferred 

using the Ornstein-Uhlenbeck (OU) model, a stochastic model that includes the tendency of a 

trait to evolve towards an adaptive optimum (Hansen, 1997). However, due to the limitations of 

the OU model (Cooper et al., 2016), we used the simpler approach of testing for reductions in 

trait variance to infer selection (Bedford and Hartl, 2009).  

To test for selection, we compared real to simulated protein sequences. Evidence for selection 

may be represented by any disparity between these and real protein sequences. It is important to 

note that our simulations do include selection to preserve short conserved motifs (through 

position specific rates) as well as selection to retain the amino acid frequencies of disordered 

regions (through disordered region specific substitution models (Nguyen Ba et al., 2014, 2012)). 

Therefore, when we find evidence for selection, it is specifically evidence for conservation 

beyond what can be expected based on our models of disordered sequence evolution alone. Thus, 

we believe the reduction in variance observed in real proteins relative to simulated proteins is 

sufficient to conclude that the evolution of net charge within disordered regions is selectively 
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constrained. We propose that this is an example of a quantitative trait under stabilizing selection, 

in which the molecular phenotype of net charge is maintained within an optimal range.  

 

Our results suggest the following picture of disordered region evolution: rapid evolution within 

IDRs introduces many mutations of individually small fitness effects, creating slight 

perturbations in net charge that fall within the nearly neutral range. These mutations contribute to 

a significant amount of protein sequence divergence. However, stabilizing selection will remove 

mutations that perturb quantitative traits such as net charge beyond an acceptable range, leading 

to reduced evolutionary variance. This reflects a form of mutation-selection balance, and offers 

an explanation for the existence of highly divergent genotypes within disordered regions, despite 

functional constraints. Although mutational input in intrinsically disordered regions is sufficient 

to generate abundant variation between species, our results are evidence of stabilizing selection 

constraining a molecular phenotype in spite of this variation. 

2.6 Materials and methods 

2.6.1 Ste50 alignment and quantification of divergence 

The multiple sequence alignment for the Ste50 protein and its orthologs (MUSCLE (Edgar, 

2004)) as well as their illustrated phylogenetic relationship (Figure 2-1b) were acquired from the 

Yeast Gene Order Browser (YGOB) (Byrne and Wolfe, 2005) and visualized using Jalview 

(Waterhouse et al., 2009). Boundaries for the Ste50 IDR (A.A. 151-251) were acquired using 

disorder predictions from DISOPRED3 (Jones and Cozzetto, 2015). IDR boundaries for the 

Ste50 orthologs were determined via the multiple sequence alignment, using the boundaries from 

the S. cer Ste50 IDR. All pairwise-percentage identities were calculated using Jalview 

(Waterhouse et al., 2009), which calculates the pairwise percent identity as the number of 

identical residues divided by the number of aligned residues for each pairwise re-alignment. For 

the set of randomly scrambled IDRs, the amino acids in the IDRs from Ste50 and each of its 

orthologs were randomly scrambled 100 times (leaving the remainder of each protein 

unscrambled), and the average percent identity of each pairwise alignment was calculated 

(distribution of these averages is plotted in Figure 2-1c). For the comparison of pairwise percent 

identity to random sequences, we calculated the pairwise percent identity of 19 (same number as 



30 

 

the YGOB orthologs) random IDRs in the yeast proteome that had the same length as the Ste50 

IDR (YBL081W, YBR033W, YBR081C, YDR282C, YDR527W, YIL105C, YJL090C, 

YLL027W, YLR399C, YML045W, YMR266W, YMR277W, YNL047C, YNL288W, 

YOR153W, YOR316C, YPL053C, YPL270W, YPR115W). 

We also calculated dN/dS ratios for the IDR, SAM domain, and RA domain (Appendix Figure 1-

6). To do this, we first used PAL2NAL (Suyama et al., 2006) to obtain a codon alignment based 

on the protein alignment and DNA sequences of Ste50 for the Saccharomyces sensu stricto 

species available from YGOB (Saccharomyces cerevisiae, mikatae, kudriavzevii, and uvarum). 

We then used the PAML CODEML package (Yang, 2007) on the respective alignments and the 

corresponding species topology tree, and estimated the dN/dS ratio across the respective trees 

using the M0 model and the F1x4 codon frequency model. 

2.6.2 Strain construction and growth conditions 

All strains ( 

Appendix Table 1-1) were constructed in the S. cerevisiae BY4741 ssk22∆0::kanMX4 ssk2∆0 

background (ssk2 and ssk22 were knocked out to disable the partially redundant SLN1 branch of 

the HOG pathway, as Ste50 is only active in the SHO1 branch (Maeda et al., 1995)). All 

genomic transformations were confirmed by Sanger sequencing. Mutagenized IDRs, chimaeric 

IDRs, and reporters were constructed using Gibson cloning (Gibson et al., 2009) and standard 

site-directed PCR mutagenesis. IDRs from orthologous proteins were amplified from purified 

genomic DNA of C.glabrata, L.kluyveri, Z.rouxii, L.waltii, L.thermotolerans, and K.lactis (see 

Appendix Figure 1-4 for IDR a.a. boundaries for each species). All transformations were 

performed using the standard lithium acetate procedure (Schiestl and Gietz, 1989). Genomic 

integration of IDR transformants was done using the seamless Delitto Perfetto in vivo site-

directed mutagenesis method (Storici et al., 2001) at the endogenous Ste50 IDR locus. Genomic 

integration of the pFUS1-GFP reporter was done at the HO locus using a selectable marker 

(URA3). Genomic integration of pRPL39-ymCherry and pRPL39-mTagBFP2 was done at the 

pCAN1 locus using a selectable marker (LEU2). Hog1 was tagged with yemGFP at the C-

terminus using Delitto Perfetto. 
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All experiments were performed on log-phase cells grown at 30°C in rich (YEP) or synthetic 

complete (SC) media lacking appropriate nutrients to maintain selection of markers, unless 

otherwise stated. 2% glucose was used as the carbon source for all strains. Where necessary, 

Geneticin (G418) or 5-Fluoroorotic acid (5-FOA) (Boeke et al., 1987) were used for selection or 

counter-selection, respectively. 

2.6.3 Confocal microscopy and image analysis 

All images were acquired on a TCS-SP8 confocal microscope (Leica).  

For the morphology experiment, cells were imaged in brightfield on standard, uncoated glass 

slides. For quantification of morphology, single cells in micrographs were segmented using the 

thresholding function in ImageJ (Schneider et al., 2012) applied to brightfield images (see 

Appendix Figure 1-2 for example images) slightly below the focal plane. The features of each 

segmented cell, particularly the length of the major axis and circularity, were quantified in 

ImageJ, and Gaussian mixture modeling (using the “mclust” package in R (Fraley et al., 2012)) 

was employed to recognize budding cell (long major axis, lower circularity) and non-budding 

cell (shorter major axis, high circularity) clusters for each replicate experiment, which included 4 

micrographs for each of the 4 genotypes. In each replicate (16 images), we automatically 

identified 271-532 cells of each of the 4 genotypes.  

Abnormal cells (and mis-segmented objects) were exclusively assigned to the budding cell 

cluster by the Gaussian mixture model due to their elongated shape. To identify these abnormal 

cells, we quantified the Mahalanobis distance of each cell in the budding cell cluster to the centre 

of that cluster (identified independently in each replicate, which includes all 4 genotypes). The 

10% most distant cells to the centre of the budding cell cluster were classified as being 

abnormally-shaped (for each replicate). We divided the number of abnormally shaped cells by 

the total number cells of that genotype, and reported the average over the 3 replicates in Figure 

2-2c.  

To control for possible variation in the fraction of budded cells for each genotype (for example 

due to cell cycle effects of the mutations, or other types of variation) that could lead to a bias to 

identify abnormal cells, we also computed the percentage of budded cells classified as abnormal 
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for each genotype and found the same results as reported above: the 5A strain has a significantly 

higher fraction of abnormal cells than the WT or orthologous IDR strains. 

For the dynamic Hog1 signaling assay, co-cultured Hog1-GFP tagged wildtype and experimental 

strains (expressing constitutive ymCherry and mTagBFP2, respectively [see Strain construction, 

above]) were imaged simultaneously on glass dishes coated with 0.1 mg/mL concanavalin A 

(conA) as a binding agent (in order to allow for continuous imaging of the same cells in media 

over time) (as described in (Pemberton, 2014)). Briefly, glass dishes were spotted with conA 

solution for 15 minutes, after which point the conA was aspirated and the spot was washed with 

sterile water. Once the conA spot was dry, the cells were incubated on the conA spot for 10 

minutes, excess cells were washed off, and the dish was filled with synthetic complete media 

lacking histidine and leucine (the same media the cells were cultured in). Hog1-GFP was 

visualized in the cells at baseline levels every 5 minutes for 10 minutes, after which NaCl 

(dissolved in media) was added to the dish on the microscope stage to a final concentration of 0.5 

M, serving as the stimulus for the HOG pathway. After addition of NaCl, the same cells were 

imaged every 5 minutes for 60 minutes. Eight evenly-spaced z-slices covering approximately 6 

microns in the z-plane were imaged, and the maximum projections of these z-stacks were used 

for downstream analysis. After visualization of Hog1-GFP using the 488 nm laser, the 558 nm 

and 405 nm lasers were switched on to identify the genotype of the cells (wildtype or 

experimental IDR, based on which fluorescent tag [mCherry or mTagBFP2] was being 

constitutively expressed). We sequentially switched on the lasers in this way to prevent the cells 

from exposure to blue (UV) light during the experiment.  

Automated segmentation and quantification of Hog1-GFP time-lapse microscopy images was 

done using previously-described methods (Handfield et al., 2013). Images were manually filtered 

to remove out-of-focus or mis-segmented cells as well as buds lacking nuclei. Normalized spatial 

spread (Handfield et al., 2013) of Hog1-GFP fluorescence was used as a measure of nuclear 

localization. We plotted this measure over time for each cell, and reported the average area under 

the curve in Figure 2-2e. All comparisons are made between co-cultured cells that were imaged 

on the same dish and in the same field of view.    



33 

 

2.6.4 Quantification of basal FUS1 expression 

Flow cytometry was performed on a MACSQuant VYB (Miltenyi Biotec Inc.). GFP expression 

of the integrated pFUS1-GFP reporter (see Strain construction, above) was quantified for 50 000 

cells per biological replicate. All GFP intensity values were normalized to the mean wildtype 

GFP intensity value of the day the experiment was run. Normalized mean GFP intensity values 

are reported in Figure 2-2d.    

2.6.5 Quantitative fitness assay 

The quantitative fitness assay was adapted from (Breslow et al., 2008). Briefly, individual strains 

were grown for 48 hours at 30°C in 5mL of cultures on a rolling wheel. To start the competitive 

fitness experiment, equal proportions of wildtype and experimental strains (constitutively 

expressing ymCherry or ymTagBFP2) were mixed in deep 96-well blocks (100ul of a single 

ymCherry expressing strain and 100ul of a single ymTagBFP2 expressing strain into 600ul 

distilled water) at a final 1024-fold dilution. The cells were then serially diluted 1024-fold every 

24 hours. With an estimated 2x108 yeast cells per mL at saturation, the population size (Ne) is 

approximately 3.44x105.  

Each genotype was labeled with both fluorescent proteins, and there were four biological 

replicates of each competition (two with each colour combination). Therefore, we controlled for 

potential competitive advantage of expressing one fluorescent protein over the other by pooling 

equal replicates of each colour combination (e.g. two biological replicates of blue wildtype vs. 

red experimental strain plus two biological replicates of red wildtype vs. blue experimental 

strain). Using the MACSQuant VYB (Miltenyi Biotec Inc.) flow cytometer, 50 000 cells per 

competition were counted at the 20th and the 40th generation. We analysed the data using 

Flowing software (by Perttu Terho, freely available at flowingsoftware.com) to identify the two 

differently-coloured populations of cells. Gates for each population were drawn manually to 

exclude cells fluorescing in both red and blue channels (dead cells), and were kept consistent 

throughout the experiment. We then calculated the relative selection coefficient (s) as the 

increase in logarithmic ratio of the wildtype (WT) and experimental (EXP) cells every 

generation (Chao and Cox, 1983; Hegreness et al., 2006; Hietpas et al., 2011), as follows: 



34 

 

 

Where  indicates the number of generations, and  is the selection coefficient. We report  in 

Figure 2-3.  

2.6.6 Ste50 IDR sequence feature calculations 

We calculated a series of different features for the wildtype Ste50 IDR as well as each IDR that 

we engineered, and regressed the mean pFUS1-GFP levels as a quantitative functional output on 

these values (correlation shown in Figure 2-4). We calculated length, proportion of TP sites, SP 

sites, or TP/SP sites, number of TP sites, SP sites, or TP/SP sites, net charge of TP sites, SP sites, 

TP/SP sites, and net charge plus varying levels of basal phosphorylation on TP sites, SP sites, or 

TP/SP sites for each IDR. For net charge, we added positively charged residues (lysine, arginine) 

to negatively charged residues (glutamic acid, aspartic acid) for each IDR, unless otherwise 

indicated. For net charge with basal phosphorylation (“basal net charge”), we calculated net 

charge with the above-mentioned method, but added a charge of -2 for each phosphorylation site 

that could potentially be phosphorylated in the IDR. For example, if an IDR had 3 

phosphorylation sites and a net charge of +2, and we considered the net charge with basal 

phosphorylation of 2 SP/TP sites, we calculated a value of 2 + 2*-2 = -2. All trait calculations 

were made using base functions in R, except the proportion of TP, SP or TP/SP sites, which was 

calculated using the “protr” package in R (Xiao et al., 2015), the Henderson-Hasselbalch net 

charge and hydrophobicity calculations, which were done using the “Peptides” package in 

(Osorio et al., 2015), and the polarity calculation, which was done using the “alakazam” package 

in R (Gupta et al., 2015). 

2.6.7 Test for selection on IDR sequence features/quantitative traits 

To estimate evolutionary time for the phylogenetic comparative method, we assumed that 

evolutionary distance could serve as a proxy for evolutionary time (following (Bedford and 

Hartl, 2009)). Multiple sequence alignments for Ste5 and its orthologs were obtained from the 

Yeast Gene Order Browser (YGOB) (Byrne and Wolfe, 2005). All evolutionary analyses were 

performed on only the longest disordered region within Ste5; the boundaries of this region across 
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all orthologs were determined with DISOPRED3 (Jones and Cozzetto, 2015) predictions for S. 

cerevisiae, as with Ste50 (described above). Evolutionary distances for both Ste50 and Ste5 

disordered regions were estimated across the YGOB species’ phylogeny (Byrne and Wolfe, 

2005) using PAML (Yang, 2007) under the WAG model, with an initial kappa of 2, initial 

omega of .4, and clean data set to 0.  

To obtain the expectation of quantitative trait evolution in the absence of selection on the 

quantitative trait, we simulated a set of 1000 IDRs, following methods and using software from 

(Nguyen Ba et al., 2014). Briefly, we used a phylogenetic hidden Markov model to infer 1) the 

location of conserved functional SLiMs, 2) a column (per site) rate of evolution, and 3) a local 

(window of 31 residues) rate of evolution. The simulated disordered regions were generated 

using the S. cerevisiae disordered region as the root sequence, the constraints inferred from the 

phylogenetic hidden Markov model, as well as an amino acid substitution model that accounts 

for the exchangeability of amino acid pairs specific to disordered regions (Nguyen Ba et al., 

2014).  

We applied a Brownian motion (BM) model to both real and simulated sequences. BM is a 

model that can be used to describe the evolution of quantitative traits (Felsenstein, 1973). This 

model is given by the equation: dX(t) = 𝞂dB(t), where dX(t) represents the change in a trait 

value (X) over time (t), 𝞂 represents the intensity of random fluctuations, and B(t) is drawn at 

random from a normal distribution with a mean of 0 and a variance of 𝞂2 (Butler and King, 

2004). We applied this model using the “GEIGER” package in R (Harmon et al., 2008). Basal 

net charge was calculated (see Ste50 IDR sequence feature calculations, above) assuming basal 

phosphorylation of up to two ‘SP’ motifs (each phosphorylation event decreases the net charge 

by 2). As a negative control, we defined another quantitative trait, i.e., “scrambled” charge, with 

positive and negative charges reassigned to four different residues (asparagine, glycine, 

threonine, alanine) than those known to be charged under physiological pH conditions, and 

assuming basal phosphorylation of up to two “scrambled” phosphorylation sites (‘PSX’ motifs, 

where X is any amino acid other than proline).  

Estimation of evolutionary variance with Brownian motion assumes mutations have 

approximately symmetrically distributed effects on quantitative traits with mean equal to zero. 

We therefore tested the average effect of a random mutation on the basal net charge trait 
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(Appendix Figure 1-7). We did this by using evolver in the PAML package (Yang, 2007). We 

simulated nucleotide evolution using the Ste50 IDR nucleotide sequence as the root sequence, 

under the HKY85 model with parameters estimated from the Ste50 IDR alignment of sensu 

stricto species: kappa of 3.36, and base frequencies of 0.20370, 0.31145, 0.31481, and 0.17003 

for T, C, A, and G, respectively. We ran the simulation 2000 times, and calculated the difference 

in basal net charge from the initial root sequence for the 1472 Sequences that only had 1 

mutation.    
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3 Proteome-wide signatures of function in highly 
diverged intrinsically disordered regions 

3.1 Abstract 

Intrinsically disordered regions make up a large part of the proteome, but the sequence-to-

function relationship in these regions is poorly understood, in part because the primary amino 

acid sequences of these regions are poorly conserved in alignments. Here we use an evolutionary 

approach to detect molecular features that are preserved in the amino acid sequences of 

orthologous intrinsically disordered regions. We find that most disordered regions contain 

multiple molecular features that are preserved, and we define these as “evolutionary signatures” 

of disordered regions. We demonstrate that intrinsically disordered regions with similar 

evolutionary signatures can rescue function in vivo, and that groups of intrinsically disordered 

regions with similar evolutionary signatures are strongly enriched for functional annotations and 

phenotypes. We propose that evolutionary signatures can be used to predict function for many 

disordered regions from their amino acid sequences. 

3.2 Introduction 

Intrinsically disordered protein regions are associated with a large array of functions (reviewed 

in (Forman-Kay and Mittag, 2013)), including cell signaling (Iakoucheva et al., 2004; Tompa, 

2014; Wright and Dyson, 2014), mediation of protein-protein interactions (Borgia et al., 2018; 

Tang et al., 2012; Tompa et al., 2015), and the formation of membraneless organelles through 

phase separation (Banani et al., 2017; Franzmann et al., 2018; Nott et al., 2015; Patel et al., 2015; 

Riback et al., 2017). These regions are widespread in eukaryotic proteomes (Peng et al., 2013; 

Ward et al., 2004), but do not fold into stable secondary or tertiary structures, and do not 

typically perform enzymatic functions (Uversky, 2011). Although intrinsically disordered 

regions can readily be identified based on their primary amino acid sequence (Dosztányi et al., 

2005; Uversky, 2002), it remains a challenge to associate these regions with specific biological 

and biochemical functions based on their amino acid sequences, limiting systematic functional 

analysis. In stark contrast, for folded regions, protein function can often be predicted with high 

specificity based on the presence of conserved protein domains (El-Gebali et al., 2018) or 

enzymatic active sites (Ondrechen et al., 2001). Analogous methods to assign function to 
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intrinsically disordered regions based on evolutionary conservation (or other sequence 

properties) are of continuing research interest (reviewed in (Van Der Lee et al., 2014)). 

We and others (Davey et al., 2012; Nguyen Ba et al., 2012) have shown that short segments of 

evolutionary conservation in otherwise rapidly evolving disordered regions point to key 

functional residues, often important for posttranslational modifications, or other transient protein 

interactions (Tompa et al., 2014). However, these conserved segments make up a small fraction 

of disordered regions (5%), and the vast majority of disordered amino acids show little evidence 

for evolutionary constraint in alignments of primary amino acid sequences (Colak et al., 2013). It 

is currently unclear how intrinsically disordered regions persist at high frequency in the 

proteome, given these apparently low levels of evolutionary constraint. 

One hypothesis for the preponderance of disordered regions despite high amino acid sequence 

divergence, is that the “molecular features” of disordered regions that are important for function 

(such as length (Schlessinger et al., 2011), complexity (Alberti et al., 2009; Halfmann, 2016; 

Kato et al., 2012; Molliex et al., 2015), amino acid composition (Moesa et al., 2012), and net 

charge (Mao et al., 2010; Strickfaden et al., 2007; Zarin et al., 2017)) do not lead to detectable 

similarity in primary amino acid sequence alignments. Indeed, recently, evidence that such 

molecular features can be under evolutionary constraint has been reported for some proteins 

(Daughdrill et al., 2007; Lemas et al., 2016; Zarin et al., 2017). For example, we showed that 

signaling function of a disordered region in the Saccharomyces cerevisiae protein Ste50 appears 

to depend on its net charge, and we found evidence that this molecular feature is under 

evolutionary constraint, despite no evidence for homology of the primary amino acid sequence in 

alignments (Zarin et al., 2017). 

Here we sought to test whether evolutionary preservation of molecular features is a general 

property of highly diverged intrinsically disordered protein regions. To do so, we obtained a set 

of 82 sequence features reported in the literature to be important for disordered region function 

(Appendix Table 2-1). We computed these for S.cerevisiae intrinsically disordered regions and 

their orthologs, and compared them to simulations of molecular evolution where conserved 

segments (if any) are retained, but where there is no selection to retain molecular features 

(Nguyen Ba et al., 2014, 2012). Deviations from the simulations indicate that the highly diverged 
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intrinsically disordered regions are preserving molecular features during evolution through 

natural selection (Zarin et al., 2017). 

We find that many intrinsically disordered regions show evidence for selection on multiple 

molecular features, which we refer to as an “evolutionary signature”. Remarkably, we show that 

intrinsically disordered regions with similar evolutionary signatures appear to rescue function, 

while regions with very different signatures cannot, strongly supporting the idea that the 

preserved molecular features are important for disordered region function. By clustering 

intrinsically disordered regions based on these evolutionary signatures, we obtain (to our 

knowledge) the first global view of the functional landscape of these enigmatic protein regions. 

We recover patterns of molecular features known to be associated with intrinsically disordered 

region functions such as subcellular organization and targeting signals. We also identify new 

patterns of molecular features not previously associated with functions of disordered regions 

such as DNA repair and ribosome biogenesis. Finally, we show that similarity of evolutionary 

signatures can generate hypotheses about the function of completely disordered proteins. Taken 

together, our results indicate that evolutionary constraint on molecular features in disordered 

regions is so widespread that sequence-based prediction of their functions should be possible 

based on molecular features. 

3.3 Results 

3.3.1 Proteome-wide evolutionary analysis reveals evolutionarily 
constrained sequence features are widespread in highly diverged 
intrinsically disordered regions 

We identified more than 5000 intrinsically disordered regions (IDRs) in the S.cerevisiae 

proteome and quantified their evolutionary divergence (see Methods). As expected, we found 

that the IDRs evolve more rapidly than the regions that were not identified as disordered 

(Appendix Figure 2-1). We also confirmed that the vast majority of these IDRs are distinct from 

Pfam domains (Appendix Figure 2-2). These results are consistent with previous reports (Brown 

et al., 2010; Colak et al., 2013; de la Chaux et al., 2007; Khan et al., 2015; Light et al., 2013; 

Tóth-Petróczy and Tawfik, 2013) that the primary amino acid sequence alignments of IDRs 

show high levels of divergence and it is not possible to annotate IDR functions using standard 

homology-based approaches. 
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To test for selection on molecular features in these IDRs, we applied a method that we recently 

used to show evidence of selection on an IDR in the S.cerevisiae Ste50 protein (Zarin et al., 

2017). We obtained 82 molecular features that have been reported or hypothesized to be 

important for IDR function (Appendix Table 2-1) and tested whether these molecular features 

are under selection in the S. cerevisiae IDRs (see Methods for details). Briefly, we compare the 

distribution of a given molecular feature in a set of orthologous IDRs to a null expectation, 

which is formed by simulating the evolution of each IDR. When the mean or variance of the 

molecular feature across the orthologous IDRs deviates from the distribution of means or 

variances in our null expectation, we predict that this feature is under selection, and thus could be 

important for the function of the IDR in question. For example, in the Ste50 IDR, as reported 

previously (Zarin et al., 2017), we found that the variance of the net charge with phosphorylation 

of the IDR falls outside of our null expectation, while the mean falls within our null expectation 

(Figure 3-1A). 

We applied this analysis to 5149 IDRs (see Methods) and computed the percentage of IDRs 

where the evolution of each molecular feature fell beyond our null expectation (empirical 

p<0.01, Figure 3-1B). We find that charge properties such as net charge and acidic residue 

content are most likely to deviate from our null expectation (more than 50% of IDRs) (Figure 3-

1B). This is in contrast to non-conserved motif density, which deviates from our null expectation 

in 21.6% of IDRs at most (for CDK phosphorylation consensus sites). Other molecular features 

that frequently deviate from our null expectation are sequence complexity (43.0%), asparagine 

residue content (43.3%), and physicochemical features such as isoelectric point (53.9%). We also 

found that the mean of each molecular feature deviates from our null expectation more often than 

the variance (Figure 3-1B). These results suggest that there are many more molecular features 

that are under selection in IDRs than is currently appreciated (Daughdrill et al., 2007; Lemas et 

al., 2016; Zarin et al., 2017). 
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Figure 3-1. Proteome-wide evolutionary analysis reveals evolutionarily constrained sequence 

features are widespread in highly diverged intrinsically disordered regions. A) Left: Mean versus 

log variance of the “net charge with phosphorylation” molecular feature for the real Ste50 IDR 

(a.a. 152-250) ortholog set and simulated Ste50 orthologous IDR sets (N=1000). Right: Example 

simulated Ste50 orthologous IDR sets (no. 663 and no. 56 out of 1000) and the real Ste50 IDR 

and its orthologs, coloured according to percent identity in the primary amino acid sequence. B) 
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Percentage of IDRs that are significantly deviating from simulations in mean, log variance, or 

both mean and log variance of each molecular feature. C) Frequency [1+log(frequency)] of 

number of significant molecular features per IDR for the real IDRs (yellow) versus the random 

expectation (blue) obtained from a set of simulated IDRs.  

 

Next, we quantified the number of molecular features that are significant per IDR, assigning 

significance to a molecular feature if either the mean, variance, or both mean and variance of the 

molecular feature deviated from our null expectation (empirical p<0.01, Figure 3-1C). 

Surprisingly, many IDRs have many significant molecular features, with a median of 15 

significant molecular features per IDR (compared to 1 significant feature expected by chance; 

see Methods). Although many of our features are correlated (see Discussion), these results 

suggest that the deviation from our expectations of molecular feature evolution is not due to a 

few outlier IDRs, but rather that most IDRs tend to have multiple molecular features that are 

under selection.  

3.3.2 Intrinsically disordered regions with similar molecular features can 
perform similar functions despite negligible similarity of primary 
amino acid sequences 

The analysis above indicates that highly diverged IDRs typically contain multiple molecular 

features that are under selection. To summarize the set of preserved molecular features in each 

IDR, we computed Z-scores comparing either the observed mean or variance of each molecular 

feature in the orthologous IDRs to our simulations (see Methods). We call these summaries of 

evolution of molecular features (vectors of Z-scores) “evolutionary signatures”. If the features 

are important for function, IDRs with similar evolutionary signatures are predicted to perform (or 

at least be capable of performing) similar molecular functions. To test this hypothesis, we 

replaced the endogenous Ste50 IDR with several IDRs from functionally unrelated proteins: 

Pex5, a peroxisomal signal receptor (Erdmann and Blobel, 1996), Stp4, a predicted transcription 

factor (Abdel-Sater et al., 2004), and Rad26, a DNA-dependent ATPase involved in 

Transcription Coupled Repair (Gregory and Sweder, 2001; Guzder et al., 1996) (Figure 3-2A). 

Ste50 is an adaptor protein in the High Osmolarity Glycerol (HOG) and mating pathways (Hao 

et al., 2008; Jansen et al., 2001; Tatebayashi et al., 2007; Truckses et al., 2006; Yamamoto et al., 
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2010) whose IDR is important for basal mating pathway activity (as measured by expression of a 

reporter driven by the Fus1 promoter) (Hao et al., 2008; Zarin et al., 2017). The IDRs that we 

used to replace the Ste50 IDR all have negligible similarity when their primary amino acid 

sequences are aligned, but vary in the similarity of their evolutionary signatures (to the Ste50 

IDR, Figure 3-2A). We found that the basal mating reporter expression in each strain 

corresponded to how similar the evolutionary signature of the replacing IDR was to that of the 

Ste50 IDR (all mutants significantly different from wildtype and each other, Wilcoxon test 

p<0.05, Figure 3-2B). To further assay mating pathway activity, we exposed the wildtype and 

chimaeric strains with IDRs from Pex5, Stp4 and Rad26 to mating pheromone. We found that 

the two chimaeric strains that were more similar in their evolutionary signatures to the wildtype 

(Pex5 and Stp4) began the process of “shmooing”, or responding to pheromone, whereas the 

strain that had the IDR with the most different evolutionary signature (Rad 26) could not shmoo 

(Figure 3-2C; full micrographs in Appendix Figure 2-3). That the evolutionary signature of 

molecular features of IDRs can be used to predict which IDRs can rescue signaling function 

suggests that these signatures may be associated with IDR function. 
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Figure 3-2. Intrinsically disordered regions with similar evolutionary signatures can rescue 

wildtype phenotypes, while those with different evolutionary signatures cannot. A) Multiple 

sequence alignment of Ste50 IDR (a.a. 152-250), Pex5 IDR (a.a. 77-161), Stp4 (a.a. 144-256), 

and Rad26 IDR (a.a. 163-239) shows negligible similarity when their primary amino acid 

sequences are aligned, while evolutionary signatures show that the Pex5 and Stp4 IDRs are more 

similar to the Ste50 IDR than the Rad26 IDR. IDRs are presented in order of increasing 

Euclidian distance between their evolutionary signatures. The Ste50 IDR is located between the 
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Sterile Alpha Motif (SAM) and Ras Association (RA) domains in the Ste50 protein. B) Boxplots 

show distribution of values corresponding to basal Fus1pr-GFP activity in an S.cerevisiae strain 

with the wildtype Ste50 IDR compared to strains with the Pex5, Stp4, or Rad26 IDR swapped to 

replace the Ste50 IDR in the genome. Boxplot boxes represent the 25th-75th percentile of the data, 

the black line represents the median, and whiskers represent 1.5*the interquartile range. Outliers 

fall outside the 1.5*interquartile range, and are represented by unfilled circles. Distribution of 

GFP activity is based on quantification of GFP intensity in single cells pooled from 4 colonies 

(which we define as biological replicates) for each strain; sample sizes for each distribution are 

as follows: WT n=588 cells, Pex5 IDR n=196 cells, Stp4 IDR n=228 cells, Rad26 IDR n=271 

cells. C) Brightfield micrographs showing each strain from part B following exposure to 

pheromone. Shmooing cells are those which have elongated cell shape, i.e. mating projections.  

 

3.3.3 Proteome-wide view of evolutionary signatures in disordered 
regions reveals association with function  

To test the association of function with evolutionary signatures in highly diverged IDRs, we 

clustered and visualized the evolutionary signatures for 4646 IDRs in the proteome (see 

Methods) (Figure 3-3). Remarkably, the evolutionary signatures reveal a global view of 

disordered region function. The IDRs fall into at least 23 clusters based on similarity of their 

evolutionary signatures (groups A through W, Figure 3-3) that are significantly associated with 

specific biological functions (enriched for Gene Ontology (GO) term, phenotype, and/or 

literature annotations, False Discovery Rate [FDR]=5%, Benjamini-Hochberg corrected) (Table 

3-1; full table of enrichments in supplementary data; clustered IDRs and evolutionary signatures 

in supplementary data). Given that this level of specificity of biological information has not been 

previously associated with sequence properties of highly diverged IDRs, we performed a series 

of controls, ensuring that our clusters are not based on homology between IDRs, that our 

annotation enrichment results are not due to a mis-specification of the null hypothesis, and to 

confirm that these annotation enrichment results cannot be obtained simply based on amino acid 

frequencies of IDRs (Appendix Table 2-2; see Methods).  

 



47 

 

 

Figure 3-3.  Clustering evolutionary signatures shows that IDRs in the proteome share 

evolutionary signatures, and that these clusters of IDRs are associated with specific biological 
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functions. A-W show clusters significantly enriched for annotations (see Table 3-1; full table of 

enrichments in supplementary data). Cluster names represent summary of enriched annotations. 

Table 3-1.  Top 5 enriched GO term annotations and top 3 enriched phenotype annotations for 

each cluster (in order of decreasing corrected p-values). Full table of >1000 significant GO term, 

phenotype, and literature enrichments in supplementary data.   

ID Annotations (Positive proteins in cluster/Total proteins in cluster) Corrected 
P <= 

A nucleus (201/295), rRNA processing (40/295), ribosome biogenesis (39/295), nucleolus (50/295), 
maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) (14/295), 

inviable (110/295), RNA.accumulation..decreased (46/295), RNA.accumulation..increased (39/295) 

1.46e-03 

B amino acid transmembrane transport (8/140), amino acid transmembrane transporter activity (8/140), 
transmembrane transport (21/140), amino acid transport (9/140) 

1.11e-02 

C nucleolus (42/159), rRNA processing (27/159), ribosome biogenesis (26/159), nucleus (107/159), 
preribosome, large subunit precursor (13/159), RNA.accumulation..increased (28/159), inviable (60/159), 

RNA.accumulation..decreased (27/159) 

4.88e-03 

D nucleus (72/86), DNA repair (20/86), cellular response to DNA damage stimulus (18/86), DNA binding 
(28/86), damaged DNA binding (7/86), mutation.frequency..increased (14/86), 

chromosome.plasmid.maintenance..decreased (29/86), 
cell.cycle.progression.in.S.phase..increased.duration (4/86) 

4.21e-02 

E motor activity (4/89), ATP binding (25/89), ASTRA complex (3/89) 4.23e-02 

F 90S preribosome (11/73), rRNA processing (14/73), ribosome biogenesis (14/73), endonucleolytic cleavage 
in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 

5.8S rRNA, LSU-rRNA) (6/73), nucleolus (15/73) 

2.49e-02 

G nuclear pore nuclear basket (4/35), nucleocytoplasmic transporter activity (4/35) 4.54e-02 

H nucleic acid binding (16/66), translational initiation (7/66), cytoplasmic stress granule (9/66), mRNA binding 
(13/66), translation initiation factor activity (6/66) 

3.60e-03 

I regulation of transcription, DNA-templated (23/52), transcription, DNA-templated (22/52), positive regulation 
of transcription from RNA polymerase II promoter (12/52) 

6.58e-03 

J RNA polymerase II transcription factor activity, sequence-specific DNA binding (10/52), positive regulation of 
transcription from RNA polymerase II promoter (14/52), regulation of transcription, DNA-templated (21/52), 

RNA polymerase II core promoter proximal region sequence-specific DNA binding (9/52), transcription, 
DNA-templated (19/52) 

1.22e-02 

K trehalose biosynthetic process (2/19), Golgi to endosome transport (3/19), ubiquitin binding (4/19) 3.81e-02 

L sequence-specific DNA binding (21/70), RNA polymerase II core promoter proximal region sequence-
specific DNA binding (13/70), DNA binding (27/70), positive regulation of transcription from RNA polymerase 

II promoter (17/70), regulation of transcription, DNA-templated (27/70) 

6.75e-05 

M structural constituent of nuclear pore (8/54), protein targeting to nuclear inner membrane (5/54), nuclear 
pore central transport channel (6/54), mRNA transport (9/54), nuclear pore (8/54) 

5.87e-05 

N sequence-specific DNA binding (18/39), DNA binding (19/39), zinc ion binding (11/39), regulation of 
transcription, DNA-templated (19/39), RNA polymerase II transcription factor activity, sequence-specific 

DNA binding (8/39) 

6.21e-04 

O regulation of transcription, DNA-templated (53/130), transcription, DNA-templated (50/130), sequence-
specific DNA binding (25/130), positive regulation of transcription from RNA polymerase II promoter 

(26/130), nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay (8/130), 
endocytosis..decreased (26/130), invasive.growth..increased (37/130), cell.shape..abnormal (15/130) 

1.29e-02 

P intracellular signal transduction (19/129), protein kinase activity (22/129), protein serine/threonine kinase 
activity (22/129), kinase activity (24/129), phosphorylation (24/129) 

3.34e-06 

Q extracellular region (33/67), fungal-type cell wall (30/67), cell wall (25/67), anchored component of 
membrane (20/67), cell wall organization (23/67) 

1.01e-20 

R positive regulation of transcription from RNA polymerase II promoter (21/119), DNA binding (32/119), RNA 
polymerase II core promoter proximal region sequence-specific DNA binding (12/119), transcription factor 

activity, sequence-specific DNA binding (10/119), transcription, DNA-templated (33/119) 

1.55e-02 

S integral component of membrane (59/133), membrane (68/133), fungal-type vacuole membrane (18/133), 
vacuole (18/133), L-tyrosine transmembrane transporter activity (4/133) 

5.48e-03 

T stress-activated protein kinase signaling cascade (4/33), regulation of apoptotic process (4/33) 3.57e-02 

U cytoskeleton (15/80), spindle (6/80), kinetochore microtubule (3/80) 1.47e-02 

V fungal-type vacuole (15/43), mannosylation (7/43), integral component of membrane (28/43), cell wall 
mannoprotein biosynthetic process (6/43), alpha-1,6-mannosyltransferase activity (4/43) 

1.45e-05 

W mitochondrion (144/165), mitochondrial inner membrane (57/165), mitochondrial matrix (34/165), oxidation-
reduction process (31/165), mitochondrial translation (22/165), respiratory.growth..decreased.rate (81/165), 

respiratory.growth..absent (71/165), mitochondrial.genome.maintenance..absent (25/165) 

3.15e-15 
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Several of the functions that we find enriched within our clusters have been previously 

associated with molecular features of IDRs, which we recover in our analysis. For example, we 

find a cluster that is associated with “nucleocytoplasmic transporter activity” (cluster M) that 

includes IDRs from FG-NUP proteins Nup42, Nup145, Nup57, Nup49, Nup116, and Nup100 

that form part of the nuclear pore central transport channel (Alber et al., 2007). In cluster M, we 

find molecular features such as increased asparagine content, increased polar residue content, 

and increased proline and charged residue demixing (“Omega” (Martin et al., 2016)) in addition 

to the well-known “FG” repeats that are found in the FG-NUP IDRs (reviewed in (Terry and 

Wente, 2009)). Another interesting example is cluster O, which contains IDRs from proteins that 

are enriched for a wide range of annotations such as “P-body”, “cytoplasmic stress granule”, 

“actin cortical patch”, and “DNA binding”. Cluster O contains IDRs from proteins associated 

with phase separation and membraneless organelles such as Sup35 (Franzmann et al., 2018) and 

Dhh1 (Protter et al., 2018). The evolutionary signatures for the IDRs in this cluster include 

features that are typically associated with so-called “prionogenic”, low complexity disordered 

regions, such as increased mean polyglutamine repeats (Alberti et al., 2009), but also indicate 

that there are other relevant molecular features for this set of disordered regions (Figure 3-4A). 

For example, in these regions, the variance of the net charge is reduced, and charged residues are 

depleted during evolution. These sequence features are illustrated in Figure 3-4B, where we 

compare the presence of glutamine and charged residues in an example disordered region from 

this cluster (Ccr4; a protein that is known to accumulate in P-bodies (Teixeira and Parker, 2007)) 

to an example from the corresponding simulation (Figure 3-4B). Taken together, these results 

indicate that our analysis captures molecular features that have been previously associated with 

IDR functions, and suggests additional molecular features in these IDRs that may be important 

for their functions.  
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Figure 3-4.  Evolutionary signatures in cluster O contain some molecular features that are 

typically associated with IDRs as well as some that are not. A) Pattern of evolutionary signatures 

in cluster O. B) Example disordered region from cluster O, Ccr4, with a subset of highlighted 

molecular features compared between its real set of orthologs and an example set of simulated 
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orthologous IDRs. Species included in phylogeny in order from top to bottom are S.cerevisiae, 

Saccharomyces mikatae, Saccharomyces kudriavzevii, Saccharomyces uvarum, Candida 

glabrata, Kazachstania naganishii, Naumovozyma castellii, Naumovozyma dairenensis, 

Tetrapisispora blattae, Tetrapisispora phaffii, Vanderwaltozyma polyspora, Zygosaccharomyces 

rouxii, Torulaspora delbrueckii, Kluyveromyces lactis, Eremothecium (Ashbya) cymbalariae, 

Lachancea waltii. 

 

We also find functions associated with our clusters that have not been previously associated with 

molecular features of IDRs. For example, cluster D (Figure 3-5A) is associated with DNA repair, 

and its evolutionary signature contains increased mean “Kappa” (Das and Pappu, 2013) and 

decreased mean “Sequence Charge Decoration” (SCD) (Sawle and Ghosh, 2015), both of which 

indicate that there is an increased separation of positive and negatively charged residues in these 

IDRs compared to our null expectation. This is illustrated by the IDR from Srs2, a protein that is 

known to be involved in DNA repair (Aboussekhra et al., 1989; Yeung and Durocher, 2011), and 

shows high charge separation compared to an example corresponding simulation (Figure 5B). 

The evolutionary signature for this cluster also reveals an increased mean fraction of charged 

residues and negatively charged residues in particular (Figure 3-5A), which is also clear in the 

comparison between the real Srs2 orthologs and the simulation (Figure 3-5B). Although acidic 

stretches have been associated with IDRs in histone chaperones (Warren and Shechter, 2017), to 

our knowledge, the separation of oppositely charged residues has not been associated with the 

wider functional class of DNA repair IDRs.  
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Figure 3-5.  Cluster D contains disordered regions associated with DNA repair. A) Pattern of 

evolutionary signatures in cluster D. B) Example disordered region from cluster D, Srs2, with a 

subset of highlighted molecular features compared between its real set of orthologs and an 

example set of simulated orthologous IDRs. Species included in phylogeny in order from top to 
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bottom are S.cerevisiae, S.mikatae, S.kudriavzevii, S.uvarum, C.glabrata, Kazachstania africana, 

K.naganishii, N.castellii, N.dairenensis, T.phaffii, Z.rouxii, T.delbrueckii, K.lactis, 

Eremothecium (Ashbya) gossypii, E.cymbalariae, Lachancea kluyveri, Lachancea 

thermotolerans, L.waltii. 

 

Our analysis also indicates that there is not necessarily a 1:1 mapping between IDRs with shared 

evolutionary signatures and current protein functional annotations. For example, we find three 

clusters associated with ribosome biogenesis (cluster A, C, F) that cannot be distinguished based 

on their enriched GO terms. The largest of these is cluster A, where 201/295 proteins have a 

“nucleus” annotation, and 110/295 are essential proteins (“inviable” deletion phenotype). This 

cluster is also enriched for several phenotypes associated with RNA accumulation (Table 3-1, 

cluster A; see supplementary data for full list of significant enrichments). Cluster A contains 

highly acidic IDRs with CKII phosphorylation consensus sites. CKII has been previously 

associated with nucleolar organization (Louvet et al., 2006), and a previous analysis of non-

conserved consensus phosphorylation sites found ribosome biogenesis as strongly enriched in 

predicted CKII targets (A. C. W. Lai et al., 2012). In contrast, cluster C shares neither of these 

molecular features with cluster A, and cluster F shares only highly acidic residue content. 

Interestingly, cluster C contains increased mean polylysine repeats, and is significantly enriched 

for proteins that have been experimentally verified as targets for lysine polyphosphorylation 

(Bentley-DeSousa et al., 2018) (p=2.7x10-3, hypergeometric test). Overall, although the IDRs in 

these clusters share different evolutionary signatures, they are all found in proteins associated 

with ribosome biogenesis. We hypothesize that these different signatures point to different 

functions relating to ribosome biogenesis, but we have no indication of what these might be 

based on current protein annotations (see Discussion).  

We find similar observations in multiple clusters that have distinct evolutionary signatures 

enriched for terms associated with regulation of transcription (clusters I, J, L, N, O, R). These 

clusters are not clearly separable based on mechanistic steps of transcription (such as sequence-

specific DNA binding, chromatin remodeling, etc.). Some of these clusters exhibit molecular 

features that have been associated with different classes of transcriptional activation domains that 

are based on amino acid composition (reviewed in (Frietze and Farnham, 2011)). For example, 
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cluster J, O and N have increased glutamine residue content, while cluster N has increased 

proline residue content. However, clusters I and R have no amino acid composition bias, while 

cluster N has increased proline-directed phosphorylation consensus sites, suggesting post-

translational modifications. This indicates that our analysis reveals new sub-classifications of 

transcription-associated IDRs. While we hypothesize that these IDRs have different functions, 

once more we have no indication of what these functions could be based on current protein 

annotations (see Discussion).   

3.3.4 A cluster of evolutionary signatures is associated with N-terminal 
mitochondrial targeting signals 

One of our clusters of intrinsically disordered regions is exceptionally strongly associated with 

the mitochondrion (144/165 proteins in the cluster) and other annotations that are related to 

mitochondrial localization and function (for example, 81/165 proteins in the cluster have shown 

a decreased respiratory growth phenotype) (Table 3-1, cluster W; see supplementary data for full 

list of significant enrichments). The vast majority of mitochondrial proteins are synthesized with 

N-terminal pre-sequences (Maccecchini et al., 1979) (also known as N-terminal targeting 

signals) that are cleaved upon import (Vögtle et al., 2009) and are thought to sample dynamic 

structural configurations (Saitoh et al., 2011, 2007) (Figure 3-6A). Since 145/165 of the 

disordered regions in this cluster are N-terminal, we hypothesized that this cluster contains 

disordered regions that are associated with mitochondrial targeting signals (Vögtle et al., 2009). 

In line with this hypothesis, we find previously described sequence features of mitochondrial N-

terminal targeting signals in our evolutionary signatures; for example, these IDRs are depleted of 

negatively charged residues, have an abundance of positively charged residues, and are much 

more hydrophobic than our null expectation (Appendix Figure 2-4A) (Garg and Gould, 2016; 

Vögtle et al., 2009). Examples of disordered regions in this cluster include those of the Heme A 

synthase Cox15 and the mitochondrial inner membrane ABC (ATP-binding cassette) transporter 

Atm1 (Appendix Figure 2-4B). In order to test our hypothesis that this cluster of evolutionary 

signatures identifies mitochondrial N-terminal targeting signals, we used a recently published 

tool that scores the probability that a sequence is a mitochondrial targeting signal (Fukasawa et 

al., 2015). Using this tool, we find that the IDRs in cluster W have a much higher probability of 

being mitochondrial targeting signals than any other cluster with enriched annotations in our 

analysis (Bonferroni-corrected p ≤ 6.5x10-11, Wilcoxon test) (Figure 3-6B, red box). 
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Interestingly, the adjacent cluster V (Figure 3-6B, purple box), which we hypothesize to contain 

targeting sequences for the endoplasmic reticulum, is distinct from cluster W in this analysis.  

 

Figure 3-6. Cluster W is associated with mitochondrial N-terminal targeting signals. A) 

Schematic (not to scale) showing the path of a mitochondrial precursor peptide (with N-terminal 

targeting sequence in red) from the cytosol, where it is translated, to the mitochondrial matrix, 

where the peptide folds and targeting sequence is cleaved. B) Violin plots (median indicated by 

black dot, thick black line showing 25th-75th percentile, and whiskers showing outliers) show 

distributions of mitochondrial presequence probability scores for all IDRs in each cluster. The 
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cluster that we predict to contain mitochondrial N-terminal targeting signals is outlined in red, 

while the cluster that we predict to contain endoplasmic reticulum targeting signals is outlined in 

purple. C) Micrographs of S.cerevisiae strains in which Cox15 is tagged with GFP, with either 

the wildtype Cox15 IDR, deletion of the Cox15 IDR, replacement of the Cox15 IDR with the 

Atm1 IDR (also in the mitochondrial targeting signal cluster), or replacement of the Cox15 IDR 

with the Emp47 IDR (from the endoplasmic reticulum targeting signal cluster).    

 

If the specificity of the function of the IDRs in this cluster is strong, we predict that swapping an 

IDR from cluster W with that of a verified mitochondrial targeting sequence would result in 

correct localization to the mitochondria, while swapping an IDR from a different cluster would 

not. To test this, we first used the (uncharacterized) disordered region from Atm1 that falls into 

cluster W to replace that of Cox15, which also falls into cluster W and is an experimentally 

verified mitochondrial targeting sequence (Vögtle et al., 2009) (Figure 3-6C). In accordance with 

our hypothesis, we find that GFP-tagged Cox15 correctly localizes to the mitochondria when its 

disordered region is swapped with that of Atm1, but does not localize correctly when its 

disordered region is deleted (Figure 3-6C; full micrographs in Appendix Figure 2-5). We also 

repeated this experiment with another protein that has an experimentally verified N-terminal 

mitochondrial targeting sequence, Mdl2, and found the same results (Appendix Figure 2-6). 

Next, we replaced the Cox15 IDR with the disordered region of Emp47, which has an 

evolutionary signature that we predict to be associated with targeting signals for the endoplasmic 

reticulum (cluster V). In this case, as we predicted, we found no mitochondrial localization of 

Cox15-GFP. Importantly, these putative targeting signals have no detectible similarity when 

their primary amino acid sequences are aligned, and we therefore suggest that the similarity in 

their molecular features is preserved by stabilizing selection (see Discussion). These results 

confirm that IDRs with similar evolutionary signatures can rescue subcellular targeting 

functions, and suggest that the evolutionary signatures are specific enough to predict function of 

at least some IDRs.  
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3.3.5 Evolutionary signatures of function can be used for functional 
annotation of fully disordered proteins 

A major challenge to proteome-wide analysis of IDRs is the limited applicability of homology-

based sequence analysis. Proteins with a mixture of disordered regions and structured domains 

can be assigned function based on homology to their structured domains, but fully disordered 

proteins are much more difficult to classify (reviewed in (Van Der Lee et al., 2014)). We 

therefore asked whether hypotheses about functions of fully disordered proteins could be 

generated using evolutionary signatures. We identified ten yeast proteins of unknown function 

that are predicted to be most disordered (see Methods). To predict function according to our 

clustering analysis, we simply assigned them the annotation of the cluster in which they fell 

(Table 3-2). For example, Rnq1 has been extensively studied as a “yeast prion”, but there is no 

clear function associated with this protein under normal conditions (Kroschwald et al., 2015; 

Sondheimer and Lindquist, 2000; Treusch and Lindquist, 2012). Interestingly, Rnq1 falls into 

our cluster of disordered regions that are associated with nucleocytoplasmic transport (cluster M) 

and the nuclear pore central transport channel. While Rnq1 is annotated with a cytosolic 

localization, an RNQ1 deletion was recently shown to cause nuclear aggregation of the polyQ-

expanded huntingtin exon1 (Httex1) in a model of Huntington’s disease (Zheng et al., 2017). 

Therefore, we propose a role for Rnq1 in nucleocytoplasmic transport. For some of these largely 

disordered proteins, we obtain large disordered segments falling into multiple clusters (indicated 

by more than one cluster ID in Table 3-2), suggesting more than one possible function for the 

protein (see Discussion). This analysis illustrates how evolutionary signatures can be used to 

generate hypotheses of function for fully disordered proteins. 

 

Table 3-2. Evolutionary signatures of function can be used for functional annotation of 

previously uncharacterized proteins and IDRs. 

ID Name Description % Disorder Cluster ID 

YCL028W RNQ1 Protein whose biological role is 

unknown; localizes to the cytosol 
96 M: Nucleocytoplasmic 

transport 

YKL105C SEG2 Protein whose biological role is 

unknown; localizes to the cell 

periphery 

92 P: Signal transduction 

YGR196C FYV8 Protein whose biological role is 

unknown; localizes to the 

89 A: Ribosome biogenesis 
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cytoplasm in a large-scale study R: Transcription 

YGL023C PIB2 Protein whose biological role is 

unknown; localizes to the 

mitochondrion in a large-scale 

study 

86 R: Transcription 

YOL036W  Protein whose biological role and 

cellular location are unknown 
84 P: Signal transduction 

R: Transcription 

YNL176C TDA7 Protein whose biological role is 

unknown; localizes to the vacuole 
83 Q: Cell wall organization 

YFR016C  Protein whose biological role is 

unknown; localizes to both the 

cytoplasm and bud in a large-

scale study 

83 A: Ribosome biogenesis 

YBL081W  Protein whose biological role and 

cellular location are unknown 
82 M: Nucleocytoplasmic 

transport 

YBR016W  Protein whose biological role is 

unknown; localizes to the bud 

membrane and the mating 

projection membrane 

82 O: Sup35-like 

YOL070C NBA1 Protein whose biological role is 

unknown; localizes to the bud 

neck and cytoplasm and 

colocalizes with ribosomes in 

multiple large-scale studies 

81 Does not fall into 

annotated cluster; close 

to ribosome biogenesis 

cluster 

 

3.4 Discussion 

In this work, we tested for evolutionary constraints on highly diverged intrinsically disordered 

regions proteome-wide. In contrast to the relative lack of constraint on primary amino acid 

sequence alignments (compared to folded regions, (Brown et al., 2002; Tóth-Petróczy and 

Tawfik, 2013)), we find that the vast majority of disordered regions contain molecular features 

that deviate in their evolution from our null expectation (a simulation of disordered region 

evolution (Nguyen Ba et al., 2014, 2012)). Our discovery that highly diverged disordered regions 

contain (interpretable) molecular features that are under evolutionary constraint provides 

researchers with testable hypotheses about molecular features that could be important for 

function in their proteins of interest. Furthermore, in principle, our framework for the analysis of 

diverged disordered regions can be extrapolated to proteins from other species.  
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Importantly, our choice of features was based on previous reports of important sequence features 

in IDRs that could be easily calculated for protein sequences and scaled to millions of simulated 

sets of orthologous IDRs. Thus, our evidence for constraint must represent a lower bound on the 

total amount of functional constraint on highly diverged IDRs: there are very likely to be 

sequence characteristics that were not captured by our features. Further, even when we do find 

evidence for constraint on a feature, we do not know whether our feature represents the actual 

feature required for IDR function, or is simply correlated with it. For example, we found IDRs 

that show constraint on glycine and arginine content, but these may reflect the real constraint on 

planar-pi interactions (Vernon et al., 2018) and are not fully captured by either of these features. 

In the future, we could exhaustively search for protein sequence features that best explain the 

evolutionary patterns as was done for features of activation domains that explain reporter activity 

(Ravarani et al., 2018).  

Despite the somewhat arbitrary choice of molecular features, we found strong evidence that 

groups of disordered regions share “evolutionary signatures”, and that these groups of IDRs are 

associated with specific biological functions. To demonstrate the association of evolutionary 

signatures with previously known functions, we associated IDRs with protein function. However, 

many proteins contain multiple IDRs. In these proteins, the IDRs may perform different 

functions (just as multiple folded domains may perform independent functions), thus 

complicating the mapping of molecular functions to molecular features of IDRs. Systematic data 

at the level of individual IDRs would greatly facilitate future progress in this area.  

Another challenge in associating specific functions with individual IDRs is that current 

bioinformatics predictions of IDRs at the proteome level often lead to arbitrary breaks (or 

merging) of IDRs, as IDR boundaries are very difficult to define precisely (even with sensitive 

experimental approaches (Jensen et al., 2013)). Whether or not IDRs serve as distinct functional 

units across a linear peptide sequence, and where the boundaries for these regions lie on a 

proteome-wide scale, is an area for further research. In our cluster analysis, we find that the vast 

majority of IDRs in multi-IDR proteins fall into different clusters, and that this matches our 

expectation from random chance. A small minority of IDRs from very large (>1500 amino acid) 

disordered proteins cluster together, suggesting that they are “broken up” pieces of larger units.  
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Despite the caveat of IDR boundaries in proteome-wide analyses, evolutionary signatures of 

selection on molecular features represent a new way to assign function to the large numbers of 

currently enigmatic IDRs that have been identified based on protein sequences. This approach is 

complementary to current bioinformatics approaches to predict IDR function that are based on 

presence (Edwards et al., 2007) or conservation of SLiMs (Beltrao and Serrano, 2005; Davey et 

al., 2012; A. C. W. Lai et al., 2012; Nguyen Ba et al., 2012), prediction of interactions (MoRFs) 

(Fuxreiter et al., 2004; Lee et al., 2012; Mohan et al., 2006; Oldfield et al., 2005; Vacic et al., 

2007), or the recently proposed phase separation propensity score (Vernon et al., 2018).  

Widespread evidence for shared functions in the highly diverged portions of IDRs also has 

several evolutionary implications. The lack of homology between most IDRs with similar 

evolutionary signatures suggests that the molecular features are preserved in each IDR 

independently. For example, the more than 150 IDRs that we believe represent mitochondrial N-

terminal targeting signals share similar constraints on their molecular features, yet these signals 

have been preserved independently over very long evolutionary time as mitochondrial genes 

were transferred individually to the nuclear genome (Adams and Palmer, 2003). The preservation 

of molecular features over long evolutionary time, despite accumulation of amino acid 

divergence, is consistent with a model of stabilizing selection (Bedford and Hartl, 2009; Hansen, 

1997; Lande, 1976), where individual amino acid sites are under relatively weak functional 

constraints (Landry et al., 2014). In this view, single point mutations are unlikely to dramatically 

impair IDR function, and therefore large evolutionary divergence can accumulate. This also 

suggests that disease-causing mutations in disordered regions are more likely to cause gain of 

function, consistent with at least one recent study (Meyer et al., 2018). 

Although current models for the evolution of short linear motifs (well-characterized functional 

elements in IDRs) also implicate stabilizing selection (Koch et al., 2018; Landry et al., 2014), 

these motifs represent only a minority of the residues in disordered regions (Nguyen Ba et al., 

2012). Our observation of shared evolutionary signatures associated with specific functions in 

highly diverged IDRs suggests that this evolutionary mechanism is shaping the proteome on a 

much wider scale than currently appreciated. Further, stabilizing selection stands in contrast to 

purifying selection, the major evolutionary mechanism thought to preserve function in stably 

folded regions of the proteome (Taylor and Raes, 2004). Thus, we propose that these two major 
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biophysical classes of protein regions (IDRs vs. folded regions) also evolve under two different 

functional regimes. 

3.5 Methods 

3.5.1 Multiple sequence alignments and visualization 

We acquired orthologs of Saccharomyces cerevisiae from the Yeast Gene Order Browser (Byrne 

and Wolfe, 2005) and made multiple sequence alignments using MAFFT (Katoh and Standley, 

2013) with default settings, as previously described (Nguyen Ba et al., 2014, 2012). We 

visualized multiple sequence alignments using Jalview (Waterhouse et al., 2009).  

3.5.2 Quantification of evolutionary divergence of IDRs and ordered 
regions of the proteome 

We identified IDRs in the S.cerevisiae proteome using DISOPRED3 (Jones and Cozzetto, 2015) 

and filtered them to include only those that are 30 amino acids or longer. We identified the non-

disordered regions of the proteome as the inverse subset of the IDRs, and again only included 

regions that are 30 amino acids or longer. Using the multiple sequence alignments constructed 

for these protein regions (as above), and only including those proteins for which there at least 10 

species in the alignment and at least 10 amino acids for each species, we calculated evolutionary 

distances for each region using PAML (Yang, 2007) using the WAG model, with an initial kappa 

of 2, initial omega of 0.4, and clean data set to 0. We used the sum of branch lengths for each 

region to estimate the evolutionary divergence, and plotted the distribution of this metric for 

IDRs and non-IDRs in the S.cerevisiae proteome in Appendix Figure 2-1. 

3.5.3 Quantification of IDR overlap with Pfam annotations 

We obtained the list of Pfam (El-Gebali et al., 2018) domain coordinates for S.cerevisiae from 

the Saccharomyces Genome Database (SGD) (Cherry et al., 2012). We included domain 

coordinates that had e-values less than or equal to 1, and which occurred in more than one 

protein in the S.cerevisiae proteome. We then computed the percentage overlap of each IDR 

(coordinates determined as above) with the Pfam domain coordinates, and plotted the 

distribution of percent overlap values for all predicted IDRs in the S.cerevisiae proteome in 

Appendix Figure 2-2.  
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3.5.4 Evolutionary analysis of diverged disordered regions 

Evolutionary analysis of diverged disordered regions was performed as in (Zarin et al., 2017), 

with some modifications to facilitate proteome-wide analysis. Using the multiple sequence 

alignments of S.cerevisiae IDRs and species branch lengths (as described above), we used the 

previously described phyloHMM software (Nguyen Ba et al., 2012) to estimate the “local rate of 

evolution”, “column rate of evolution”, and any Short Linear Motif (SLiM) coordinates. For each 

IDR, we simulated 1000 orthologous sets of IDRs using the S.cerevisiae sequences as the root 

and a previously described disordered region evolution simulator (Nguyen Ba et al., 2014) that 

preserves SLiMs and evolves sequences according to disordered region substitution matrices. 

This simulator requires a scaling factor to convert evolutionary distances from substitutions per 

site as obtained from PAML (Yang, 2007). We chose the scaling factor such that the average 

distance between S.cerevisiae and S.uvarum over all the IDR alignments equals 1.  

Sequences and trees were read into R using the “seqinr” (Charif and Lobry, 2007) and “ape” 

(Paradis and Schliep, 2018) packages, respectively. Sequences were parsed in R using the 

“stringr” (Wickham, 2010) and “stringi” (Gagolewski, 2019) packages. We calculated all the 

sequence features for the real and simulated set of IDR orthologs using custom functions in R 

except for “Omega” (Martin et al., 2016), “Kappa” (Das and Pappu, 2013), and Wootton-

Federhen complexity (Wootton and Federhen, 1993), which were calculated using the localCider 

program (Holehouse et al., 2017) called through R using the “rPython” package (Bellosta, 2015). 

We calculated the mean and log variance of each feature for each real set of orthologous IDRs 

and each of the 1000 sets of orthologous IDRs. Because simulations sometimes lead to the 

deletion of the IDR, we did not include those IDRs that had fewer than 950 non-empty 

simulations. To obtain a random expectation for Figure 3-1C, we quantified the number of 

significant (p<0.01) molecular features in a set of randomly chosen simulated IDRs (one for each 

real IDR). To summarize the difference between each real set of orthologous IDRs and its 

corresponding 1000 simulated sets of orthologous IDRs, we used a standard Z-score (Z) where 

we subtracted the mean of the simulations (μ) from the real value (x) and divided by the standard 

deviation of the simulations (σ). The formula for the Z-score is as follows:  
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3.5.5 Strain construction and growth conditions  

All strains (Appendix Table 2-3) were constructed in the S. cerevisiae BY4741 background. IDR 

transformants were constructed using the Delitto Perfetto in vivo site-directed mutagenesis 

method (Storici et al., 2001). Ste50 IDR mutants were constructed in the ssk22Δ0::HisMx3 

ssk2Δ0 background as in (Zarin et al., 2017). Genomic changes in transformed strains were 

confirmed by Sanger sequencing. For mitochondrial strains, starting strains were acquired from 

the GFP collection (Huh et al., 2003). The Fus1pr-GFP reporter was constructed as in (Zarin et 

al., 2017) using Gibson assembly (Gibson et al., 2009), integrated at the HO locus using a 

selectable marker (URA3), and confirmed by PCR.  

All experiments were done on log-phase cells grown at 30°C in rich or synthetic complete media 

lacking appropriate nutrients to maintain selection of markers, unless otherwise stated. Two 

percent (wt/vol) glucose was used as the carbon source. 

3.5.6 Confocal microscopy and image analysis 

We acquired all images with a Leica TCS SP8 microscope using standard, uncoated glass slides 

with a 100x objective. For all GFP images, 7 evenly spaced z-slices covering ~6 microns in the z 

plane were collected for each field of view, and maximum projections of these slices were 

quantified for Figure 3-2B, or presented as micrographs in Figure 3-6C. To quantify basal 

Fus1pr-GFP expression, single cells in micrographs were segmented using YeastSpotter 

(http://yeastspotter.csb.utoronto.ca/) (Lu et al., 2019). The segmented masks and corresponding 

fluorescent images were imported into R using the “EBImage” package (Pau et al., 2010), and 

GFP intensity for each cell was quantified using a custom R script (sample script available on 

http://yeastspotter.csb.utoronto.ca). To assay shmooing, log phase cells were inoculated with 1 

uM alpha factor for 2 hours at 30°C (as in (Kompella et al., 2016)), at which point they were 

imaged in brightfield as above. We repeated each microscopy experiment at least twice on 

different days, and present representative results from one of those days in Figure 3-2B, 3-2C, 

and 3-66C.  

3.5.7 Clustering of proteome-wide evolutionary signatures 

Hierarchical clustering was performed using the Cluster 3.0 program (de Hoon et al., 2004). The 

evolutionary signature data was first filtered to include only those IDRs that had at least one Z-

http://yeastspotter.csb.utoronto.ca/


64 

 

score with an absolute value of 3 or more, and with at least 95% data present for the 164 

features. This resulted in 4646 IDRs (filtered from the initial 5149) that were then clustered using 

uncentered correlation distance and average linkage, with “cluster” and “calculate weights” 

options selected for “genes” (i.e. IDRs), but not for arrays (i.e. molecular features). Clusters were 

picked manually for further analysis. The full clusterplot is available in supplementary data.  

In order to ensure that the clustering was not simply due to homology between the disordered 

regions, for each cluster, we computed the pairwise distance of its disordered region sequences 

based on the BLOSUM62 substitution matrix, and compared this to the pairwise distance 

between all disordered regions outside of that cluster (using the Biostrings R package (Pagès et 

al., 2018)). We compared the pairwise distance of the IDRs in each cluster to that of the IDRs 

outside that cluster, and calculated the percent of disordered regions that fell in the top 1% of 

pairwise distance in all the clusters. This metric is presented for each cluster in Appendix Table 

2-2. For example, the cluster with the highest amount of “homologous” IDRs according to this 

threshold (top 1% homology) is cluster Q, with 8.9% homologous IDRs. However, the vast 

majority of the clusters have negligibly homologous IDRs; for example, 17/23 clusters have less 

than 1% homology between IDRs.  

3.5.8 Tests for enrichment of annotations 

Annotations for Gene Ontology (GO) terms, phenotypes, and literature were acquired from SGD 

(Cherry et al., 2012) for the S.cerevisiae proteome. We included GO terms that applied to a 

maximum of 5000 genes in the S.cerevisiae proteome.  A test for enrichment of annotations was 

done using the hypergeometric test for each cluster against all the proteins in the clustering 

analysis. To obtain Q-values, p-values were corrected using the Benjamini-Hochberg method. Q-

values below an FDR of 5% were retained. Because there is not a 1-to-1 correspondence between 

IDRs and annotations, which are based on proteins, we also calculated Q-values using 

permutation tests. To do so, we uniformly sampled 1000 clusters of IDRs for each cluster from 

the 4646 IDRs included in our clusterplot, and obtained the sum of the top ten – log Q-values 

associated with each test for enrichment, as above. We compared this test statistic to the 

observed sum of top ten – log Q-values for each cluster, and reported the difference as a standard 

Z-score in Appendix Table 2-2.  



65 

 

In order to understand how our evolutionary signatures compare to information obtained only 

from amino acid frequencies, we computed vectors of Z-scores for each IDR that represented 

their amino acid frequencies normalized to the proteome-wide average. We clustered these 

vectors using k-means (K=25) with the Cluster 3.0 program (de Hoon et al., 2004). We 

performed a similar permutation test (as above), where the sample of 1000 clusters was not 

uniform, but drawn to create 1000 random clusters of IDRs with similar amino acid composition 

for each cluster. For example, for each IDR in a cluster, we found the cluster that it fell into in 

the amino acid frequency clusterplot, and sampled from that cluster to replace the IDR in our 

evolutionary signature clusterplot. We did this 1000 times for each cluster, and used the same 

test statistic as the above-described permutations to report the difference in enriched annotations 

between our clusterplot based on evolutionary signatures and the clusterplot based on amino acid 

frequencies (Appendix Table 2-2).   

3.5.9 Identification of highly disordered proteins with unknown function   

We identified proteins whose biological role is unknown according to their SGD annotation 

(Cherry et al., 2012). We quantified the percent of residues that were predicted to be disordered 

in each protein with unknown function, and present the top ten most disordered proteins in Table 

3-2.  

3.6 Acknowledgements 

We thank Alex X Lu, Dr. Christiane Iserman, Dr. Iva Pritisanac, Shadi Zabad, and Ian S Hsu for 

comments on the manuscript. We thank Alex X Lu for stimulating discussions about clustering 

and Dr. Iva Pritisanac for suggesting analysis of completely disordered proteins. We thank Dr. 

Helena Friesen and Dr. Brenda Andrews for providing strains from the yeast GFP collection. We 

thank Canadian Institutes for Health Research (CIHR) for funding to AMM and JDF-K, Canada 

Foundation for Innovation (CFI) for funding to AMM, and the National Science and Engineering 

Research Council of Canada (NSERC) for an Alexander Graham Bell scholarship and Michael 

Smith Foreign Study Supplement to TZ. 



66 

 

3.7 Author contributions 

T.Z., J.D.F-K., and A.M.M. designed research; T.Z. and B.S. performed research; A.N.N.B. 

contributed new reagents/analytic tools; T.Z. and A.M.M. analyzed data; S.A., J.D.F-K., and 

A.M.M.supervised research; and T.Z. and A.M.M. wrote the paper. 

3.8 Supplementary materials 

Supplementary materials are available in Appendix 2. Supplementary data is available at 

hershey.csb.utoronto.ca/TZ_evolsig_full_sub_data.tar.gz.  

 

http://hershey.csb.utoronto.ca/TZ_evolsig_full_sub_data.tar.gz


67 

 

Chapter 4 
Predicting function using evolutionary signatures in intrinsically 

disordered regions 

 

This work has not been previously published. 

Taraneh Zarin1, Bob Strome1, Alan M Moses1,2,3 

 

1. Department of Cell and Systems Biology, University of Toronto, Toronto, Canada 

2. Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, 

Canada 

3. Department of Computer Science, University of Toronto, Toronto, Canada 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 

 

4 Predicting function using evolutionary signatures in 
intrinsically disordered regions 

4.1 Abstract 

Although 30-40% of the proteome is predicted to be disordered in eukaryotes, the vast majority 

of these disordered regions remain uncharacterized, even in the “simple” eukaryote 

Saccharomyces cerevisiae. There is currently no broadly applicable method to predict the 

function of intrinsically disordered regions from their sequences. We previously extracted 

evolutionary information about molecular sequence features in intrinsically disordered regions, 

and found that these are associated with different biological functions. Here, we use these 

evolutionary signatures to predict different functions in the yeast proteome. We are able to use 

the same features to predict kinase substrates, localization to different cellular compartments, and 

phenotypes. We identify the molecular features that are predictive of these functions and 

phenotypes, and demonstrate that knocking out these features in vivo leads to loss of function. 

Finally, we use our model to distinguish different functions of intrinsically disordered regions in 

the same protein.  

4.2 Introduction 

Understanding the sequence to function relationship in intrinsically disordered regions (IDRs) is 

of great research interest, as these regions comprise a large portion of the proteome (Ward et al., 

2004), are difficult to classify (Van Der Lee et al., 2014), and are sites of several disease-

associated mutations (Andresen et al., 2012; Patel et al., 2015). In recent work, we found that 

bulk molecular features can be calculated for IDRs, and that the evolution of these molecular 

features could be quantified into an “evolutionary signature” (Zarin et al., Chapter 3 of this 

thesis). We used an unsupervised framework to cluster these evolutionary signatures, and found 

that IDRs with similar evolutionary signatures could be associated with specific functions, 

suggesting that these signatures contain functional information. A complementary approach to 

understanding how sequence determines function in IDRs is to assess if we can use these 

evolutionary signatures to train a classifier that learns different functions or phenotypes. Such a 

classifier would allow us to generate functional predictions directly from IDR sequences, and 

would complement existing methods, which have mostly been developed for various subsets of 

IDRs (reviewed in (Van Der Lee et al., 2014)). For example, models have been developed to 
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classify glutamine and asparagine-rich prionogenic IDRs (Alberti et al., 2009), positively 

charged and hydrophobic mitochondrial N-terminal targeting signals (Fukasawa et al., 2015), 

and, most recently, transactivation domains of transcription factors (Ravarani et al., 2018). 

Having a unified predictor that can annotate IDR sequences would be a large step forward in 

understanding the relationship between sequence and function in IDRs. Using evolutionary 

signatures in particular could be promising as a unifier, as we should not be limited by learning 

sequence features of a specific sub-type of disordered region. Furthermore, training a classifier 

will allow us to understand which features in a given evolutionary signature are most predictive 

of a given function as a product of the model itself, as compared to unsupervised methods such 

as clustering, which would require the application of dimensionality reduction techniques (thus 

reducing interpretability of features).  

Here, we classify disordered regions according to functions and phenotypes based on their 

evolutionary signatures. We use an iteratively re-weighted logistic regression model that predicts 

the probability that a given IDR belongs to a given class (i.e. performs a certain function). 

Importantly, proteins can have multiple IDRs in them, yet the functional information that we 

have is often at the protein level. To address this, the model also learns the “weight” of each IDR 

(estimated by the posterior probability) with respect to the protein function. We apply this model 

to IDRs in the yeast proteome, and demonstrate that we can predict several types of functions 

associated with IDRs, including substrates of the Cyclin Dependent Kinase Cdc28, phenotypes 

such as RNA accumulation, as well as localization to different cellular compartments such as the 

nucleolus, stress granules, and the mitochondrial matrix. We identify the molecular features that 

are most predictive of these functions, and show that knocking these out results in loss of 

localization function in vivo. Finally, we present examples of proteins for which multiple 

predicted IDRs point to different functions.  

4.3 Results 

4.3.1 Evolutionary signatures of IDRs can be used to predict diverse 
functions 

In order to understand if evolutionary signatures can be used to predict IDR function, we used a 

statistical model in a binary classification framework (see Methods). Our target data is comprised 

of the mapping between the yeast IDRs for which we have evolutionary signatures (n=4545), and 
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different protein annotations, functions, and phenotypes (see Methods for details). We present 

8/23 of the functions for which our model had the strongest predictive power in Figure 4-1, 

where we compare the ROC curves for the real target data (blue) to a randomized control 

(orange). Prediction of CDK substrates has been an active area of research interest in our lab and 

others’ (Iakoucheva et al., 2004; A. C. W. Lai et al., 2012; Moses et al., 2007a). Since CDK 

phosphorylation sites are known to be abundant in IDRs (Holt et al., 2009), we used these to 

assess whether or not our model could classify substrates of Cdc28, and find that it can predict 

the majority of these substrates with high specificity (Figure 4-1, top right). Another function 

that has been associated with IDRs, and which has been predicted based on sequence, is 

mitochondrial targeting (Fukasawa et al., 2015; Vögtle et al., 2009). In recent work (Zarin et al., 

Chapter 3 of this thesis), we identified a cluster of IDRs as mitochondrial N-terminal targeting 

signals (Vögtle et al., 2009). Interestingly, we can predict the majority of mitochondrial inner 

membrane proteins with high specificity (Figure 4-1). This may represent a stratification in the 

sequence properties of mitochondrial targeting signals that further specify where they are 

localized beyond the general mitochondrion. In another example, the cell wall associated 

proteins are almost perfectly predicted by the evolutionary signatures in their IDRs (Figure 4-1, 

top left). This is interesting, because the cell wall annotation was also the most strongly enriched 

term that we associated with a set of evolutionary signatures in our previous unsupervised 

analysis (Zarin et al., Chapter 3 of this thesis). Another application of this method, in principle, is 

to associate function with unknown proteins based on the evolutionary signatures of their IDRs. 

We present the top five predictions of proteins that are annotated as unknown in gene description 

or gene summary on the Saccharomyces Genome Database (SGD) (Cherry et al., 2012) in 

Appendix Table 3-1. Overall, there is evidence that we can predict at least 8 and up to 23 

different functions or localizations of proteins using evolutionary signatures of IDRs.  
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Figure 4-1.  A range of functions can be predicted from evolutionary signatures in IDRs. ROC 

curves comparing the prediction of several different functions and localizations associated with 

IDRs using real targets (blue) compared to a randomized target control (orange). mRNP refers to 
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messenger ribonucleoprotein complexes which were identified in budding yeast using a 

systematic screen (Mitchell et al., 2012). 

 

4.3.2 Different molecular features are predictive of different functions  

In order to understand which molecular features underlie the predictions for each function, we 

extracted and clustered t-scores from the coefficients of the model (Figure 4-2, y-axis). Since the 

parameters of the model are penalized, many of these are null for each function (“t-score” 

represented as 0, coloured black in clusterplot). We found some molecular features that were 

previously known, as well as molecular features that to our knowledge have not been associated 

with specific IDR functions in the literature. We also clustered the functions (Figure 4-2, x-axis) 

to see if there were any patterns in their predictive features, and found that related functions 

clustered together (Figure 4-2, x axis label). For example, the most predictive feature for Cdc28 

substrates is the strong CDK consensus motif, [ST]P.K, followed by the weaker consensus motif 

[ST]P, both of which are expected. The next most predictive feature is the presence of the KEN 

motif, which is a degradation signal. This feature also seems to be predictive of proteins 

associated with intracellular signal transduction and protein kinase activity.  

The cell wall and extracellular region annotations cluster together, and are predicted by 

previously unappreciated (to our knowledge) molecular features such as a depletion in mean 

acidic residue repeats (D/E) and increased mean hydrophobicity. We also find that an increase in 

mean serine content is predictive of cell wall and extra-cellular proteins, which is encouraging as 

serine-rich cell wall proteins with large extracellular regions have been reported in the literature 

for S.cerevisiae (Ketela et al., 1999). Examples of these molecular features can be visualized in 

the top predicted cell wall protein, Aga1, which is known to localize to the cell wall (Figure 4-3). 

Another interesting cluster of functions that share predictive molecular features are the 

nucleolus, ribosome biogenesis, rRNA processing, and the phenotype of increased RNA 

accumulation. These are all related functions and localizations, and share the predictive 

molecular feature of CKII consensus motifs. CKII is a kinase that has been shown to play roles 

in nucleolar organization (Louvet et al., 2006). Interestingly, there is a cluster of functions that 

includes cytoplasmic stress granules, mRNA binding, as well as sets of proteins that were found 

to form reversible assemblies upon nutrient starvation (mRNA-protein complexes [mRNPs] 
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(Mitchell et al., 2012)) and heat stress (Wallace et al., 2015). The molecular features that are 

predictive of these functions include the presence of RGG motifs, a feature that has been 

previously appreciated as important for RNA binding proteins (P. A. Chong et al., 2018). Other 

features that are predictive include an increase in K/A/P residue repeats, as well as an absence of 

threonine residues, which, to our knowledge, have not been previously associated with these 

functions. Finally, yet another cluster of functions is the mitochondrion, mitochondrial inner 

membrane, and mitochondrial matrix, which cluster with the decreased respiratory growth 

phenotype. For these functions, predictive features include an increased mean isoelectric point, 

which could reflect the reported highly basic charge of mitochondrial targeting signals (Garg and 

Gould, 2016).  

In order to test the hypothesis that we are identifying meaningful features in our evolutionary 

signatures that are predictive of function, we “knocked out” these features in an example IDR by 

replacing a demonstrated mitochondrial targeting signal in Cox15, a mitochondrial protein with a 

known targeting signaling (Vögtle et al., 2009), with a corresponding simulated IDR that does 

not contain these features (Figure 4-4A). As expected, while the wildtype Cox15-GFP strain has 

a clear mitochondrial localization (Figure 4-4B), the Cox15-GFP strain replaced with a simulated 

IDR does not. Thus, the molecular features that make up our evolutionary signatures seem to be 

directly related to the function of the IDR, as a generic, simulated IDR cannot perform the same 

function. Beyond the model predictions, this is further evidence that the evolutionary signatures 

identify molecular features that are important for protein function.  
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Figure 4-2.  Related functions and phenotypes cluster together based on shared predictive 

molecular features. Clustered t-statistic representing coefficients for different molecular features 

(b) (n=164) for different functions (n=23).  
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Figure 4-3.  Multiple sequence alignment showing the disordered C-terminus of the Aga1 

protein. Serines are highlighted with black boxes, while hydrophobicity of amino acids is 

indicated on a scale from blue (low hydrophobicity) to red (high hydrophobicity). Protein 

coordinates and species names are indicated on the left side of the alignment. Species, from top 

to bottom, are: S.cerevisiae, S.kudriazevii, S.mikatae, K.africana, S.uvarum, N.castellii, 

K.naganishii, C.glabrata, N.dairenensis, V.polyspora, L.kluyveri, Z.rouxii, T.phaffii, L.waltii, 

T.delbrueckii, L.thermotolerans. Alignment is visualized with Jalview (Waterhouse et al., 2009).  
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Figure 4-4.  Replacement of N-terminal targeting IDR with simulated IDR impairs protein 

targeting function. A) Evolutionary signature of the Cox15 IDR compared to a schematic of a 

simulated Cox15 IDR. Z-score summarizes evolution of molecular features. B) Confocal images 

showing the wildtype Cox15-GFP localization in budding yeast (left) compared to that of a 

budding yeast strain with the Cox15 IDR replaced by a simulated IDR.   

 

4.3.3 Association of protein function with specific IDRs 

Since our model can learn the “weight” associated with each functional prediction for each IDR 

(i.e. the posterior probability that the IDR in question is associated with the protein function in 

question), we are able to assign specific functions to specific IDRs in each protein, particularly in 

those that have multiple IDRs (these comprise close to half of our dataset). This is given that 



77 

 

they perform different functions that are captured in our list of annotations. First, we are able to 

ascribe the correct function to the correct IDR in the case where the function and location of the 

IDR are known. An example of this is again demonstrated by mitochondrial targeting signals. 

The mitochondrial protein Mdl2, for example, has a verified targeting signal at its N-terminus  

(Vögtle et al., 2009). However, Mdl2 has 2 IDRs in our dataset. Thus, our model should be able 

to distinguish between these 2 IDRs to identify the one associated with mitochondrial 

localization. This is indeed the case, as the N-terminal IDR in Mdl2 has a posterior probability 

value of 0.99 for the mitochondrial inner membrane (0.86 for the more general mitochondrion), 

whereas the C-terminal Mdl2 IDR has a posterior probability of 0.01 and 0.14, respectively. 

Another interesting case is the protein Rpm2, which is a protein subunit of the mitochondrial 

RNase P. This protein has diverse roles in nuclear transcription, cytoplasmic and mitochondrial 

RNA processing, and is found in the cytoplasm, mitochondria, and p bodies (Morales et al., 

2006; Stribinskis et al., 2005; Stribinskis and Ramos, 2007). Rpm2 has 2 IDRs in our dataset, 

and remarkably, each of these IDRs is strongly associated with different functions that are part of 

the Rpm2 repertoire of functions. One IDR in this protein has a posterior probability of 0.96 in 

relation to the mitochondrial matrix, whereas the other has a posterior probability of 0.89 for its 

association to p body localization. These examples illustrate that evolutionary signatures can be 

used to train a model that can learn specifically which IDRs are associated with specific 

functions in proteins.  

4.4 Discussion 

Intrinsically disordered regions of proteins have thus far been difficult to characterize based on 

their sequences. In previous work, we found that evolutionary signatures extracted from 

sequences of IDRs and their orthologs contain information that can be used to associate them 

with biological functions. Here, we trained a statistical model using these evolutionary signatures 

with the aims of predicting protein function, learning the relative contribution of each IDR to that 

function (if applicable), and quantifying the contribution of different molecular features to that 

function. We demonstrated that the model can learn to classify proteins for several different 

biological functions, and that we can learn interpretable information about the sequence features 

contributing to these functions.  
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One of the important assumptions of our model is that each IDR is one “unit of function”, and 

that the model can learn how the protein function in question is split amongst the different IDRs 

in the protein. Although this is a reasonable assumption, we do not know if this is the case. In our 

dataset, the vast majority of IDRs get weighted equally with respect to the protein function in 

question. This could mean that the IDRs do not contain the signal for protein function, or that 

they equally contribute to the protein function. It could also reflect the possibility that in many 

cases, one IDR alone does not contain all the information for a particular function mapped at the 

protein level. It is interesting that in cases where the probability for functional prediction is high, 

the functions in question are IDR-associated. For example, in the case where the IDR acts a site 

for phosphorylation, or in the case where the IDR is a targeting signal, it is easy to imagine the 

IDR as a functional unit.   

In relation to the point above, there are currently very few types of data, experimental or 

otherwise, that are mapped at the IDR level. Thus, it is challenging to associate IDRs with 

functions without using protein annotations as a proxy. Systematic studies of IDRs are needed to 

address this gap. In this study, we used an iteratively re-weighted logistic regression to learn the 

contribution of each IDR to the protein function in hopes of addressing this issue with the data 

that we have on hand.  

Despite concerns about IDR boundaries and experimental data, it is overall very encouraging that 

it is possible to classify proteins according to their functions based on evolutionary information 

and their sequences. It will be important to continue this work in hopes of characterizing the 

many thousands of predicted disordered regions in eukaryotic proteomes.  

4.5 Future Directions 

There are many areas for future work following this analysis. Although preliminary results with 

randomized data indicate that the model is informative, we need to formally test that the model is 

not overfitting in the cases where we have confident predictions by testing the model on held-out 

data. Furthermore, in the cases where similar functions have been predicted, we can formally 

compare our model based on evolutionary signatures with those developed by others; one 

example is the model Mitofates, which predicts mitochondrial localization signals (Fukasawa et 

al., 2015). Following this, it will be very interesting to see what, if any, signals distinguish the 

mitochondrial inner membrane predicted IDRs from general mitochondrial IDRs. Although it is 
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known that beyond mitochondrial localization, there are other cleavage signals and/or interacting 

partners that aid localization of mitochondrial precursors to different parts of the organelle, it is 

not currently clear if there are sequence signatures that delineate these groups from each other.   

4.6 Methods 

4.6.1 Extraction of evolutionary signatures from predicted IDRs 

In order to obtain evolutionary signatures from predicted IDRs, we performed a similar method 

to (Zarin et al., Chapter 3.5.4 of this thesis). Briefly, for each set of orthologous IDRs (obtained 

from the Yeast Gene Order Browser (Byrne and Wolfe, 2005), we simulated 1000 sets of 

orthologous IDRs (using previously described methods (Nguyen Ba et al., 2014, 2012)), and 

quantified the difference in evolution of molecular features in the real set of orthologous IDRs to 

that of the simulated orthologous IDRs using a standard z-score (as described in Zarin et al., 

Chapter 3.5.4 of this thesis). The evolutionary signature of each IDR is comprised of a vector of 

164 z-scores (mean and log variance over evolution for each of the 82 molecular features listed 

in Appendix Table 2-1 of this thesis).  

In previous work (Zarin et al., Chapter 3 of this thesis), we calculated evolutionary signatures of 

function for rapidly evolving IDRs by constraining the evolution of short conserved segments. In 

order to use all of the available potentially functional information in IDRs, including conserved 

short linear motifs (SLiMs), we once again calculated evolutionary signatures in predicted IDRs 

across the yeast proteome, but did not constrain the evolution of these short segments.  

4.6.2 Compilation of functions and phenotypes for prediction 

We compiled a series of functional annotations, phenotypes, and datasets to predict with our 

model. These fell into four broad categories:  

1. Gene Ontology annotations that we previously found to be strongly enriched in our 

unsupervised clustering analysis (Zarin et al., Chapter 3 of this thesis), acquired from the 

Saccharomyces Genome Database (SGD) (Cherry et al., 2012)  

2. Datasets that screened the S.cerevisiae proteome for membraneless organelle/reversible 

protein assembly formation under stress (Mitchell et al., 2012; Narayanaswamy et al., 2009; 

Wallace et al., 2015)  
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3. A dataset of gold-standard Cdc28 substrate predictions (Sharifpoor et al., 2011) 

4. A set of publicly available S.cerevisiae phenotype annotations from SGD (Cherry et al., 2012) 

From this list, we include several examples of functions that we can predict with reasonable 

sensitivity and specificity in Figure 4-1. In total we found 23 functions for which we could get 

accurate predictions. Overall, we tested the model on ~120 functions and phenotypes. 

4.6.3 A statistical model that accounts for multiple IDRs in one protein 

The model was implemented in R with the glmnet package (Friedman et al., 2010). A schematic 

of the model is provided in Appendix Figure 3-1. A description of the model is as follows: 

Each dataset corresponding to functions or phenotypes is provided as a set of targets in a binary 

format, where Y=1 if the protein is associated with that target or phenotype, and Y=0 if the 

protein is not associated with that target or phenotype. n is the number of proteins. 

 

We use a model to account for the fact that there is not necessarily a 1:1 mapping between IDRs 

and protein annotations that we are trying to predict. We assume that for each function, there is 

one IDR that is contributing to that function more than the other(s), and thus predict the weight 

of each IDR in relation to the functional prediction. We use a hidden variable, , whose 

probability is the weight of the jth IDR for the ith protein for the function in question. The 

weight of each IDR starts simply as 1 divided by the number of IDRs in the protein, r.  is the 

vector of Z-scores (i.e. the “evolutionary signature”) for the jth IDR of the ith protein. m is the 

number of features. 

 

In the framework of a linear regression, where b is the vector of coefficients, the likelihood of 

this model is: 
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We maximize this likelihood using the E-M algorithm. To do this, we iteratively maximize the 

expected complete log likelihood , wherein we assume that the hidden variables are 

observed.  

 

Inspection of the expected complete log likelihood reveals exactly one term for each IDR, 

weighted by , the expected value of the hidden variable. 

This model corresponds to an iteratively re-weighted logistic regression problem (Hastie et al., 

2015), where the weights are the current estimates of the hidden variables . Thus, we can 

maximize the LASSO penalized version of the expected complete log likelihood by adding an 

extra set of weights to the iteratively re-weighted least squares (IRLS) algorithm (Hastie et al. 

2015), such that the weights are:  

 

In practice, we use 5 iterations of IRLS.  

In the E-step of the E-M algorithm, these expectations are calculated using Bayes’ theorem as 

follows: 
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Note that we have assumed no prior knowledge about which IDR in a protein is most likely to be 

responsible for the function (uninformative priors), i.e.,   is constant over j.  

In practice, we use 20 iterations of E-M.  

For L1 regularization, we used a lambda value of 0.2.  

4.6.4 Model assessment 

To assess the model, we plotted ROC curves to display the false positive rate vs. true positive 

rate of our predictions. ROC curves were plotted with the ROCR package in R (Sing et al., 

2009). Real predictions were compared to those obtained using randomized targets.  

4.6.5 Clustering of t-scores 

We used the Cluster 3.0 program (de Hoon et al., 2004) to cluster the coefficient t-scores from 

the molecular features vectors (n=164) as well as the functions that we predicted. We used 

hierarchical clustering with correlation distance and average linkage.  

4.6.6 In vivo elimination of molecular features comprising evolutionary 
signature in mitochondrial IDR 

The budding yeast strains were constructed, grown, and imaged in identical conditions as in 

Zarin et al., Chapter 3. The Cox15 IDR was replaced with a simulated IDR (sequence: 

MLLRNVESSKPEAKLITRASYAVPRKMNNSYLGDNTLNNLVLKKSYLLAVPRKIPTIPAS

LPQIRDKD) using the previously described Delitto Perfetto method (Storici et al., 2001).  
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4.6.7 Contributions 

TZ and AMM designed research. TZ, BS, and AMM performed research. TZ and AMM 

analyzed data.  
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Chapter 5 
Conclusions and future directions 
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5 Conclusions and future directions 

5.1 Summary of conclusions 

Intrinsically disordered regions (IDRs) are varied, widespread, and have important implications 

for human disease. Because they have been dismissed as anomalies since their discovery, the 

constraints and functions of these regions are only now starting to be discovered and synthesized 

to form a cohesive view. Although it has been appreciated that IDRs are highly diverged in 

evolution compared to ordered regions, the consequences of this divergence have not been 

explored. Thus, the first aim of my thesis has been to understand the functional consequences of 

highly diverged IDRs. Compared to ordered regions in the same protein, the sequence homology 

of orthologous IDRs can resemble that of unrelated, randomly scrambled sequences. Does this 

mean that these orthologous regions have diverged in function, or that they are evolving 

neutrally as “junk”? Could there be conservation of function despite this rapid divergence? In 

chapter 2 of my thesis, I started exploring these questions, and discovered that sequence 

divergence does not necessarily imply functional divergence or absence of constraint in IDRs. 

Despite the rapid evolution of amino acid sequences in IDRs, bulk molecular features in these 

regions can contribute to aggregate, or quantitative phenotypes, which can in turn be under 

stabilizing selection. This relaxed constraint on specific amino acids can give the appearance of 

rapid divergence in orthologs, even when underlying functions or phenotypes are conserved. In 

chapter 3, I asked if this is a property that is specific to the IDR I studied in chapter 2, or whether 

this is a general property of IDRs proteome-wide. I found that most IDRs in the yeast proteome 

contain not just one, but multiple molecular features that are preserved through evolution despite 

high divergence in their primary amino acid sequences. I also discovered that IDRs in the 

proteome share sets of preserved molecular features, and that groups of IDRs that share these 

“evolutionary signatures” are associated with a wide variety of protein functions. In chapter 4, I 

applied a statistical model to these evolutionary signatures, and found that they contain 

interpretable information that can be used to predict different protein functions.  
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5.2 Discussion and future directions 

5.2.1 Order and disorder are differentially constrained 

One of the main ideas that has laid the foundation for (and been corroborated by) my thesis work 

is that ordered regions and disordered regions are under vastly different evolutionary constraints 

(Afanasyeva et al., 2018; Brown et al., 2010, 2002; Khan et al., 2015; Light et al., 2013; Nilsson 

et al., 2011; Tóth-Petróczy and Tawfik, 2013). In future work, it will be important to understand 

how we can modify existing methods and create new methods that take this into account. For 

example, current state-of-the-art approaches for finding constraint in protein sequences rely on 

multiple sequence alignments, and best practices require the user to ignore or cut out parts of the 

alignment that contain deletions or insertions (e.g. Phylogenetic Analysis using Maximum 

Likelihood [PAML] (Yang, 2007)). This is reminiscent of the way IDRs have been handled since 

the advent of X-ray crystallography, whereby any flexible parts of the protein must to be cut out 

in order for there to be any hope for crystallization. Similar to how NMR (Nuclear Magnetic 

Resonance) spectroscopy has allowed researchers to study flexible proteins in solution (Forman-

Kay and Mittag, 2013), we need a methodological shift to prevent us from “cutting out” one third 

of the eukaryotic proteome in our functional genomics analyses. Shifting to alignment-free 

methods that are not based on sequence similarity of amino acids will be important for achieving 

this goal.  

Related to this point, an outstanding question about the different constraints in ordered and 

disordered regions is whether this should be a dichotomy at all. Should we be considering a 

continuum of constraints to reflect the continuum of structures (or lack thereof) employed by 

disordered regions and ordered regions alike? How much of our discretization of ordered and 

disordered regions is based on the binary classifiers that predict disordered regions for us? These 

are questions to think about as we continue exploring the relationship between sequence, 

structure, function, and evolution of these regions.  

5.2.2 Convergent evolution on a massive scale 

One of the most interesting hypotheses that came out of our proteome-wide study on highly 

diverged disordered regions (Ch. 3 of this thesis) is the idea that IDRs have undergone, and 

continue to undergo, convergent evolution on a large scale. This is in contrast to ordered 
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domains, which are thought to mainly evolve by duplication, divergence, and negative purifying 

selection (Taylor and Raes, 2004). The hypothesis for convergent evolution in IDRs is supported 

by our observation that tens to hundreds of IDRs in the yeast proteome have similarly 

constrained molecular features, or evolutionary signatures, despite their lack of homology. 

Especially in the case of mitochondrial proteins (and their disordered targeting signals), where 

we know their evolutionary history (i.e., that mitochondrial genes were transferred to the nuclear 

genome over time (Adams and Palmer, 2003)), this is not hard to imagine. Interestingly, coiled-

coils are a type of protein structure with biased amino acid composition that have been shown to 

emerge through convergent evolution (Mistry et al., 2013; Rackham et al., 2010). Intrinsically 

disordered regions with biased amino acid compositions could have evolved in the same way. It 

will be interesting to understand the degree of convergent evolution in IDRs, and understand 

how molecular features in these regions arise and are preserved through evolutionary time, 

especially with the availability of new tools (Hu et al., 2019). 

5.2.3 Understanding the effect of mutations in IDRs 

Another important question, and one that is implicit in all attempts to map sequence and 

function, is the effect of mutations on IDR sequences. Besides the inherent interest in this 

question, there is also an immediately practical application, as an estimated 20% of all disease 

mutations occur in IDRs (Vacic et al., 2007). Although it is not hard to imagine a loss of function 

mutation in IDRs (given the importance of short linear motifs (Nguyen Ba et al., 2012; Tompa et 

al., 2014) in some IDRs), it is also clear that in many cases, single mutations can have much less 

prominent effects. As previously discussed, most IDRs are highly diverged, and likely evolving 

under stabilizing selection where single mutations would not affect fitness outcomes (Landry et 

al., 2014). In this light, it is interesting to note that there has also been a recent appreciation for 

the role of gain-of-function mutations in IDRs. For example, it was recently discovered that the 

emergence of a missense-aided di-leucine motif in cytosolic IDRs of transmembrane proteins can 

cause disease by increasing clathrin-binding (Li and Babu, 2018; Meyer et al., 2018). 

Understanding the effects of mutations in IDRs, and how these differ from ordered regions, will 

be an exciting area for future work.   
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5.2.4 IDR data collection and storage for validation 

Related to understanding the effect of mutations in IDRs, there is a great need to perform and 

catalogue experimental studies on IDRs. Firstly, there is a need to catalogue and curate low-

throughput experimental studies in IDRs, as there is currently no consistent terminology or 

method to store these. Many studies have been done on IDRs without explicit acknowledgement 

of them as IDRs, meaning that tens to hundreds of valuable experimental results are untapped for 

our general understanding, as well as for use in machine learning analyses. In addition, there is a 

need to expand the scale of experiments in IDRs. For example, although there have been some 

major advances in systematically probing single IDRs (Bolognesi et al., 2019; Ravarani et al., 

2018), there is still a need for efforts to survey IDRs on a proteome-wide scale. For example, a 

resource akin to the budding yeast deletion collection (Giaever et al., 2002) aided with precise, 

high throughput genome engineering (Li et al., 2011; Roy et al., 2018) would allow for large 

gains in our understanding of how IDRs (and IDR deletions or mutations) impact the genome on 

a large scale.  

5.2.5 Tools for classification of IDRs 

Through the work presented in this thesis and elsewhere, it is becoming increasingly clear that 

IDR sequences contain functional information, and that this information can be gleaned by 

evolutionary analysis. This has led us to hypothesize that we can use this information to make 

functional predictions about IDRs based on their sequences alone. Although the methods that we 

use to make functional predictions about IDRs in Chapter 2 and Chapter 3 are generalizable in 

principle, they rely on evolutionary simulations and a confident set of orthologs, which makes 

them cumbersome and technically challenging in practice. In future work, it will be important to 

quantify the contribution of evolution as a feature when using IDR sequences to predict function. 

Furthermore, the current method where each evolutionary signature is comprised of the 

difference between real orthologous IDRs and 1000 simulated orthologous IDRs could be tested 

to see if there can be a reduction in the scale of simulations. Finally, developing more robust 

evolutionary models for quantitative traits as applied to protein sequences will be important in 

making predictions about functional features of IDR sequences.  

 



89 

 

Appendix 1 
Supplementary material for Chapter 2 

 

This is an author-produced PDF of an article accepted for publication in Proceedings of the 

National Academy of Sciences of the United States of America following peer review. The 

version of record: 

Selection maintains signaling function of a highly diverged intrinsically disordered region 

Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):E1450-E1459. doi: 10.1073/pnas.1614787114. 

Epub 2017 Feb 6. 

Zarin, T.1, Tsai, C.2, Nguyen Ba, A.N.3, Moses, A.M.1,2 

is available online at: https://www.pnas.org/content/114/8/E1450.long 

4. Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., 

Toronto, ON, Canada, M5S 3G5 
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Appendix Table 1-1. List of strains used in this study 

Strain Genotype Source Used to 
assay: 

DMA580 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 his3∆1 leu2∆0 ura3∆0 
met15∆0 SSK22:KanMX4  

(Giaever 
et al., 
2002) 

N/A 

YTZ3 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0  

This 
study 

Morphology  

YTZ44 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50IDR-S155A,S196A,S202A,T244A,S248A 

This 
study 

Morphology  

YTZ45 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50 Cgla IDR 

This 
study 

Morphology  

YTZ49 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50 Lklu IDR 

This 
study 

Morphology  

YTZ8R MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 HOG1-Cterm::yemGFP  pCAN1::pRPL39-ymCherry-
LEU2 

This 
study 

Hog1 
signaling 
dynamics 

YTZ8B MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 HOG1-Cterm::yemGFP 

This 
study 

Hog1 
signaling 
dynamics 

YTZ24R MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 HOG1-Cterm::yemGFP STE50IDR::STE50IDR-
S155A,S196A S202AT244A,S248A pCAN1::pRPL39-ymCherry-
LEU2 

This 
study 

Hog1 
signaling 
dynamics 

YTZ24B MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 HOG1-Cterm::yemGFP STE50IDR::STE50IDR-
S155A,S196A,S202AT244A,S248A  pCAN1::pRPL39-mTagBFP2-
LEU2 

This 
study 

Hog1 
signaling 
dynamics 

YTZ25R MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 HOG1-Cterm::yemGFP STE50IDR::STE50 Cgla IDR  
pCAN1::pRPL39-ymCherry-LEU2 

This 
study 

Hog1 
signaling 
dynamics 

YTZ25B MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 HOG1-Cterm::yemGFP STE50IDR::STE50 Cgla IDR  
pCAN1::pRPL39-mTagBFP2-LEU2 

This 
study 

Hog1 
signaling 
dynamics 

YTZ29R MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 HOG1-Cterm::yemGFP STE50IDR::STE50 lKlu IDR  
pCAN1::pRPL39-ymCherry-LEU2 

This 
study 

Hog1 
signaling 
dynamics 

YTZ29B MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 HOG1-Cterm::yemGFP STE50IDR::STE50 lKlu IDR  
pCAN1::pRPL39-mTagBFP2-LEU2 

This 
study 

Hog1 
signaling 
dynamics 

YTZ60 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 HO::pFUS1-yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ62 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50IDR-S155A HO::pFUS1-yemGFP-
klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ62EE MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50IDR- SP155-156EE HO::pFUS1-
yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ63 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50IDR-S155A,S196A,S202A 
HO::pFUS1-yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ63EE MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50IDR- SP155-156EE,SP196-

197EE,SP202-203EE HO::pFUS1-yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ64 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 This Fus3 basal 
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SSK2∆0 STE50IDR::STE50IDR-S155A,S196A,S202AT244A,S248A 
HO::pFUS1-yemGFP-klURA3 

study signaling  

YTZ64EE MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50IDR- SP155-156EE,SP196-

197EE,SP202-203EE,TP244-245EE,SP248-249EE HO::pFUS1-
yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ65 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::Cgla IDR HO::pFUS1-yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ66 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::Zrou IDR HO::pFUS1-yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ67 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::Lwal IDR HO::pFUS1-yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ68 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::Lthe IDR HO::pFUS1-yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ69 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::Lklu IDR HO::pFUS1-yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ70 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::Klac IDR HO::pFUS1-yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ71 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::Scer-Lklu IDR HO::pFUS1-yemGFP-
klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ72 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::Scer-Zrou IDR HO::pFUS1-yemGFP-
klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ73 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::Klac-Scer IDR HO::pFUS1-yemGFP-
klURA3 

This 
study 

Fus3 basal 
signaling  

YTZ3R MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 pCAN1::pRPL39-ymCherry-LEU2 

This 
study 

Fitness  

YTZ3B MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0  pCAN1::pRPL39-mTagBFP2-LEU2 

This 
study 

Fitness  

YTZ44R MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50IDR-S155A,S196A,S202AT244A,S248A 
pCAN1::pRPL39-ymCherry-LEU2 

This 
study 

Fitness  

YTZ44B MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50IDR-S155A,S196A,S202AT244A,S248A  
pCAN1::pRPL39-mTagBFP2-LEU2 

This 
study 

Fitness  

YTZ45R MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50 Cgla IDR pCAN1::pRPL39-
ymCherry-LEU2 

This 
study 

Fitness  

YTZ45B MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50 Cgla IDR  pCAN1::pRPL39-
mTagBFP2-LEU2 

This 
study 

Fitness  

YTZ49R MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50 Lklu IDR pCAN1::pRPL39-
ymCherry-LEU2 

This 
study 

Fitness  

YTZ49B MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50 Lklu IDR pCAN1::pRPL39-
mTagBFP2-LEU2 

This 
study 

Fitness  

YTZ54 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50IDR-S155A,S196A,S202A,TP244-

245EE,SP248-249EE 

This 
study 

Morphology  

YTZ74 MATa his3∆1 leu2∆0 ura3∆0 met15∆0 SSK22::HisMX3 
SSK2∆0 STE50IDR::STE50IDR-S155A,S196A,S202A,TP244-

245EE,SP248-249EE HO::pFUS1-yemGFP-klURA3 

This 
study 

Fus3 basal 
signaling  
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Appendix Figure 1-1.  The pairwise percent divergence of the Ste50 IDR saturates with 

divergence time (as measured by RA domain divergence). Each point represents a species pair, 

where the pairwise percent divergence (i.e. 100 - pairwise percent identity) is plotted for the 

Ste50 RA domain versus the IDR.           
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Appendix Figure 1-2. Example brightfield (BF) micrographs from each assayed strain. Arrows 

indicate example cells with abnormal morphology.    
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Appendix Figure 1-3. An unphosphorylatable mutant S.cer IDR with identical basal net charge 

to the wildtype (“WT-charge” mutant) recapitulates wildtype morphology and pFUS1 

expression. a) Amino acid sequence of the WT-charge mutant IDR, with mutated 

phosphorylation sites highlighted in red when mutated to alanine, and orange when mutated to 

glutamic acid. B) Mean pFUS1-gfp expression for wildtype (WT), 5A mutant (5A), and WT-

charge mutant IDRs. Error bars represent 1.96 s.e. of 3 biological replicates. C) Example 

brightfield (BF) micrographs from WT, 5A, and WT-charge mutant IDR strains.  
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Appendix Figure 1-4. List of engineered Ste50 IDRs used in correlation study (Figure 2-4). 
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Appendix Figure 1-5. Heat map of sequence features correlated with functional output (pFUS1-

GFP expression) of the Ste50 IDRs tested. * indicates Bonferroni-corrected P<0.05, ** indicates 

Bonferroni-corrected P<0.01. In order of appearance in the figure: SP proportion refers to the 

number of “SP” phosphorylation consensus motifs divided by the total number of amino acids in 

the IDR, SP number refers to number of “SP” phosphorylation sites regardless of IDR length, 

Hydrophobicity refers to the GRAVY (grand average of hydropathy) index score of each IDR, 

SP/TP number is the number of “SP” or “TP” phosphorylation consensus motifs in the IDR, 

length is the total number of amino acid residues in the IDR, SP/TP proportion is the number of 

“SP” or “TP” phosphorylation consensus motifs divided by the total number of amino acids in 

the IDR, polarity is the average polarity score of the IDR, TP proportion is the number of “TP” 
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consensus phosphorylation sites divided by the total number of amino acids in the IDR, TP 

number is the total number of “TP” consensus phosphorylation sites in the IDR, Net Charge 

(sum of charged residues) is the number of positively charged residues in the IDR minus the 

number of negatively charged residues in the IDR, Net Charge (Henderson-Hasselbach) is the 

net charge of the IDR as calculated by the Henderson-Hasselbalch equation at pH 7 and pKa 

determined by the Lehninger scale, Net Charge 1 or 2 phospho-SP or TP or SP/TP refers to the 

Net Charge (sum of charged residues) in the IDR with the potential for basal phosphorylation of 

1 or 2 “SP”, “TP”, or “SP/TP” phosphorylation consensus motifs (see methods for more details 

on calculations).  
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Appendix Figure 1-6. dN/dS values compared between the Ste50 IDR, the RA domain, and the 

SAM domain. The dN/dS value for the IDR is higher (0.18) compared to the SAM (0.12) and 
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RA (0.01) domains. However, much of the sequence variation in IDRs comes from the high rates 

of non-frameshifting insertions and deletions that we find in these regions (9-13), which would 

not be captured in the dN/dS analysis. Therefore, dN/dS is likely to overestimate the constraint in 

disordered regions. Error bars represent 1.96 s.e. 
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Appendix Figure 1-7.  Distribution of effects of a random nucleotide mutation on basal net 

charge. N=1472. 
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Appendix Figure 2-1. Predicted IDRs in the S.cerevisiae proteome (“IDR”) are more highly 

diverged compared to regions that are not predicted to be disordered (“non-IDR”) (p<2.2x10-16, 

Wilcoxon test). Boxplot boxes represent the 25th-75th percentile of the data, the black line 

represents the median, and whiskers represent 1.5*the interquartile range. Outliers fall outside 

the 1.5*interquartile range, and are represented by unfilled circles 
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Appendix Figure 2-2. The vast majority of predicted IDRs in the S.cerevisiae proteome do not 

overlap with Pfam domains. N=5351 IDRs. 
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Appendix Table 2-1. Molecular features that have been shown or are hypothesized to be 

important in IDRs. All motif features are calculated as the fraction of motifs in the IDR 

normalized to the proteome-wide average. Some motif descriptions taken from Eukaryotic 

Linear Motif (ELM) resource (Dinkel et al., 2016) – refer to the ELM website for more details: 

http://elm.eu.org. 

  ID Name Regular 

expression 

(regex) 

Type Source Description Reference 

1 AA_S S content S Amino acid 

content 

NA Fraction of S residues (Haynes et 

al., 2006) 

2 AA_P P content P Amino acid 

content 

NA Fraction of P residues (Marsh and 

Forman-Kay, 

2010; 

Neduva and 

Russell, 

2005; Simon 

and 

Hancock, 

2009) 

3 AA_T T content T Amino acid 

content 

NA Fraction of T residues Reviewed in 

(Van Der 

Lee et al., 

2014) 

4 AA_A A content A Amino acid 

content 

NA Fraction of A residues (Perez et al., 

2014) 

5 AA_H H content H Amino acid 

content 

NA Fraction of H residues (Marsh and 

Forman-Kay, 

2010) 

6 AA_Q Q Q Amino acid NA Fraction of Q residues (Alberti et al., 

2009; 
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content content Halfmann et 

al., 2011) 

7 AA_N N content N Amino acid 

content 

NA Fraction of N residues (Alberti et al., 

2009; 

Halfmann et 

al., 2011) 

8 AA_G G 

content 

G Amino acid 

content 

NA Fraction of G residues (Elbaum-

Garfinkle et 

al., 2015) 

9 kappa Kappa NA Charge 

properties 

localCI

DER 

Measure of separation 

between positively versus 

negatively charged residues 

(Das and 

Pappu, 

2013; 

Holehouse et 

al., 2017) 

10 omeg

a 

Omega NA Charge 

properties 

localCI

DER 

Measure of separation 

between charged residues and 

prolines versus all other 

residues 

(Holehouse 

et al., 2017; 

Martin et al., 

2016) 

11 FCR Fraction 

of 

charged 

residues 

NA Charge 

properties 

localCI

DER 

FCR: basic fraction + acidic 

fraction 

(Holehouse 

et al., 2017; 

Mao et al., 

2013) 

12 NCP

R 

Net 

charge 

per 

residue  

NA Charge 

properties 

localCI

DER 

NCPR: basic fraction - acidic 

fraction 

(Holehouse 

et al., 2017; 

Mao et al., 

2013, 2010) 

13 net_c

harge 

net 

charge 

NA Charge 

properties 

Literatu

re 

/localCI

DER 

Net charge (# [RK] - # [DE]) (Daughdrill 

et al., 2007; 

Strickfaden 

et al., 2007; 

Zarin et al., 
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2017) 

14 net_c

harge

_P 

net 

charge 

with 

phosphor

ylation of 

[ST]P 

consensu

s sites 

NA Charge 

properties 

Literatu

re 

Net charge as influenced by 

phosphorylation of consensus 

sites 

(Strickfaden 

et al., 2007; 

Zarin et al., 

2017) 

15 SCD Sequenc

e charge 

decoratio

n 

NA Charge 

properties 

Literatu

re 

Measure of separation 

between positively versus 

negatively charged residues 

(Sawle and 

Ghosh, 

2015) 

16 RK_r

atio 

R/K ratio NA Charge 

properties 

Literatu

re 

Ratio of arginine to lysine 

residues (#R + 1) /(#K + 1) 

(Vernon et 

al., 2018) 

17 ED_r

atio 

E/D ratio NA Charge 

properties 

NA Ratio of glutamic acid to 

aspartic acid residues (#E + 

1)/(#D + 1) 

 NA 

18 CLV_

Separ

in_Fu

ngi 

Separase 

cleavage 

motif 

S[IVLMH]E[I

VPFMLYAQ

R]GR. 

Motifs ELM Separase cleavage site, best 

known in sister chromatid 

separation. Also involved in 

stabilizing the anaphase 

spindle and centriole 

disengagement. 

(Dinkel et al., 

2016)  

19 DEG_

APC

C_KE

NBO

X_2 

APCC-

binding 

Destructi

on motif 

.KEN. Motifs ELM Motif conserving the exact 

sequence KEN that binds to 

the APC/C subunit Cdh1 

causing the protein to be 

targeted for  26S proteasome 

mediated degradation. 

(Dinkel et al., 

2016)  
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20 DEG_

APC

C_TP

R_1 

APCC_T

PR-

docking 

motif 

.[ILM]R Motifs ELM This short C-terminal motif is 

present in co-activators, the 

Doc1/APC10 subunit and 

some substrates of the APC/C 

and mediates direct binding to 

TPR-containing APC/C core 

subunits. 

(Dinkel et al., 

2016)  

21 DOC

_CKS

1_1 

Cks1 

ligand 

[MPVLIFWY

Q].(T)P.. 

Motifs ELM Phospho-dependent motif that 

mediates docking of CDK 

substrates and regulators to 

cyclin-CDK-bound Cks1. 

(Dinkel et al., 

2016)  

22 DOC

_MAP

K_DC

C_7 

MAPK 

docking 

motif 

[RK].{2,4}[LI

VP]P.[LIV].[

LIVMF]|[RK]

.{2,4}[LIVP].

P[LIV].[LIVM

F] 

Motifs ELM A kinase docking motif 

mediating interaction towards 

the ERK1/2 and p38 

subfamilies of MAP kinases 

(Dinkel et al., 

2016)  

23 DOC

_MAP

K_ge

n_1 

MAPK 

docking 

motif 

[KR]{0,2}[KR

].{0,2}[KR].{

2,4}[ILVM].[I

LVF] 

Motifs ELM MAPK interacting molecules 

(e.g. MAPKKs, substrates, 

phosphatases) carry docking 

Motifs that help to regulate 

specific interaction in the 

MAPK cascade. The classic 

Motifs approximates 

(R/K)xxxx#x# where # is a 

hydrophobic residue. 

(Dinkel et al., 

2016)  

24 DOC

_MAP

K_He

PTP_

8 

MAPK 

docking 

motif 

([LIV][^P][^P

][RK]....[LIV

MP].[LIV].[LI

VMF])|([LIV][

^P][^P][RK][

RK]G.{4,7}[L

IVMP].[LIV].[

LIVMF]) 

Motifs ELM A kinase docking motif that 

interacts with the ERK1/2 and 

p38 subfamilies of MAP 

kinases. 

(Dinkel et al., 

2016)  
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25 DOC

_PP1

_RVX

F_1 

PP1-

docking 

motif 

RVXF 

..[RK].{0,1}[

VIL][^P][FW]

. 

Motifs ELM Protein phosphatase 1 

catalytic subunit (PP1c) 

interacting Motifs binds 

targeting proteins that dock to 

the substrate for 

dephosphorylation. The motif 

defined is 

[RK]{0,1}[VI][^P][FW]. 

(Dinkel et al., 

2016)  

26 DOC

_PP2

B_PxI

xI_1 

Calcineur

in 

(PP2B)-

docking 

motif 

PxIxI 

.P[^P]I[^P][I

V][^P] 

Motifs ELM Calcineurin substrate docking 

site, leads to the effective 

dephosphorylation of 

serine/threonine 

phosphorylation sites. 

(Dinkel et al., 

2016)  

27 LIG_

APC

C_Cb

ox_2 

APC/C_A

pc2-

docking 

motif 

DR[YFH][IL

FVM][PA].. 

Motifs ELM Motifs in APC/C co-activators 

that mediates binding to the 

APC/C core, possibly the 

catalytic Apc2 subunit. This 

second variant defines the 

motif in APC/C co-activators 

from TAXON:4751 and 

TAXON:554915. 

(Dinkel et al., 

2016)  

28 LIG_

AP_G

AE_1 

Gamma-

adaptin 

ear 

interactio

n motif 

[DE][DES][D

EGAS]F[SG

AD][DEAP][

LVIMFD] 

Motifs ELM The acidic Phe motif mediates 

the interaction between a set 

of accessory proteins and the 

gamma-ear domain (GAE) of 

GGAs and AP-1. Proposed 

roles: in clathrin localization 

and assembly on 

TGN/endosome membranes 

and in traffic between the TGN 

and endosome. 

(Dinkel et al., 

2016)  

29 LIG_

CaM_

Helical 

calmoduli

n binding 

[ACLIVTM][^

P][^P][ILVM

FCT]Q[^P][^

Motifs ELM Helical peptide motif 

responsible for Ca2+-

independent binding of the 

(Dinkel et al., 

2016)  
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IQ_9 motif P][^P][RK][^

P]{4,5}[RKQ

][^P][^P] 

CaM . The motif is manly 

characterized by a 

hydrophobic residue at 

position 1, a highly conserved 

Gln at position 2, basic 

charges at positions 6 and 11, 

and a variable Gly at position 

7 

30 LIG_

EH_1 

EH 

ligand 

.NPF. Motifs ELM/P

hyloHM

M 

NPF motif interacting with EH 

domains, usually during 

regulation of endocytotic 

processes 

(Dinkel et al., 

2016)  

31 LIG_e

IF4E_

1 

eIF4E 

binding 

motif 

Y....L[VILMF

] 

Motifs ELM Motif binding to the dorsal 

surface of eIF4E. 

(Dinkel et al., 

2016)  

32 LIG_

GLEB

S_BU

B3_1 

GLEBS 

motif 

[EN][FYLW][

NSQ].EE[IL

MVF][^P][LI

VMFA] 

Motifs ELM Gle2-binding-sequence motif (Dinkel et al., 

2016)  

33 LIG_L

IR_G

en_1 

Atg8 

protein 

family 

ligands 

[EDST].{0,2}

[WFY]..[ILV] 

Motifs ELM Canonical LIR motif that binds 

to Atg8 protein family 

members to mediate 

processes involved in 

autophagy. 

(Dinkel et al., 

2016)  

34 LIG_

PCN

A_PI

PBox

_1 

PCNA 

binding 

PIP box 

((^.{0,3})|(Q)

).[^FHWY][IL

M][^P][^FHI

LVWYP][HF

M][FMY].. 

Motifs ELM/P

hyloHM

M 

The PCNA binding PIP box  

motif is found in proteins 

involved in DNA replication, 

repair and cell cycle control. 

(Dinkel et al., 

2016)  

35 LIG_

SUM

O_SI

M_pa

SUMO 

interactio

n site 

[DEST]{0,5}.

[VILPTM][VI

L][DESTVIL

MA][VIL].{0,

Motifs ELM Motif for the parallel beta 

augmentation mode of non-

covalent binding to SUMO 

(Dinkel et al., 

2016)  
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r_1 1}[DEST]{1,

10} 

protein. 

36 MOD

_CDK

_SPx

K_1 

CDK 

Phosphor

ylation 

Site 

...([ST])P.[K

R] 

Motifs ELM/C

ondens 

Canonical version of the CDK 

phosphorylation site which 

shows specificity towards a 

lysine/arginine residue at the 

[ST]+3 position. 

(Dinkel et al., 

2016)  

37 MOD

_LAT

S_1 

LATS 

kinase 

phosphor

ylation 

motif 

H.[KR]..([ST]

)[^P] 

Motifs ELM The LATS phosphorylation 

motif is recognised by the 

LATS kinases for Ser/Thr 

phosphorylation. Substrates 

are often found toward the end 

of the Hippo signalling 

pathway. 

(Dinkel et al., 

2016)  

38 MOD

_SU

MO_f

or_1 

Sumoylat

ion site 

[VILMAFP](

K).E 

Motifs ELM Motif recognised for 

modification by SUMO-1 

(Dinkel et al., 

2016)  

39 TRG_

ER_F

FAT_

1 

FFAT 

motif 

[DE].{0,4}E[

FY][FYK]D[

AC].[ESTD] 

Motifs ELM VAP-A/Scs2 MSP-domain 

binding FFAT (diphenylalanine 

[FF] in an Acidic Tract) motif 

(Dinkel et al., 

2016)  

40 TRG_

Golgi

_diPh

e_1 

ER 

export 

signals 

Q.{6,6}FF.{6

,7} 

Motifs ELM ER to Golgi anterograde 

transport signal found at the 

C-terminus of type I ER-CGN 

integral membrane cargo 

receptors (cytoplasmic in this 

topology), it binds to COPII. 

(Dinkel et al., 

2016)  

41 TRG_

NLS_

Mono

ExtN_

NLS 

classical 

Nuclear 

Localizati

on 

(([PKR].{0,1}

[^DE])|([PKR

]))((K[RK])|(

RK))(([^DE][

KR])|([KR][^

Motifs ELM Monopartite variant of the 

classical basically charged 

NLS. N-extended version. 

(Dinkel et al., 

2016)  
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4 Signals DE]))[^DE] 

42 MOD

_CDK

_STP 

CDK 

phosphor

ylation 

motif 

[ST]P Motifs Conden

s 

NA (Holt et al., 

2009; A. C. 

W. Lai et al., 

2012)  

43 MOD

_ME

C1 

Mec1 

phosphor

ylation 

motif 

[ST]Q Motifs Conden

s 

NA  (A. C. W. 

Lai et al., 

2012; 

Schwartz et 

al., 2002) 

44 MOD

_PRK

1 

Prk1 

phosphor

ylation 

motif 

[LIVM]….TG Motifs Conden

s 

NA  (Huang et 

al., 2003; A. 

C. W. Lai et 

al., 2012) 

45 MOD

_IPL1 

Ipl1 

phosphor

ylation 

motif 

[RK].[ST][LI

V] 

Motifs Conden

s 

NA  (Cheesema

n et al., 

2002; A. C. 

W. Lai et al., 

2012) 

46 MOD

_PKA 

Pka 

phosphor

ylation 

motif 

R[RK].S Motifs Conden

s 

NA  (Budovskay

a et al., 

2005; Kemp 

and 

Pearson, 

1990; A. C. 

W. Lai et al., 

2012; 

Townsend et 

al., 1996) 

47 MOD

_CKII 

Ckii 

phosphor

ylation 

[ST][DE].[D

E] 

Motifs Conden

s 

NA  (A. C. W. 

Lai et al., 

2012; 

Meggio and 
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motif Pinna, 2003; 

Niefind et al., 

2007) 

48 MOD

_IME

2 

Ime2 

phosphor

ylation 

motif 

RP.[ST] Motifs Conden

s 

NA  (Holt et al., 

2007; J. Lai 

et al., 2012) 

49 DOC

_PRO 

proline-

rich motif 

P..P Motifs PhyloH

MM 

NA (Nguyen Ba 

et al., 2012) 

50 TRG_

ER_H

DEL 

ER 

localizati

on motif 

HDEL Motifs PhyloH

MM 

NA  (Nguyen Ba 

et al., 2012) 

51 TRG_

MITO

CHO

NDRI

A 

Mitochon

drial 

localizati

on motif 

[MR]L[RK] Motifs PhyloH

MM 

NA  (Nguyen Ba 

et al., 2012) 

52 MOD

_ISO

MER

ASE 

Disulfide 

isomeras

e motif 

C..C Motifs PhyloH

MM 

NA  (Nguyen Ba 

et al., 2012) 

53 TRG_

FG 

FG 

nucleopo

rin motif 

F.FG|GLFG Motifs PhyloH

MM 

NA  (Frey and 

Görlich, 

2009; 

Nguyen Ba 

et al., 2012) 

54 INT_

RGG 

RGG 

motif 

RGG | RG Motifs Literatu

re 

NA  (P. A. 

Chong et al., 

2018) 
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55 length Length NA Physicoch

emical 

properties 

Literatu

re 

Length in log scale Reviewed in 

van der Lee 

et al. 2014 

56 acidic Acidic 

residue 

content 

[DE] Physicoch

emical 

properties 

Literatu

re 

/localCI

DER 

NA (Warren and 

Shechter, 

2017) 

57 basic Basic 

residue 

content 

[RK] Physicoch

emical 

properties 

Literatu

re 

/localCI

DER 

NA (Fukasawa 

et al., 2015)  

58 hydro

phobi

city 

Hydroph

obicity 

NA Physicoch

emical 

properties 

Literatu

re 

/localCI

DER 

Kyte-Doolittle scale (Kyte and 

Doolittle, 

1982) 

59 alipha

tic 

Aliphatic 

residue 

content 

[ALMIV] Physicoch

emical 

properties 

Literatu

re 

/localCI

DER 

NA (Holehouse 

et al., 2017) 

60 polar

_fracti

on 

Polar 

residue 

content 

[QNSTGCH] Physicoch

emical 

properties 

Literatu

re 

/localCI

DER 

NA (Holehouse 

et al., 2017) 

61 chain

_expa

nding 

Chain 

expandin

g residue 

content 

[EDRKP] Physicoch

emical 

properties 

Literatu

re 

/localCI

DER 

NA (Holehouse 

et al., 2017) 

62 arom

atic 

Aromatic 

residue 

[FYW] Physicoch

emical 

Literatu

re 

/localCI

NA (Holehouse 

et al., 2017) 
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content properties DER 

63 disord

er_pr

omoti

ng 

Disorder 

promotin

g residue 

content 

[TAGRDHQ

KSEP] 

Physicoch

emical 

properties 

Literatu

re 

/localCI

DER 

NA (Holehouse 

et al., 2017) 

64 Iso_p

oint 

Isoelectri

c point 

NA Physicoch

emical 

properties 

Literatu

re 

/localCI

DER 

pH where charge of peptide is 

neutral 

(Holehouse 

et al., 2017; 

Marsh and 

Forman-Kay, 

2010; 

Tomasso et 

al., 2016) 

65 PPII_

prop 

PPII 

propensit

y 

NA Physicoch

emical 

properties 

Literatu

re 

/localCI

DER 

Propensity for proline to form 

left-handed helices 

(Elam et al., 

2013; 

Holehouse et 

al., 2017) 

66 REP_

Q2 

Q repeat Q{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more Q in a 

row 

(Chavali et 

al., 2017) 

67 REP_

N2 

N repeat N{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more N in a 

row 

(Chavali et 

al., 2017) 

68 REP_

S2 

S repeat S{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more S in a 

row 

(Chavali et 

al., 2017) 

69 REP_

G2 

G repeat G{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more G in a 

row 

(Chavali et 

al., 2017). 

70 REP_ E repeat E{2,} Repeats Literatu Fraction of 2 or more E in a (Chavali et 
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E2 and 

complexity 

re row al., 2017) 

71 REP_

D2 

D repeat D{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more D in a 

row 

(Chavali et 

al., 2017) 

72 REP_

K2 

K repeat K{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more K in a 

row 

(Matsushima 

et al., 2009; 

Simon and 

Hancock, 

2009) 

73 REP_

R2 

R repeat R{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more R in a 

row 

(Matsushima 

et al., 2009; 

Simon and 

Hancock, 

2009) 

74 REP_

P2 

P repeat P{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more P in a 

row 

(Chavali et 

al., 2017; 

Matsushima 

et al., 2009; 

Simon and 

Hancock, 

2009) 

75 REP_

QN2 

Q/N 

repeat 

[QN]{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more Q/N in a 

row 

(Alberti et al., 

2009; Van 

Der Lee et 

al., 2014) 

76 REP_

RG2 

R/G 

repeat 

[RG]{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more R/G in a 

row; aka "GAR" regions 

(P. A. Chong 

et al., 2018; 

Matsushima 

et al., 2009) 
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77 REP_

FG2 

F/G 

repeat 

[FG]{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more F/G in a 

row 

Reviewed in 

(Van Der 

Lee et al., 

2014) 

78 REP_

SG2 

S/G 

repeat 

[SG]{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more S/G in a 

row 

(Matsushima 

et al., 2009; 

Simon and 

Hancock, 

2009) 

79 REP_

SR2 

S/R 

repeat 

[SR]{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more S/R in a 

row 

Reviewed in 

(Van Der 

Lee et al., 

2014) 

80 REP_

KAP2 

K/A/P 

repeat 

[KAP]{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more K/A/P in 

a row 

Reviewed in 

(Van Der 

Lee et al., 

2014) 

81 REP_

PTS2 

P/T/S 

repeat 

[PTS]{2,} Repeats 

and 

complexity 

Literatu

re 

Fraction of 2 or more P/T/S in 

a row 

Reviewed in 

(Van Der 

Lee et al., 

2014) 

82 wf_co

mplex

ity 

Wootton-

Federhen 

sequenc

e 

complexit

y 

NA Repeats 

and 

complexity 

Literatu

re 

/localCI

DER 

Complexity based on SEG 

algorithm (Wootton and 

Federhen, 1993), blob 

length=IDR length, step size = 

1 

 (Wootton 

and 

Federhen, 

1993) 
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Appendix Figure 2-3. Full field-of-view micrographs of pheromone-exposed S.cerevisiae 

strains from Figure 3-2C. 
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Appendix Table 2-2. Controls for clustering results.  

Cluster 
ID 

Random 
permutation z-

score 

Amino acid 
permutation z-score 

Percent of homologous IDRs (top 
1% homology in proteome) 

A 24.94 6.13 1.47 

B 10.21 8.99 0 

C 30.77 10.74 0 

D 38.02 22.07 1.23 

E 7.87 6.54 0 

F 15.45 12.74 0 

G 12.99 9.41 5.87 

H 29.01 14.35 0 

I 19.88 11.37 0 

J 28.05 8.62 0 

K 7.9 9.95 0 

L 45.49 11.62 0.43 

M 47.5 15.31 2.84 

N 55.28 23.98 0 

O 46.42 7.16 0.6 

P 50.78 22.18 0.26 

Q 230.85 50.28 8.86 

R 16.51 5.97 0.94 

S 19.74 21.84 0 

T 13.77 10.43 0 

U 16.81 8.15 0.03 

V 44.33 10.41 0 

W 187.24 39.2 0 
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Appendix Figure 2-4. Evolutionary signatures in cluster W contain molecular features that have 

been previously reported for mitochondrial N-terminal targeting signals. A) Pattern of 

evolutionary signatures in cluster W. B) Multiple sequence alignments of example disordered 
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regions from Cox15 (top) and Atm1 (bottom) from cluster W, showing a subset of highlighted 

molecular features. Species included in phylogeny in order from top to bottom are S.cerevisiae, 

S.mikatae, S.kudriavzevii, S.uvarum, C.glabrata, K.africana, K.naganishii, N.castellii, 

N.dairenensis, T.phaffii, V.polyspora, Z.rouxii, T.delbrueckii, K.lactis, E.gossypii, 

E.cymbalariae, L.kluyveri, L.thermotolerans, L.waltii.    
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Appendix Figure 2-5. Full field-of-view micrographs of S.cerevisiae strains from Figure 3-6C. 
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Appendix Figure 2-6. Micrographs of S.cerevisiae strains with three different genotypes. From 

left to right: Mdl2-GFP has a mitochondrial localization in the wildtype (WT) strain, knocking 

out the Mdl2 IDR abolishes wildtype localization, and replacing the Mdl2 IDR with that of Atm1 

rescues mitochondrial localization.  
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Appendix Table 2-3. List of strains used in this study. 

Strain Genotype Source 

YTZ113 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 Cox15-GFP-His3 Huh et al., courtesy of 

Brenda Andrews' lab 

YTZ115 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 Mdl2-GFP-His3 Huh et al., courtesy of 

Brenda Andrews' lab 

YBS270 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 Cox15-GFP-His3 

Cox15 IDR (a.a. 1-45)::0 

This study 

YBS271 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 Cox15-GFP-His3 

Cox15 IDR (a.a. 1-45)::Atm1 IDR (a.a. 1-84) 

This study 

YBS272 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 Mdl2-GFP-His3 

Mdl2 IDR (a.a. 1-99)::0 

This study 

YBS273 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 Mdl2-GFP-His3 

Mdl2 IDR (a.a. 1-99)::Atm1 IDR (a.a. 1-84) 

This study 

YBS278 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 Cox15-GFP-His3 

Cox15 IDR (a.a. 1-45)::Emp47 IDR (a.a. 1-37) 

This study 

YTZ127 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 SSK22::HisMX3 

SSK2∆0 HO::pFUS1-yemGFP-klURA3 

This study 

YTZ129 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 SSK22::HisMX3 

SSK2∆0 Ste50 IDR (a.a. 152-250)::Pex5 IDR (a.a.77-161) 

HO::pFUS1-yemGFP-klURA3 

This study 

YTZ130 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 SSK22::HisMX3 

SSK2∆0 Ste50 IDR (a.a. 152-250)::Rad26 IDR (a.a. 163-

269) HO::pFUS1-yemGFP-klURA3 

This study 

YTZ131 MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 SSK22::HisMX3 

SSK2∆0 Ste50 IDR (a.a. 152-250)::Stp4 IDR (a.a. 144-

This study 
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256) HO::pFUS1-yemGFP-klURA3 
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Supplementary material for Chapter 4 
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Appendix Table 3-1. Top 5 functional predictions for proteins that have unknown gene function 

or gene description annotations. 
 

ID Name Gene function 

summary 

Gene 

description 

Predicted function Probability 

1 YIL011W TIR3 Protein whose 

biological role 

is unknown; 

localizes to 

the cell wall 

Cell wall 

mannoprotein 

Extracellular region 

(GO.0005576) 

0.913026 

2 YIL011W TIR3 Protein whose 

biological role 

is unknown; 

localizes to 

the cell wall 

Cell wall 

mannoprotein 

Cell wall (GO.0005618) 0.864549 

3 YER080W AIM9 Protein whose 

biological role 

and cellular 

location are 

unknown 

Protein of 

unknown 

function 

Mitochondrion 

(GO.0005739) 

0.781754 

4 YER080W AIM9 Protein whose 

biological role 

and cellular 

location are 

unknown 

Protein of 

unknown 

function 

Mitochondrial inner 

membrane 

0.666776 

5 YHR059W FYV4 Component of 

the small 

subunit of the 

mitochondrial 

ribosome, 

which 

mediates 

translation in 

the 

Protein of 

unknown 

function 

Mitochondrion 0.62196 
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mitochondrion 
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Appendix Figure 3-1. Schematic of model used to predict protein function (and weight of each 

IDR’s contribution) from evolutionary signatures of IDRs.  
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