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http://elm.eu.org/

What controls protein subcellular 
localization and stability?

Van der Lee et al. 2014

• “Signals” in the primary amino acid 
sequence 
– Now often called motifs
– controlled by postranslational modifications (often 

phosphorylation)

• Regulatory parts of proteins are often 
intrinsically disordered (IDRs)

• Determinants of localization to non-
membrane bound organelles are not 
currently understood



Regulation of p27 
(aka KIP1, CDKN1B)
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181 AGSVEQTPKKPGLRRRQT Residues 153-166 
are an NLS

Zeng et al. 2002
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High-throughput cell biology

• GFP-tagging of all yeast proteins in 2003 

• Recent advances in automated 
microscopy and genetics
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Processed: 106 to 107 data 
points

Raw: 105 images, 50GB
Per experiment: 

For each strain, ~200 
cells are imaged at high 
resolution

Srs2

In each cell, Srs2 
appears green The cytoplasm 

appears read

Handfield et al. PLoS Comp. Biol. 2013
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“expected distance 
to centre of mass”

Measures “compactness” or 
“spread” of the GFP subcellular
localization pattern.

Centre of 
mass of GFP 

Interpretable features
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Chong et al. Cell 2015
Cyclops database (Koh et al. G3 2015)



change detection

2012

JCB 2013

No automated detection of changes in 
subcellular localization patterns reported… 
images were examined by eye



wt ELM1

• Mutation causes cells to 
grow in long chains

• Cells are smaller and not 
as round

• Segmentation algorithm 
(trained on wt cells) is 
totally confused

• Some cells are unaffected

Naïve statistics in the feature 
space identify 1000s of 
changes that are biased by 
the localization class

Lu & Moses PLoS One 2016

Why is automated change detection 
in microscopy images so hard?

(example of a real change)

The inferred cell 
boundary 
indicated in blue

The inferred bud 
neck indicated in 
white



Why is automated change detection 
in microscopy images so hard?
• “Global effects”, a type of covariate shift such that 

all localization patterns look a little bit different
– Mutation or drug causes overall change in cell shape 
– Cell growth, nutritional differences, technical 

differences in microscopes, laser age etc.
– Effect on feature space is heterogeneous

• E.g., Nuclear proteins may be affected differently than cell 
membrane

• Cell to cell variability (incomplete penetrance)
– Not all cells in the image display the same type of 

change



Global effects



Local statistics

Image feature space

Image feature i
in experiment j

(“wt” or “control”)

K

E[Xij] Xijp - E[Xij]

Xijp

K nearest neighbours (or adaptive 
bandwidth kernel regression) can be 
used to compute local expectation

Handfield et al. Bioinformatics 2014
Lu & Moses PLoS One 2016

(High-dimensional)

In practice, we 
compare the 
observations for 
protein p to 50 most 
similar proteins



Patterns of localization change 
from 280,000 imagesMagnitude of change

(relative to local expectation)

Global view of localization 
changes across many 
experiments

Lu et al. eLife 2018

4143 yeast GFP-fusion proteins
RFP labelled cytoplasm

281,724 images 
15.5 million cells

Cyclops database 
(Koh et al. G3 2015)



Patterns of localization change 
from 280,000 images

Changes for arbitrary 
localization classes

Magnitude of change
(relative to local expectation)

Lu et al. eLife 2018



Patterns of localization change 
from 280,000 imagesMagnitude of change

(relative to local expectation)

Identify shared changes

Lu et al. eLife 2018



Patterns of localization change 
from 280,000 images

Guilt by association identifies Rtg3 as a 
“pulsing” stress transcription factor

Lu et al. eLife 2018

Magnitude of change
(relative to local expectation)



How to generalize unsupervised 
automated image analysis?

• Data integration across image collections seems to work 
even with changes in cell morphology

• But segmentation and image features used were 
designed for RFP labelled yeast cells (bud and mother, 
distance to budneck, etc.)

• Can we apply this to other datasets?
• Use generalized segmentation and image features

Neural networks

Lu et al. eLife 2018



4143 yeast GFP-fusion proteins
RFP labelled cytoplasm

281,724 images 
15.5 million cells

Cyclops database 
(Koh et al. G3 2015)

Lu et al. eLife 2018



4143 yeast GFP-fusion proteins
RFP labelled cytoplasm

281,724 images 
15.5 million cells

Cyclops database 
(Koh et al. G3 2015)

Lu et al. eLife 2018 Tkatch et al. Nat. Cell Bio. 2012

4143 yeast GFP-fusion proteins
RFP labelled nuclear pore

~35,000 images 
~4 million cells.

~4000 yeast GFP-fusion proteins
Bright field background

11895 images 
0.566 million cells.

Weill et al. J. Mol. Biol. 2018
LoQate database
(Breker et al. NAR 2014)

Thul et al. Science 2017 And many other datasets that have 
been analyzed by looking at images 
one by one



General cell segmentation tools

http://beergoggles.csb.utoronto.ca/

Mask R-CNN trained on human 
nuclei easily segments yeast across 
imaging modalities

Lu & Moses submitted 2019



How to get morphology and 
microscopy independent features?

• Our “designed” features relied on prior 
knowledge of cell morphology and RFP

• CNNs are known to produce good features
• CNNs can work very well for microscopy 

image classification
– Supervised classification, so features are likely to be most sensitive 

to what we trained on
– Impractical to label training sets for each cellular perturbation

• Self-supervised learning: train the CNN on a 
“proxy” task
– Teach the model indirectly by exploiting the structure of the data

Kraus et al. MSB 2017





Paired-cell inpainting

Lu et al. submitted 2018



Outperforms other feature sets

Lu et al. submitted 2018

Single cell classification benchmark 
(Kraus et al. MSB 2017)

Overall accuracy approaches 
supervised CNN



Proteome-scale pattern of 
localization is recovered from 
all these datasets

Now straightforward to learn a feature space for each new dataset 
No training data is required!
(First objective assessment of consistency between these datasets)

Alex Lu unpublished



Rediscovers most known human patterns

Alex Lu unpublished



Discover rare, difficult patterns

Lu et al. submitted 2018

“Nucleolar rim”: very 
rare pattern with no 
training data

Other 
“Speckles”

Splicing 
“Speckles”



Features seem highly robust to 
morphological variation

Lu et al. submitted 2018



Paired-Cell Inpainting
• For any multi-channel cell microscopy dataset, we 

can now generate a single cell feature 
representation without training data

• Change detection and other applications:
– Quantify cell to cell variation
– Identify cell-type-specific localization patterns
– Integrate data across imaging modalities

• What about the generative capacity of the 
model?



Applications approach science fiction

Nucleoli

Nuclear 
membrane

Nucleoplasm

Cytoplasm

“Inpaint” more markers to highlight 
cell components?



Outline

• Introduction: regulation of proteins
• Automatic identification of protein 

localization changes in microscopy images
– Local statistics & data integration
– Patterns of localization change to cell biology
– Self-supervised learning of image features

• Unsupervised classification of intrinsically 
disordered protein regions

@alexijielu

Lu et al. submitted 2018

Lu et al. eLife 2018

Lu & Moses PLoS One 2016
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• Intrinsically disordered regions (IDRs) are mostly 
highly diverged

• ~1/3 known motifs are conserved, only 5% of 
total IDR amino acids are conserved in 
sequence alignments

• Low complexity?
• Repetitive?

Use evolutionary comparisons to 
understand regulation of proteins

Nguyen Ba et al. Sci. Signaling 2012?



• Yes (Norman Davey, personal communication)
– IDRs are just inert “linkers” to hold motifs
– Many can be greatly shortened

• No way! (Julie Forman-Kay) 
– “bulk properties” (such as low-complexity, 

repeats, charge) are the key to phase 
separation

• Let’s find out (Taraneh Zarin, PhD Student)

Are IDRs mostly “junk”?

If bulk sequence properties are important they 
should be preserved by evolution…



Ste50 as a typical IDR

MAPK signaling network

Zarin et al. PNAS 2017



Phosphorylation sites are needed 
for normal morphology

Quantify abnormal 
morphology using a two-
component mixture model



Other species’ IDRs rescue 
morphology

Zarin et al. PNAS 2017



Other species’ IDRs rescue 
morphology

Phosphorylation 
site number is 
not correlated 
with morphology

Zarin et al. PNAS 2017



Other species’ IDRs support normal 
growth

Other species IDRs 
can mostly rescue 
fitness defect

Zarin et al. PNAS 2017



Signaling reporter 
(flow cytometry!)

Other species’ IDRs support normal 
signaling

Mutation of phosphorylation sites 
appears to be a gain of function

Zarin et al. PNAS 2017
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Correlation of signaling with 
charge?



Make lots of mutants and measure 
reporter expression

Turns out charge might 
be what’s important…
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Turns out charge might 
be what’s important…

Non-phosphorylatable

Zarin et al. PNAS 2017



At least in the case of the Ste50 IDR, this 
points to constraint on charge

A test for unusual evolution in IDRs

Simulate evolution of disordered 
regions and compare the charge 
in the real orthologs to what we 
see in the simulations

Zarin et al. PNAS 2017

Nguyen Ba et al. PLoS Comp. Bio 2014



Test for other conserved properties that are 
not visible in sequence alignments

• Recent studies report experimental evidence for 
functional “bulk” properties in IDRs

Nott et al. Mol Cell 2015



• 82 molecular features from literature that 
we can compute from protein sequences

Most IDRs in the yeast proteome have 
many molecular features that deviate from 
the expectationTaraneh Zarin unpublished

Test for other conserved properties that 
are not visible in sequence alignments



Evolution of molecular features is a “signature”

Taraneh Zarin unpublished



We can quantitatively compare IDRs

Taraneh Zarin unpublished

Evolutionary signatures can measure 
similarity of IDR sequences, even when 
there is no detectable similarity in alignments



Other proteins’ IDRs can rescue signaling!?

Taraneh Zarin unpublished



Other proteins’ IDRs can rescue signaling!?

Taraneh Zarin unpublished



Evolutionary patterns of 
molecular features are 
associated with specific 
biological functions



Evolutionary patterns of molecular features are 
associated with specific biological functions Taraneh Zarin unpublished

144/165 IDRs in this 
cluster are in 
mitochondrial proteins

No clear motifs or 
detectable, 
sequence similarity, 
or evolutionary 
conservation



These IDRs are clearly targeting signals



Other proteins’ IDRs can rescue targeting

Other IDR from cluster W



Other proteins’ IDRs can rescue targeting

Other IDR from cluster W IDR from cluster V



conserved

Rio2

50/295 proteins 
are nucleolar



Negatively charged
Positively charged
CKII consensus

conserved

Rio2



Hundreds of proteins 
may be regulated by 
CKII in a similar manner

Negatively charged
Positively charged
CKII consensus

conserved

Rio2



42/159 proteins are nucleolar

Nop58

Negatively charged
Positively charged
CKII consensus

Rio2



42/159 proteins are nucleolar

Nop58

Negatively charged
Positively charged
CKII consensus

Bentley-DeSousa et al. 
Cell Reports 2018

Rio2



Signatures of function in IDRs
• Rapidly evolving IDR sequences contain rich biological 

information
– Mitochondrial targeting signals
– Postranslational modifications associated with nucleolus

• Seems to rule out “mostly junk” hypothesis
• Shared molecular features must be due to convergent 

evolution
– E.g., mitochondrial targeting peptides

• Should be possible to predict IDR function from 
sequence as is now done for folded protein domains
– Won’t work using BLAST or HMMer



Outline

• Introduction: regulation of proteins
• Automatic identification of protein 

localization changes in microscopy images
• Unsupervised classification of intrinsically 

disordered protein regions
– Evidence for conservation of bulk properties 

in highly diverged disordered regions
– Evolutionary signatures of function

Zarin et al. PNAS 2017
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What about Ste50?
• Ste50 IDR is in one of the clusters associated with transcription: 

18/39 proteins are sequence-specific transcription factors

• Signature for this cluster is very complicated:

Depleted 
in acidic 
residues

S/T-P sites

Demixed charged/ 
proline residues

High R/K ratio Reduced 
variance of 
charge

Enriched 
proline


