Assignment 3 “Classification” for ML4BIO 2016 (there will be no assignment 2)
Due Date: May 7th, 2016

Submit to ML4BIO@gmail.com before 11:59pm on May 7t (Eastern Daylight Time)

Classification

You will be using http://playground.tensorflow.org to answer questions for this
assignment. When you need to show your work, please submit screen captures of
the interface. Feel free to keep your response as short as possible but no shorter
than necessary to explain your answer. Playground is non-deterministic, so please
ensure that the behaviour that you report is at least qualitatively reproducible.

The playground uses Stochastic Gradient Descent (or SGD to its friends) as the
optimization method to train the neural network. This method is related to the
gradient (or steepest) descent optimization method that we talked about in class. In
gradient descent and SGD, you initialize the parameters to some random values and
iteratively improve them in an attempt to minimize the cost function (Because the
goal here is to minimize the objective function, we can it a cost function). There is
one parameter for each connection in the neural network, these parameters are
called weights. The current settings of the parameters are represented by a vector
and you update the parameters in each iteration by adding another vector, the
update vector, that has a small magnitude (i.e. length). Intuitively, what you are
doing is taking a small step in the direction of the update vector - the size of the step
is the length/magnitude of the update vector. The learning rate is proportional to
the size of the step

In gradient descent, this update vector points in the direction opposite to the
gradient of the cost function (i.e. if the gradient is a vector v then the update vector
points in the direction of -v). Thus the name gradient descent. Why is this a good
idea? Well, a small step in the direction opposite the gradient will give you the
largest decrease of the objective function of any direction you can choose (for the
same sized step). That's why gradient descent is sometimes called steepest descent.

SGD is just like gradient descent, except that instead of computing the gradient using
all the training set, you compute it with a random subset of the training set. This is
why it is called stochastic. The batch size is the size of this subset. If the batch is big
enough, then the stochastic gradient will point in nearly the same direction as the
gradient computed using the whole training set. Because the amount of time it takes
to compute the gradient scales linearly in the size of the batch, training is much
faster if you can use smaller batches but get more or less the same gradient. Also,
surprisingly, it turns out that using a stochastic gradient sometimes gives better
solutions than the actual gradient, because it can prevent the optimization method
from getting stuck in bad local minima.

Choosing a good learning rate is important because sometimes the gradient can vary
a lot for nearby points. So, if you take too big of a step, you can sometimes increase



the cost function rather than decreasing it. But if you take too small of a step,
training will take forever.

The four parts of ML

In class, we talked about four parts of an ML method: the Data, the Model, the
Objective Function, and the Optimization Method.

1. For each of the four parts, indicate two choices that the playground gives you that
affect that part. Bonus question: can you find one more choice for each of the four
parts? Note, I think that one of the parts only is associated with two choices.

Logistic regression

In the classification setting, if you choose zero hidden layers, playground will train a
logistic regression (LR) classifier using SGD.

1. What datasets are linearly separable using LR with only X1 and X2 inputs?

2. What datasets are separable using some subset of the inputs? In these cases, what
is minimum set of inputs that make the datasets separable and what is the function
of the decision boundary? Just write down the non-zero terms and their sign.

3. What is the impact of the learning rate on learning?

4. What is the impact of using L1 regularization? How about L2? How does it depend
on the regularization rate?

Neural networks

The multiple layer perceptron that we talked about in class corresponds to the
classification setting, with a single hidden layer.

5. What datasets can you achieve good classifier for using MLP with only X1 and X2
as input? Show screen captures of the datasets you were able to learn. How does
using the other inputs help this?

6. What is the impact of the learning rate on learning? What happens if the learning
rate is too high (esp. with small batches)? What happens if it is too low? How does
this depend on the number of hidden layers in the network, and their size? Does
regularization help? Just give one or two examples for these questions.

7. Can you find any examples of overfitting? (Hint: try playing around with the
amount of noise you add to the data) When, qualitatively, does this happen?

8. If you use all the inputs, all problems are learnable for some settings of the model.
Can you give three examples of input choices that lead to one or more unlearnable
classification problems? Why are these bad choices for the inputs?



