ML4Bio Lecture #1: Introduction

February 24th, 2016 Quaid Morris

Course goals

- Practical introduction to ML
 - Having a basic grounding in the terminology and important concepts in ML; to permit self-study,
 - Being able to select the right method for your problems,
 - Being able to use the multitude of ML tools and methods in R,
 - Being able to troubleshoot problems with tools,
 - Having a foundation to learn other tools: Python's scikit-learn, TensorFlow/Torch/Theano

How this course works

- Course website: Google "ML4BIO Alan Moses"
- Course email: (but email me if you have questions)
- Four problem sets, 25% of your grade
- Programming in R (other languages possible*, but unsupported)
- Two tutorials: linear algebra review (March 1st), intro to R(March 8th), details on website.

Outline

- Overview of ML
- Overfitting
- Cross-validation
- Measuring success

Some slides adapted from:

Probabilistic Modelling and Bayesian Inference

Zoubin Ghahramani

Department of Engineering University of Cambridge, UK

zoubin@eng.cam.ac.uk
http://learning.eng.cam.ac.uk/zoubin/

MLSS Tu^{*}bingen Lectures 2013

Classification example

What is the correct label for the ?'s? How certain am I? How does the label depend on x?

Regression example

e.g. what is the temperature at this time of the year?

What is the relationship between x and y? Given a new value of x, what's my best guess at y? What is the range of variability in y for a given x?

Clustering example

Are a given pair of datapoints from the same cluster? How many clusters are there?

What are the characteristics of individual clusters?

Are there outliers?

How certain am I of the answers to the above questions?

Dimensionality reduction example

Do the datapoints lie on a lower dimensional "manifold"?

If so, what is the dimensionality?

How far apart are two datapoints, if you can only travel on the manifold?

Dimensionality reduction example II

From "monocle": Trapnell et al, NatBio 2014

How do to ML

- Four parts:
 - 1. Data D describes the machine learning problem
 - 2. Model defines the parameters Θ and describes how the data D depends on them
 - 3. Objective function E(Θ, D) scores Θ for a given dataset D
 - Optimization method finds high scoring values of Θ

The Data

Supervised learning:

e.g. deep learning, random forests, SVMs

Unsupervised learning:

e.g. clustering, PCA, dimensionality reduction

$$D = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$$

Data: supervised learning

- y⁽ⁿ⁾ is a categorical value, sometimes called "discrete"
- If y⁽ⁿ⁾ is either X or O: binary classification
- If $y^{(n)}$ is, e.g., either X, O, or +: multiclass classification
- If y⁽ⁿ⁾ is, e.g., either (X, X), (O, X), (X, O) or (O,O): multilabel classification

Data: unsupervised learning

The Model

- A formal description of how the data depends on the parameter.
- E.g. linear regression. Data: inputs x, and target values y

```
Model's prediction, aka output: "y hat", this is compared to target value "y"  y = \alpha x + \beta  model parameters  x + \beta  Inputs aka features
```

Goal: set α and β so that $\hat{y}^{(n)}$ is as close as possible to $y^{(n)}$ for a given $x^{(n)}$ for all i

e.g. Classification

Model (logistic regression):

- 1. the "direction" of the classification boundary, given by a vector $\boldsymbol{\omega}$
- A scalar value, γ, indicating how quickly confidence changes as we move away from the boundary

e.g. Polynomial regression

Model (e.g. fifth order polynomial):

$$\hat{y} = \theta_5 x^5 + \theta_4 x^4 + \theta_3 x^3 + \theta_2 x^2 + \theta_1 x^1 + \theta_0$$

The Objective function

 $E(\Theta, D)$ or just $E(\Theta)$

- Depends on both the data D and the parameters Θ,
- Measures fit between the model's predictions and the data,
- Often contains a term to penalize "complex models", sometimes known as regularization
- D is fixed, goal is to optimize function with respect to Θ,
- Also known as: cost function, error function
- Examples: sum of squared errors (SSE):

$$E(\alpha, \beta) = \sum_{n} (y^{(n)} - \hat{y}^{(n)})^2$$

The Optimization Method

$$E(\alpha, \beta) = \sum_{n} (y^{(n)} - \hat{y}^{(n)})^2$$

- E.g. try all values of α , β on a grid until, choose the best ones. (brute force)
- Take the partial derivatives of E with respect to α , β and find the critical points where they are zero, determine which are minima. (analytical)
- Start at a random point, follow the gradient of the function to a (local) minimum (gradient descent)

Important questions

- 1. Data Is the data appropriate for my learning task? Do I have enough data? Are my training data representative? Is there a selection bias in my data?
- 2. Model Is my model sufficiently complex to learn the task? Is overfitting a concern? Can I interpret the parameters or the model?
- 3. Objective function Does my objective function score errors appropriately? Is it too sensitive to outliers? Is it properly regularized?
- 4. Optimization method Will my optimization method find good solutions? Does it get stuck in suboptimal solution (aka local minima)? Am I using a method matched to the objective function? Is it fast enough?

Important concepts

- Training and test sets
- Uncertainty about classification
- Overfitting
- Cross-validation (leave-one-out)

Put yourself in the machine's shoes

Which uncharacterized genes are involved in tRNA processing?

Positives

Negatives

What pattern distinguishes the positives and the negatives?

Positives

- 4 blue features
- features 1,3, and 5 are blue
- features 1 and 3 are blue and feature 2 is red
- features 1 and 3 are blue

Negatives

Positives

- features 1 and 3 are blue and feature 2 is red
- features 1 and 3 are blue

Negatives

Known genes

Positives

Negatives

• features 1 and 3 are blue

Known genes

Prediction

Prediction

Prediction

Training under sparse annotation

Positives

- 4 blue features
- features 1 and 3 are blue

Negatives

What pattern distinguishes the positives and the negatives?

Prediction under sparse annotation

Prediction under sparse annotation

	1.0	Definitely involved
Legend	0.5	May be involved
	0	Definitely not involved

Prediction under sparse annotation

Prediction: Gene1, and probably Genes 2, 4, and 5 are involved in tRNA processing.

Experimental validation

Experimental validation

One correct "confidence 1" prediction

Experimental validation

Two out of three "confidence 0.5" predictions correct.

Validation results

Confidence	# True Positives	# False Positives
1	1	0
0.5	3	1
0	3	3

Gene1	1.0
Gene2	0.5
Gene3	0
Gene4	0.5
Gene5	0.5
Gene6	0

Confidence

Noisy features

Positives

Incorrect measurement, should be blue.

Negatives

Noisy features

Positives

Negatives

What distinguishes the positives and the negatives?

Noisy features + sparse data = overfitting

What distinguishes the positives and the negatives?

Training

Positives

• 4 blue features

Negatives

Prediction

<u>Four blue</u> <u>features?</u> <u>Confidence</u>

Prediction: Gene1 and 5 are involved in tRNA processing.

Experimental validation

One incorrect high confidence prediction, i.e., one false positive

Experimental validation

<u>Four blue</u> <u>features?Confidence</u>

Two genes missed completely, i.e., two false negatives

Experimental validation

One incorrect high confidence prediction, two genes missed completely

Validation results

	# True Positives	# False Positives		<u>Confidence</u>
Confidence	Posi	Pos	Gene1	1.0
ıfide off	rue	alse	Gene2	0
Con	+	#	Gene3	0
	_	4	Gene4	0
1	1	1	Gene5	1.0
	0	0	Gene6	0
	3	3		

What have we learned?

- Sparse data: many different patterns distinguish positives and negatives.
- Noisy features: Actual distinguishing pattern may not be observable
- Sparse data + noisy features: may detect, and be highly confident in, spurious, incorrect patterns.

Overfitting

Validation

- Different algorithms assign confidence to their predictions differently
- Need to
 - 1. Determine meaning of each algorithm's confidence score.
 - 2. Determine what level of confidence is warranted by the data

Cross-validation

Basic idea:

Hold out part of the data and use it to validate confidence levels

Cross-validation

Positives

Negatives

Cross-validation

Cross-validation: training

Cross-validation: training

N-fold cross validation

N-fold cross validation

Cross-validation results

Confidence	S # True Positives	False Positives
1	3	[#] 0
0.75	3	1
0.5	4	2
0.25	5	3
0	5	5

Displaying results: ROC curves

Confidence	# True Positives	# False Positives
1	3	0
0.75	3	1
0.5	4	2
0.25	5	3
0	5	5

Making new predictions

Confidence	# True Positives	# False Positives
1	3	0
0.75	3	1
0.5	4	2
0.25	5	3
0	5	5

Figures of merit

```
Precision: #TP / (#TP + #FP)
(also known as positive predictive value)
```

Recall: #TP / (#TP + #FN)
(also known as sensitivity)

Specificity: #TN / (#FP + #TN)

Negative predictive value: #TN / (#FN + #TN)

Accuracy: (#TP + #TN) / (#TP + #FP + #TN + #FN)

Confusion matrix

Predicted

T F

Actual T

TP	FN
FP	TN

Area under the ROC curve

Area Under the ROC Curve (AUC) =

Average proportion of negatives with confidence levels less than a random positive

Quick facts:

- 0 < AUC < 1
- AUC of random classifier = 0.5

ROC curve

