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We want to find groups in data

X,=6.8
X,=5.1
X3=5.3
X,=7.1

 How many groups are there?
* What data points (observations) belong to each group?
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Outline

» Distance-based clustering
 Evaluating clustering

« How to choose the number of clusters



Distance between data points

* In high dimensions there are different ways of defining a
“distance”

 For high-dimensional biology, the secret sauce is the weighting
of dimensions



o Cell B expression

Cell A expression
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Cell A expression

* This is the most intuitive
distance to us...
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* Why might the angle be
more reliable?



K-means clustering

 Statisticians sometimes call it c-means
* Traditionally uses the Euclidean distance

* Very intuitive objective function:
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Sum of squared distances (or errors) between
datapoints and the closest “cluster mean”.



K-means clustering
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° ' T H : : : . Sum of squared distances (or errors) between
Very |ntU|t|ve ObJeCtlve fUﬂCtIOﬂ. datapoints and the closest “cluster mean”.

CC) A 1’1’11\ - d(m,Xz)
2 P Xy
o
S|
) )51
m N X3
@ ~ Xg
O >

Cell A expression



K-means clustering

 Statisticians sometimes call it c-means
* Traditionally uses the Euclidean distance

* Very intuitive objective function:
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Sum of squared distances (or errors) between
datapoints and the closest “cluster mean”.



K-means clustering

 Statisticians sometimes call it c-means
* Traditionally uses the Euclidean distance

° ' T H : : : . Sum of squared distances (or errors) between
Very |ntU|t|ve ObJeCtlve fUﬂCtIOﬂ. datapoints and the closest “cluster mean”.
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How do we chose the cluster means?

* In other words, how do we optimize the objective function?

1.
2.
3.

4.

Start with k random cluster means
Assign each datapoint to the closest cluster mean

Recalculate the means so that it actually is the mean of the closest
datapoints

Compute the objective function

Repeats steps 2-4 until the objective function doesn’t improve any
more
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Machine learned!



How do we chose the cluster means?

* In other words, how do we optimize the objective function?
« Turns out there is no analytic solution, and there are many local optima
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“The Quaid Data Box”



How do we chose the cluster means?

* In other words, how do we optimize the objective function?

1.
2.
3.

4.

Start with k random cluster means
Assign each datapoint to the closest cluster mean

Recalculate the means so that it actually is the mean of the closest
datapoints

Compute the objective function

Repeats steps 2-4 until the objective function doesn’t improve any
more

Repeat steps 1-5 a few more times (different random cluster means)

K-means is “stochastic”
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Exemplar-based clustering

« K-medoids/partitioning around medoids (PAM)
e Can be better than k-means, but slower

* Newer exemplar-based methods are faster (e.g., affinity

propagation)
Instead of fiddling around with these “cluster
means” choose an exemplar (a datapoint or
observation) to represent each cluster

What is the objective function?
What are the parameters?



How to choose k?

» Which distance/algorithm is better?

 Silhouette: compare the distances of points
within the same clusters to the distances of
points between clusters
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Average silhouette
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214 cell types

None of these standard kinds of
clustering work very well ...

* If you have 100s of dimensions and many datapoints,
* k is probably large and unknown (or there really is no “best k”)

8697 mouse genes

ImmGen data



Hierarchical clustering

 Don’t bother with the k clusters

o Cell B expression

Cell A expression

Successively group
together closest
datapoints, until all
the data is joined
together into a tree.



Hierarchical clustering

 Don’t bother with the k clusters

Distance between

observations
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the clusters



o Cell B expression

Hierarchical clustering

* What is the distance between a point and a cluster?
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Graph-based clustering

* No reason that the points have to be merged together into a
tree

* All you need is a procedure to cut the graph

e.g., MCL (Markov Cluster Algorithm)



Secret sauce — weighting the dimensions

 For high-dimensional biological data, many of the dimensions
might be similar

* If you cluster naively using Euclidean (or cosine) distance, you
probably won’t get good clusters: the correlated dimensions will
swamp out the signal from the uncorrelated dimensions

* You c)an try dimensionality reduction (but that’'s a few lectures
away

* You can downweight the similar dimensions using a different
type of distance

* Gene cluster 3.0 has a very good heuristic for this that works in
high-dimensions



***Fake data***

Data points

features
43 -2 1.2 18
-1 29 34 4
0.2 -1 3.7 23
13 4 28 -0
22 25 23 15
3.5 2.1 1.5 0.9
29 -0 -0 -1
-3 -5 0.7 -4
0.2 -2 -4 -2
-1 -1 -1 -3
-1 -1 -2 -1
-4 -1 0.7 -3
-2 -2 -1 -1
-2 -7 -3 -1
-1 -4 1.2 -3

«_ These observations look similar, but
« it's mostly due to fluctuations in the
correlated features
(Euclidean distance=9)

These are the datapoints

you really want to identify
as similar

(Euclidean distance=16.5)

Correlation distance also
makes the top two
datapoints more similar

Because of correlated, noisy features,
clustering might fail to identify two similar
datapoints...



8697 genes

214 cell types
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Principled weighting - GMMs

* Like K-means, but each cluster can have its own weighting!
(locally warp space around each cluster mean)

* These “warping” parameters need to be learned from the data
« Optimization is still stochastic, called the “EM algorithm”

* Need regularization to make sure you aren’t overfitting — this
can be done by subtracting a penalty proportional to the number
of parameters. This is known as the AlC.

 Not really practical for high-dimensional clustering problems
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Clustering other kinds of data

* Any observations where you can calculate distances can be
clustered by k-means or UPGMA
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The devil in In the distances

n
d(Xg Xy) = Z(Xgi - Xm-)2 = \/(Xg — Xh)T(Xg —X,) Euclidean distance
i=1

d(Xy Xp) = \/(Xg — Xh)Tg—l(Xg —X,) Malhalanobis distance

X, X

Cosine distance
X gl [|XnI]

d(Xg, Xp) =1—cosp(Xy Xp) =1—

Can any of these be applied
to sequences?



How to represent sequences as
numbers?

« Say our observation is the sequence X=CACGTG
* We can write a matrix

X =

T OoOmRO O
oo R
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_ oo O
o oOr o

-

|
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* For two sequences, X, and X,, sum up the cosine distance for
each position L Ty
le XZ_]

1-— =L—-X,X
Z( IIleIIIIXz,-II> Loz

j=1

What does this distance
measure?
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