
ML4Bio	
Lecture	 #4:	 Classifica4on	

	
March	 16th,	 2016	
Quaid	 Morris	

-4 -2 0 2 4 6

-4
-2

0
2

4
6

othergenes[, 5]

o
th

e
rg

e
n

e
s
[,

 6
]

-4 -2 0 2 4 6

-4
-2

0
2

4
6

phogenes[, 5]

p
h

o
g

e
n

e
s
[,

 6
]

Fold expression change PHO81 rep1

Fo
ld

 e
xp

re
ss

io
n

ch
an

ge
 P

H
O

81
 re

p2

27 genes
involved in
phosphate
pathway

~5700 Other
genes

Predicting gene function

Predicting gene function

-4 -2 0 2 4 6

-4
-2

0
2

4
6

othergenes[, 5]

o
th

e
rg

e
n

e
s
[,

 6
]

-4 -2 0 2 4 6

-4
-2

0
2

4
6

phogenes[, 5]

p
h

o
g

e
n

e
s
[,

 6
]

Fold expression change PHO81 rep1

Fo
ld

 e
xp

re
ss

io
n

ch
an

ge
 P

H
O

81
 re

p2

27 genes
involved in
phosphate
pathway

~5700 Other
genes

?
?

? ?

Which of these
might also be
in phosphate
pathway?

-4 -2 0 2 4 6

-4
-2

0
2

4
6

othergenes[, 5]

o
th

e
rg

e
n

e
s
[,

 6
]

-4 -2 0 2 4 6

-4
-2

0
2

4
6

phogenes[, 5]

p
h

o
g

e
n

e
s
[,

 6
]

Feature 1 (x1)

“positives”

“negatives”

A linear classifier will try to find a line**
that separates the two classes

** only a line in 2-d, a plane in 3-d, & hyperplane in >3-d

Fe
at

ur
e

2
(x

2)

? ?

? ?

“unknowns”
or “test data”

“decision boundary”
(a linear function of
the “features”)

-4 -2 0 2 4 6

-4
-2

0
2

4
6

othergenes[, 5]

o
th

e
rg

e
n

e
s
[,

 6
]

-4 -2 0 2 4 6

-4
-2

0
2

4
6

phogenes[, 5]

p
h

o
g

e
n

e
s
[,

 6
]

Feature 1 (x1)

“positives”

“negatives”

A linear classifier will try to find a line**
that separates the two classes

** only a line in 2-d, a plane in 3-d, & hyperplane in >3-d

Fe
at

ur
e

2
(x

2)

?

? ?

“unknowns”
or “test data”

“decision boundary”
(a linear function of
the “features”)

“pos” “neg”

?

-4 -2 0 2 4 6

-4
-2

0
2

4
6

othergenes[, 5]

o
th

e
rg

e
n

e
s
[,

 6
]

-4 -2 0 2 4 6

-4
-2

0
2

4
6

phogenes[, 5]

p
h

o
g

e
n

e
s
[,

 6
]

“positives”

“negatives”

A linear classifier will try to find a line**
that separates the two classes

** only a line in 2-d, a plane in 3-d, & hyperplane in >3-d

?

? ?

“unknowns”
or “test data”

“decision boundary”
(a linear function of
the “features”)

A better decision
boundary?

Feature 1 (x1)

Fe
at

ur
e

2
(x

2)

?

-4 -2 0 2 4 6

-4
-2

0
2

4
6

othergenes[, 5]

o
th

e
rg

e
n

e
s
[,

 6
]

-4 -2 0 2 4 6

-4
-2

0
2

4
6

phogenes[, 5]

p
h

o
g

e
n

e
s
[,

 6
]

“positives”

“negatives”

A linear classifier will try to find a line**
that separates the two classes

** only a line in 2-d, a plane in 3-d, & hyperplane in >3-d

?

? ?

“unknowns”
or “test data”

“decision boundary”
(a linear function of
the “features”)

A better decision
boundary?

Feature 1 (x1)

Fe
at

ur
e

2
(x

2)

This class is about finding the best
decision boundary

?

Overview

•  Linear separability
•  Linear classifiers
•  Evaluation & cross-validation
•  Non-linear classification:

– K nearest neighbours
– Support vector machines
– Decision trees
– Neural networks (aka deep learning)

8

Linear separability

x2

x1

Linearly separable

x2

x1

Not linearly separable

Two classes are linearly separable, if you can perfectly
classify them with a linear decision boundary.
Why is this important? Linear classifiers can only draw
linear decision boundaries.

Non-linear classification

10

x2

x1
Non-linear classifiers have non-linear, and possibly

discontinous decision boundaries

Overfitting

•  More complex models
better fit the training
data.

•  But after some point,
more complex models
generalize worse to
new data.

11

of parameters or
“complexity”

E
rr

or
 (i

.e
. 1

 –
 m

od
el

 fi
t)

Generaliza4on	 (test	 set)	 error	

Training	 set	 error	

Overfitting example

Classify x in the same way
that a majority of the K
nearest neighbours (KNN)
to x are labeled.

Can also use # of nearest
neighbors that are positive
as a discriminant value.

Smaller values of K lead to
more complex classifiers,
you can set K using
(nested) cross-validation.

K = 15

K = 1

Images from Elements of Stat Learning, Hastie, Tibshirani, Efron (available online)

Dealing with overfitting by
regularization

•  Basic idea: add a term to the objective function that
penalizes # of parameters or model complexity, e.g.:

 E(X, Θ) = error(X, Θ) + λ complexity(Θ)

•  “Hyper-parameter” λ controls the strength of
regularization – could have a natural value, or be set by
(nested) cross-validation,

•  Increases in model complexity need to be balanced by
improved model fit. (each “unit” of added complexity must
reduce error by “λ units”) – these units are sometimes
called bits.

13

Examples of regularization
•  Clustering:

(K is # params***, N is # datapoints)
– Bayes Information Criteria:

•  K log(N) – 2 LL(X; Θ)
– Akaike IC:

•  2K – 2 LL(X; Θ)
•  Regression & Classification:

–  L1 (aka LASSO): LL – λ Σi | θi |
–  L2 (aka Ridge): LL – λ Σi θi

2

– Elastic net: LL – λ1 Σi | θi | - λ2 Σi θi
2

14

LL	 stands	 for	 “log	 likelihood”	 it	
is	 a	 measure	 of	 how	 well	 the	
model	 fits	 the	 data,	 higher	 LL	
means	 less	 error,	 Alan	 will	
discuss	 this	 in	 the	 last	 class	
	
***	 some4mes	 it	 is	 hard	 to	
count	 #	 of	 params	

Linear classification

x2

x1

Can define decision
boundary with a vector
of feature weights, b,
and a threshold, t, if
xTΘ > t , predict + and
otherwise predict -, can
change false positives
versus false negatives
by changing t

θ1x1 + θ2x2 = xTΘ = t

Θ	

Decision	 boundary:	 	
f(x) = xTΘ “discriminant function (or value)”

Discriminant function f(x)
“projects” data points onto to a

line

x2

x1 xTΘ = t

Θ	

f(x) = xTΘ

xTΘ = t+1

f(x)
0

 t	 t+1	

Practical implementation
details

x2

x1 θ1x1 + θ2x2 + (-t)1 = 0

Θ	

θ1x1 + θ2x2 + (-t+1)1 = 0

-  Note that t is a parameter
too.

-  For convenience, often a “1”
is added to x, to fit t

-  So we write:

f([x; 1]) = [x; 1]T[Θ; -t] > 0

From now on Θ means [Θ; -t]

Linear classification methods
•  Logistic Regression
•  Linear Discriminant Analysis (LDA)
•  Naïve Bayes (sometimes, e.g. with

Gaussians)
•  Fisher’s linear discriminant
•  Linear support vector machines (SVMs)

All methods have the same model; and use the

parameters Θ in the same way, but they differ in their
objective function

Logistic regression

Probability that Yi is + =
1

1 + exp(-ΘTxi)

Objective function:
 maximize sum of log probabilities of correct

 classifications

Model:

x1

x2

“Classification by
clustering” (LDA)

Idea: put all positives in
one cluster, all negatives in

the other,
Fit a Gaussian (i.e. ellipse)
to each and then classify
by Mahalanobis distance

to the cluster means!

x1

x2

Best decision boundary (in 2-d):
parallel to the direction of

greatest variance.

“Classification by
clustering” (LDA)

How do we deal with this
situation?

x1

x2

Fisher’s discriminant
•  Very similar to LDA, except:

– Allow each class its own covariance
– Classify based on

•  Fisher figured out that this maximizes the
ratio of “between” to “within” class variance

> threshold X 	 (µY=1 - µY=0) (Σ Y=1 + Σ Y=0)-1

σ2

σ2
within

between

How to choose best method?

•  Logistic Regression
•  LDA
•  Naïve Bayes
•  Fisher’s linear discriminant

Same model, different objective function,
 which one is best?

Classification performance
•  Need to quantify how well a classifier does
•  Always a ‘trade-off’ between:
-True Positives
-False Positives
-True Negatives
-False Negatives

These 4 numbers are combined
in every possible way:

Quaid Morris 2011

and true positive rate

False positive rate: #FP/(#FP	 +	 #TN)	

Summarized graphically
in ‘ROC curves’ or
‘Precision-recall plots’

Summarized numerically
using AUC, AUPRC,
MCC, F1 etc…

Performance	 as	 ‘threshold’	 is	
varied	

Area	 under	 the	 ROC	 curve	 (or	
AUC)	

a.k.a	 False	 Posi4ve	 Rate	

Tr
ue

	 P
os
i4
ve
	 R
at
e	

a.
k.
a	 AUC	 can	 be	 interpreted:	 	

	
AUC	 =	 0.5	 for	 a	 random	 guesser	
	
Distribu4on	 of	 AUC	 is	 known,	 so	 any	
difference	 from	 0.5	 can	 be	 assessed	

Quaid Morris 2011

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

predict(mod1, type = "response")

p
h
o
d
a
ta
$
p
p
a
th
w
a
y

Positive, Y=1

Negative, Y=0

Prediction of logistic regression

Threshold = 0.5

7 True positives

2 False positives 4859 True negatives

16 False negatives

TPR = TP/(TP+FN) FPR = FP/(FP+TN)

TPR FPR Threshold
0.5 7/23 2/4861

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

predict(mod1, type = "response")

p
h
o
d
a
ta
$
p
p
a
th
w
a
y

Positive, Y=1

Negative, Y=0

Prediction of logistic regression

Threshold = 0.7

6 True positives

2 False positives 4859 True negatives

17 False negatives

TPR = TP/(TP+FN) FPR = FP/(FP+TN)

TPR FPR Threshold
0.5 7/23 2/4861

0.7 6/23 2/4861

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

predict(mod1, type = "response")

p
h
o
d
a
ta
$
p
p
a
th
w
a
y

Positive, Y=1

Negative, Y=0

Prediction of logistic regression

Threshold = 0.8

6 True positives

1 False
positive 4860 True negatives

16 False negatives

TPR = TP/(TP+FN) FPR = FP/(FP+TN)

TPR FPR Threshold
0.5 7/23 2/4861

0.7 6/23 2/4861

0.8 6/23 1/4861

TPR FPR Threshold
0.5 7/23 2/4861

0.7 6/23 2/4861

0.8 6/23 1/4861
0.1 9/23 6/4861

0.01 16/23 168/4861

0.001 22/23 3718/4861

TPR

FPR

The ROC curve

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

c(2/4861, 2/4861, 1/4861, 6/4861, 168/4861, 3718/4861)

c
(7

/2
3

,
6

/2
3

,
6

/2
3

,
9

/2
3

,
1

6
/2

3
,

2
2

/2
3

)

0.000 0.010 0.020 0.030

0
.2

0
.4

0
.6

fpr

tp
r

TPR FPR Threshold
0.5 7/23 2/4861

0.7 6/23 2/4861

0.8 6/23 1/4861
0.1 9/23 6/4861

0.01 16/23 168/4861

0.001 22/23 3718/4861

TPR

FPR

The ROC curve

Try 99 thresholds

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

c(2/4861, 2/4861, 1/4861, 6/4861, 168/4861, 3718/4861)

c
(7

/2
3

,
6

/2
3

,
6

/2
3

,
9

/2
3

,
1

6
/2

3
,

2
2

/2
3

)

FPR

TPR
Note that we are not recalculating
anything – just changing the
threshold

Ideal classification set up
1.  Estimate the parameters of the

classifier using known examples
2.  Determine the best hyper-

parameters using a ‘validation
set’ of additional known
examples

3.  See how your classifier does on
an unseen dataset of even more
known examples

‘Training’:	 	

‘Tes4ng’	 :	 	

A	 single	 ‘threshold’	 parameter	 is	 le]	 free	 to	 control	 the	 tradeoff	 between	 precision	 and	
recall	 (or	 TPR	 and	 FPR)	

0.000 0.010 0.020 0.030

0
.2

0
.4

0
.6

fpr

tp
r

FPR

TPR

0.000 0.010 0.020 0.030

0
.1

0
.3

0
.5

fpr

tp
r

PHO81.rep2	 +	 PHO81.rep1	 +	
PHO4	 *	 pho85	 +	 pho80	

FPR

PHO81	 rep2	

• More	 complex	 model	 has	 beaer	 ROC	 on	 training	 data…	

• 23	 posi4ve	 examples	 is	 probably	 not	 enough	 to	 make	 a	 ‘test’	 set	

Typical classification set up
•  Don’t have enough data for ‘ideal’ set

up.
•  Instead, ‘leave out’ random subsets of

the data from parameter estimation
•  Assess prediction using these as

validation sets
•  Combine the performance on these ‘held

out’ sets
•  Typically, “10-fold” or “leave one out”

“cross-validation”

0.000 0.010 0.020 0.030

0
.2

0
.4

0
.6

fpr

tp
r

FPR

TPR

0.000 0.010 0.020 0.030

0
.1

0
.3

0
.5

fpr

tp
r

PHO81.rep2	 +	 PHO81.rep1	 +	
PHO4	 *	 pho85	 +	 pho80	

FPR

PHO81	 rep2	

• More	 complex	 model	 has	 beaer	 ROC	 on	 training	 data…	
• 23	 posi4ve	 examples	 is	 probably	 not	 enough	 to	 make	 a	 ‘test’	 set	
• Use	 10-‐fold	 cross-‐valida4on:	

Note that we are
fitting each
model 10 times

10*cv.glm(phodata,mod1,cost,K=10)$delta

10*cv.glm(phodata,mod2,cost,K=10)$delta

• In R, glm has cross-validation functions in the ‘boot’ package

• Cross-validation can be used to evaluate any performance measure, ‘cost‘

0.000 0.010 0.020 0.030

0
.2

0
.4

0
.6

fpr

tp
r

FPR

TPR

0.000 0.010 0.020 0.030

0
.1

0
.3

0
.5

fpr

tp
r

PHO81.rep2	 +	 PHO81.rep1	 +	
PHO4	 *	 pho85	 +	 pho80	

FPR

PHO81	 rep2	

• More	 complex	 model	 has	 beaer	 ROC	 on	 training	 data…	
• 23	 posi4ve	 examples	 is	 probably	 not	 enough	 to	 make	 a	 ‘test’	 set	
• Use	 10-‐fold	 cross-‐valida4on:	

TPR FPR Threshold TPR FPR
0.5 7/23 2/4861 0.5 8/23 1/4861
0.1 9/23 5/4861 0.1 12/23 10/4861
0.05 12/23 16/4861 0.05 12/23 21/4861

• Remember,	 these	 are	 the	 numbers	 based	 on	 10	 random	 sub-‐samples.	 	
Repea4ng	 the	 cross-‐valida4on	 can	 give	 different	 results…	

Note that we are
fitting each
model 10 times

Threshold

Non-linear classification

37

x2

x1
Non-linear classifiers have non-linear, and possibly

discontinous decision boundaries

K-nearest neighbours

f(x) = 1/K Σ yi

K = 1

Images from Elements of Stat Learning, Hastie, Tibshirani, Efron (available online)

i | xi is one of K closest points to x

yi	 =	 1	 if	 datapoint	 i	 is	 a	
posi4ve,	 -‐1	 otherwise	

K = 15

Model:

Non-linear classification: Idea #1

•  Fit a linear classifier to non-linear
functions of the input features.

•  E.g.: use “similarity to datapoint i” as the
i-th input feature

•  Problem: model has one parameter per
training example, so it becomes too
complex and prone to overfitting

39

40

Vladimir
Vapnik

Support Vector Machines

Picking the best decision boundary

x1

x2

What’s the best decision
boundary to choose when one?

That is, what is the one most
likely to generalize well to new

datapoints?

Decision boundaries

LDA & Fisher sol’n

x1

x2

Best decision boundary (in 2-d):
parallel to the direction of

greatest variance.

Unregularized logistic regression

43

x1

x2

All solutions are equally good
because each one perfectly

discriminates the classes. (note:
this changes if there’s

regularization)

Linear SVM solution

44

x1

x2

Vladimir
Vapnik

Maximum margin boundary.

Margin

SVM decision boundaries

45

x1

x2

Vladimir
Vapnik

Here, the maximum margin
boundary is specified by
three points, called the
support vectors.

Margin

Support vectors

SVM objective function

•  “Primal” objective (cost) function:

 E(Θ) = C Σi ξi + ΘTΘ/2

where yi (ΘTxi) > 1-ξi for all i

–  ξi >= 0 is degree of “mis-classification” for
datapoint i, C>0 is the hyperparameter balancing
regularization and data fit.

46

data fit L2 reg

Visualization of ξi

47

x1

x2

Vladimir
Vapnik

ξi	

Misclassified point	

If linearly
separable, all
values of ξi = 0

SVM summary

A “sparse” linear classifier (i.e. θi = 0 for
almost all i) that uses as features “kernel
functions” that measure similarity to each
data point in the training set.

Discriminant function: f(x) = Σi θiK(xi,x)

48

*Sometimes written with θi = αiyi	

Dot products of transformed
vector as “kernel functions”

•  Let x = (x1, x2) and ϕ2(x) = (√2x1x2, x1
2, x2

2)
•  Here ϕ2(x) [or ϕp(x)] is a vector valued function

that returns all possible powers of two [or p] of x1
and x2

•  Then ϕ2(x)Tϕ2(z) = (x T z)2 = K(x,z) “kernel function”

•  And in general, ϕp(x)Tϕp(z) = (x T z)p

•  Every kernel function K(x,z) that satisfies some simple
conditions corresponds to a dot product of some
transformation ϕ(x) (aka “projection function”)

49

Kernelization (FYI)
•  Often instead of explicitly writing out the non-linear

feature set, one simply calculates a kernel function
of the two input vectors, i.e., K(xi, xj) = φ(xi)Tφ(xj)

•  Here’s why: any kernel function K(xi, xj) that
satisfies certain conditions, e.g., K(xi, xj) is a
symmetric positive semi-definite function (which
implies that the matrix K, where Kij = K(xi, xj) is a
symmetric positive semi-definite matrix),
corresponds to a dot product K(xi, xj) = φ(xi)T φ(xj)
for some projection function φ(x).

•  Often it’s easy to think of defining a kernel function
that captures some notation of “similarity”

•  Non-linear SVMs use the discriminant function
f(x; w) =Σi wiK(xi,x)

Some popular kernel functions

•  K(xi, xj) = (xi
Txj + 1)P

–  Inhomogeneous Polynomial kernel of degree P
•  K(xi, xj) = (xi

Txj)P

– Homogeneous Polynomial kernel
•  K(xi, xj) = exp{-(xi-xj) T(xi-xj) / s2 }

– Gaussian “radial basis function” kernel
•  K(xi, xj) = Pearson(xi,xj) + 1

–  “Bioinformatics” kernel
•  Also, can make a kernel out of an interaction network!

Neural Networks  
(aka multilayer perceptrons)

f(x,Θ)	 =	 Σk	 vkhk(x)	
	
Where	 “hidden	 unit”:	
hk(x)	 =	 σ(Σi	 wikxi)	

O]en:	
 σ(x) = 1 / (1 + e-x)

x1

x2

h1

h2 h3

h4

Notes:	
-‐ Fi4ng	 the	 hidden	 units	 has	
become	 a	 lot	 easier	 using	
deep	 belief	 networks	
- Could also fit means of
RBF for hidden units

v and W are parameters

Decision trees

x1

x2

Split criterion:
 C4.5 (Quinlan 1993): Expected decrease in (binary) entropy
CART (Breiman et al 1984): Expected decrease in Gini impurity (1-sum of
squared class probabilities)

For	 each	 leaf:	
	 1)	 Choose	 a	 dimension	 to	
split	 along,	 and	 choose	 best	
split	 using	 a	 “split	 	
criterion”	 (see	 below)	
2)	 Split	 along	 dimension,	
crea4ng	 two	 new	 leaves,	
return	 to	 (1)	 un4l	 leaves	
are	 pure.	
	
To	 reduce	 overfigng,	 it	 is	
advisable	 to	 prune	 the	 tree	
by	 removing	 leaves	 with	
small	 numbers	 of	 examples	 	 	

Decision trees

x1

x2 a

x2 > a?
yes	

no	

Decision trees

x1

x2 a

x2 > a?
yes	

no	

x2 > b?

b

no	

yes	

etc

Decision trees

x1

x2 a

x2 > a?
yes	

no	

x2 > b?

b

no	

yes	

etc

Decision tree summary

Decision trees learn a recursive splits of the
data along individual features that partition
the input space into “homogeneous”
groups of data points with the same labels.

57

Ensemble classification
•  Combining multiple classifiers together by training them

separately and then averaging their predictions is a good
way to avoid overfitting.

•  Bagging (Breiman 1996):
–  Resample training set, train separate classifiers on each sample,

have the classifiers vote for the classification
•  Boosting (e.g. Adaboost, Freund and Schapire 1997):

–  Iteratively reweight training sets based on errors of a weighted
average of classifiers:

•  Train classifier (“weak learner”) to minimize weighted error on training
set

•  Weight new classifier according to prediction error, reweight training set
according to prediction error

•  Repeat
–  Minimizes exponential loss on training set over a convex set of

functions

Non-linear classification
summary

•  Support vector machines:
–  Linear classification for “derived” features that are functions of the original features.
–  Can do linear classification using “kernel functions” that often measure the similarity of each

new data point to those in the training set
–  Could try doing the same thing with elastic net regularized logistic regression

•  Multi-layer perceptions or neural networks:
–  Also like linear classification but you learn the “derived” features.

•  K-nearest neighbors:
–  Classify based on the majority vote of your k nearest neighbours.

•  Decision tree:
–  Progressively splits the feature space into smaller and smaller boxes, so that each box is

homogeneous. But you need to prune to avoid overfitting.

59

Which classifier should you
choose?

•  In practice, you should try all of the basic
ones, and choose the best one.

•  Or, choose one based on your prior
knowledge about the problem.

•  However, the “no free lunch” theorem
suggests that every classifier is the best at
least one task.

•  People who win online contests, often
combine the output of different methods –
this is called “ensemble learning”.

60

 Bagging

61

(x1, y1), (x2, y2), …, (xN, yN)

(x1, y1), (x1, y1), (x3, y3), …, (xN-1, yN-1)

 (x1, y1), (x2, y2), (x4, y4), …, (xN, yN)

 etc (M samples in total)

Bootstrap	 samples	

f1(x)	

f2(x)	

Train	 separate	
classifiers	

bagged(x) = Σj fj(x) / M

 Boosting

62

(x1, y1), (x2, y2), …, (xN, yN)

f1(x)	
ft(x)	

boost(x) = Σj wjfj(x)

Train	 classifier	

Assess	
performance	

(x1, y1), (x2, y2), …, (xN, yN)

Legend
(xi, yi) -- correct
(xi, yi) -- incorrect

Resample
“hard”
cases,
Set wt

(x2, y2), (x2, y2), …, (xN-1, yN-1)

 Train	 classifier	

Assess	
performance	

(x2, y2), (x2, y2), …, (xN-1, yN-1)

Ensemble learning summary
•  Bagging: classifiers trained separately (in parallel) on

different bootstrapped samples of the training set, and
make equally weighted votes. E.g. “Random Forests” is
bagged decision trees.

•  Boosting: classifiers trained sequentially, weighted by
performance, on samples of the training set that focus on
“hard examples”. Final classification is based on
weighted votes. E.g. gbm: Generalized Boosted
Regression models in R

63

Random Forests (Breiman 2001)
•  Construct M bootstrapped samples of the training set (of size

N)
•  For each sample, build DT using CART (no pruning), but split

optimally on randomly chosen features – random feature
choice reduces correlation among trees, this is a good thing.

•  Since bootstrap resamples training set with replacement,
leaves out, on average, (1-1/N)N x 100% of the examples
(~100/e% = 36.7%), can use these out-of-bag samples to
estimate performance

•  Bag predictions (i.e. average them)
•  Can assess “importance” of features by evaluating

performance of trees containing those features

Networks as kernels
•  Can use matrix representations of graphs

to generate kernels.
•  One popular graph-based kernel is the

diffusion kernel:
– K =(λI – L)-1

– Where L = D – W, D is a diagonal matrix with
the row sums, and W is the matrix
representation of the graph.

•  GeneMANIA label propagation:
–  f = (λI – L)-1y

