ML4Bio Lecture #4: Classification

March 16th, 2016 Quaid Morris

Predicting gene function

Predicting gene function

^{**} only a line in 2-d, a plane in 3-d, & hyperplane in >3-d

^{**} only a line in 2-d, a plane in 3-d, & hyperplane in >3-d

^{**} only a line in 2-d, a plane in 3-d, & hyperplane in >3-d

This class is about finding the best decision boundary

^{**} only a line in 2-d, a plane in 3-d, & hyperplane in >3-d

Overview

- Linear separability
- Linear classifiers
- Evaluation & cross-validation
- Non-linear classification:
 - K nearest neighbours
 - Support vector machines
 - Decision trees
 - Neural networks (aka deep learning)

Linear separability

Two classes are **linearly separable**, if you can perfectly classify them with a linear decision boundary. Why is this important? Linear classifiers can only draw linear decision boundaries.

Non-linear classification

Non-linear classifiers have non-linear, and possibly discontinous decision boundaries

Overfitting

- More complex models better fit the training data.
- But after some point, more complex models generalize worse to new data.

Overfitting example

K = 15

Classify **x** in the same way that a majority of the *K* nearest neighbours (KNN) to **x** are labeled.

K = 1

Can also use # of nearest neighbors that are positive as a discriminant value.

Smaller values of K lead to more complex classifiers, you can set K using (nested) cross-validation.

Dealing with overfitting by regularization

 Basic idea: add a term to the objective function that penalizes # of parameters or model complexity, e.g.:

$$E(X, \Theta) = error(X, \Theta) + \lambda complexity(\Theta)$$

- "Hyper-parameter" λ controls the strength of regularization could have a natural value, or be set by (nested) cross-validation,
- Increases in model complexity need to be balanced by improved model fit. (each "unit" of added complexity must reduce error by " λ units") these units are sometimes called bits.

Examples of regularization

Clustering:

(K is # params***, N is # datapoints)

- Bayes Information Criteria:
 - $K log(N) 2 LL(X; \Theta)$
- Akaike IC:
 - $2K 2LL(X; \Theta)$

Regression & Classification:

- L1 (aka LASSO): $LL \lambda \Sigma_i | \theta_i |$
- L2 (aka Ridge): $LL \lambda \Sigma_i \theta_i^2$
- Elastic net: $LL \lambda_1 \Sigma_i |\theta_i| \lambda_2 \Sigma_i \theta_i^2$

LL stands for "log likelihood" it is a measure of how well the model fits the data, higher LL means less error, Alan will discuss this in the last class

*** sometimes it is hard to count # of params

Linear classification

 $f(x) = x^T \Theta$ "discriminant function (or value)"

Discriminant function f(x) "projects" data points onto to a line

Practical implementation details

Linear classification methods

- Logistic Regression
- Linear Discriminant Analysis (LDA)
- Naïve Bayes (sometimes, e.g. with Gaussians)
- Fisher's linear discriminant
- Linear support vector machines (SVMs)

All methods have the same **model**; and use the parameters **Θ** in the same way, but they differ in their **objective function**

Logistic regression

Model:

Probability that Y_i is + =

Objective function:

maximize sum of log probabilities of correct classifications

"Classification by clustering" (LDA)

"Classification by clustering" (LDA)

How do we deal with this situation?

Fisher's discriminant

- Very similar to LDA, except:
 - Allow each class its own covariance
 - Classify based on

$$(\Sigma_{Y=1} + \Sigma_{Y=0})^{-1} (\overline{\mu_{Y=1} - \mu_{Y=0}}) \bullet \overrightarrow{X} > \text{threshold}$$

 Fisher figured out that this maximizes the ratio of "between" to "within" class variance

$$\frac{\sigma_{between}^2}{\sigma_{within}^2}$$

How to choose best method?

- Logistic Regression
- LDA
- Naïve Bayes
- Fisher's linear discriminant

Same model, different objective function, which one is best?

Classification performance

- Need to quantify how well a classifier does
- Always a 'trade-off' between:
- -True Positives
- -False Positives
- -True Negatives
- -False Negatives

Summarized graphically in 'ROC curves' or 'Precision-recall plots'

Summarized numerically using AUC, AUPRC, MCC, F1 etc...

These 4 numbers are combined in every possible way:

Precision: #TP / (#TP + #FP)
(also known as positive predictive value)

Recall: #TP / (#TP + #FN)
(also known as sensitivity)
and true positive rate

Specificity: #TN / (#FP + #TN)

Negative predictive value: #TN / (#FN + #TN)

Accuracy: (#TP + #TN) / (#TP + #FP + #TN + #FN)

False positive rate: #FP/(#FP + #TN)

Quaid Morris 2011

Performance as 'threshold' is varied

Area under the ROC curve (or AUC)

AUC can be interpreted:

AUC = 0.5 for a random guesser

Distribution of AUC is known, so any difference from 0.5 can be assessed

$$FPR = FP/(FP+TN)$$
 $TPR = TP/(TP+FN)$

$$FPR = FP/(FP+TN)$$
 $TPR = TP/(TP+FN)$

$$FPR = FP/(FP+TN)$$
 $TPR = TP/(TP+FN)$

Note that we are not recalculating anything – just changing the threshold

Ideal classification set up

- 'Training': 1. Estimate the parameters of the classifier using known examples
 - 2. Determine the best hyperparameters using a 'validation set' of additional known examples

'Testing': 3. See how your classifier does on an unseen dataset of even more known examples

A single 'threshold' parameter is left free to control the tradeoff between precision and recall (or TPR and FPR)

- •More complex model has better ROC on training data...
- •23 positive examples is probably not enough to make a 'test' set

Typical classification set up

- Don't have enough data for 'ideal' set up.
- Instead, 'leave out' random subsets of the data from parameter estimation
- Assess prediction using these as validation sets
- Combine the performance on these 'held out' sets
- Typically, "10-fold" or "leave one out"

"cross-validation"

PHO81 rep2

PHO81.rep2 + PHO81.rep1 + PHO4 * pho85 + pho80

- •More complex model has better ROC on training data...
- •23 positive examples is probably not enough to make a 'test' set
- •Use 10-fold cross-validation:

10*cv.glm(phodata,mod1,cost,K=10)\$delta
10*cv.glm(phodata,mod2,cost,K=10)\$delta

Note that we are fitting each model 10 times

- •In R, glm has cross-validation functions in the 'boot' package
- •Cross-validation can be used to evaluate any performance measure, 'cost'

TPR 70 0.000 0.010 0.020 0.030

PHO81 rep2

PHO81.rep2 + PHO81.rep1 + PHO4 * pho85 + pho80

- •More complex model has better ROC on training data...
- •23 positive examples is probably not enough to make a 'test' set
- •Use 10-fold cross-validation:

FPR

Threshold	I TPR	FPR	Threshold	TPR FPR
0.5	7/23	2/4861	0.5	8/23 1/4861
0.1	9/23	5/4861	0.1	12/23 10/4861
0.05	12/23	16/4861	0.05	12/23 21/4861

Note that we are fitting each model 10 times

•Remember, these are the numbers based on 10 random sub-samples. Repeating the cross-validation can give different results...

Non-linear classification

Non-linear classifiers have non-linear, and possibly discontinous decision boundaries

K-nearest neighbours

K = 15

Model:

$$f(x) = 1/K \sum_{i \mid \underline{x}_i \text{ is one of K closest points to } x$$

y_i = 1 if datapoint i is a positive, -1 otherwise

$$K = 1$$

Non-linear classification: Idea #1

- Fit a linear classifier to non-linear functions of the input features.
- E.g.: use "similarity to datapoint i" as the i-th input feature
- Problem: model has one parameter per training example, so it becomes too complex and prone to overfitting

Support Vector Machines

Picking the best decision boundary

LDA & Fisher sol'n

Unregularized logistic regression

Linear SVM solution

SVM decision boundaries

SVM objective function

• "Primal" objective (cost) function:

$$E(\mathbf{\Theta}) = C \sum_{i} \xi_{i} + \mathbf{\Theta}^{T} \mathbf{\Theta}/2$$
data fit L_{2} reg

where $y_i(\mathbf{\Theta}^T\mathbf{x_i}) > 1-\xi_i$ for all i

– $\xi_i >= 0$ is degree of "mis-classification" for datapoint i, C>0 is the hyperparameter balancing regularization and data fit.

Visualization of ξ_i

SVM summary

A "sparse" linear classifier (i.e. θ_i = 0 for almost all i) that uses as features "kernel functions" that measure similarity to each data point in the training set.

Discriminant function: $f(\mathbf{x}) = \Sigma_i \theta_i K(\mathbf{x_i}, \mathbf{x})$

*Sometimes written with $\theta_i = \alpha_i y_i$

Dot products of transformed vector as "kernel functions"

- Let $\mathbf{x} = (x_1, x_2)$ and $\phi^2(\mathbf{x}) = (\sqrt{2}x_1x_2, x_1^2, x_2^2)$
- Here $\phi_2(x)$ [or $\phi_p(x)$] is a vector valued function that returns all possible powers of two [or p] of x_1 and x_2
- Then $\phi_2(\mathbf{x})^T \phi_2(\mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2 = K(\mathbf{x},\mathbf{z})$ "kernel function"
- And in general, $\phi_p(\mathbf{x})^T\phi_p(\mathbf{z}) = (\mathbf{x}^T\mathbf{z})^p$
- Every kernel function $K(\mathbf{x},\mathbf{z})$ that satisfies some simple conditions corresponds to a dot product of some transformation $\phi(\mathbf{x})$ (aka "projection function")

Kernelization (FYI)

- Often instead of explicitly writing out the non-linear feature set, one simply calculates a kernel function of the two input vectors, i.e., $K(\mathbf{x}^i, \mathbf{x}^j) = \phi(\mathbf{x}^i)^T \phi(\mathbf{x}^j)$
- Here's why: any kernel function K(xi, xi) that satisfies certain conditions, e.g., K(xi, xi) is a symmetric positive semi-definite function (which implies that the matrix K, where K_{ij} = K(xi, xi) is a symmetric positive semi-definite matrix), corresponds to a dot product K(xi, xi) = φ(xi) φ(xi) for some projection function φ(x).
- Often it's easy to think of defining a kernel function that captures some notation of "similarity"
- Non-linear SVMs use the discriminant function
 f(x; w) =Σ_i w_iK(xⁱ,x)

Some popular kernel functions

- $K(x_i, x_j) = (x_i^T x_j + 1)^P$
 - Inhomogeneous Polynomial kernel of degree P
- $K(x_i, x_j) = (x_i^T x_j)^P$
 - Homogeneous Polynomial kernel
- $K(x_i, x_j) = \exp\{-(x_i-x_j)^T(x_i-x_j) / s^2\}$
 - Gaussian "radial basis function" kernel
- $K(x_i, x_j) = Pearson(x_i, x_j) + 1$
 - "Bioinformatics" kernel
- Also, can make a kernel out of an interaction network!

Neural Networks (aka multilayer perceptrons)

Decision trees For each leaf:

Split criterion:

C4.5 (Quinlan 1993): Expected decrease in (binary) entropy CART (Breiman et al 1984): Expected decrease in Gini impurity (1-sum of squared class probabilities)

Decision trees

Decision trees

Decision trees

Decision tree summary

Decision trees learn a recursive splits of the data along individual features that partition the input space into "homogeneous" groups of data points with the same labels.

Ensemble classification

- Combining multiple classifiers together by training them separately and then averaging their predictions is a good way to avoid overfitting.
- Bagging (Breiman 1996):
 - Resample training set, train separate classifiers on each sample, have the classifiers vote for the classification
- Boosting (e.g. Adaboost, Freund and Schapire 1997):
 - Iteratively reweight training sets based on errors of a weighted average of classifiers:
 - Train classifier ("weak learner") to minimize weighted error on training set
 - Weight new classifier according to prediction error, reweight training set according to prediction error
 - Repeat
 - Minimizes exponential loss on training set over a convex set of functions

Non-linear classification summary

Support vector machines:

- Linear classification for "derived" features that are functions of the original features.
- Can do linear classification using "kernel functions" that often measure the similarity of each new data point to those in the training set
- Could try doing the same thing with elastic net regularized logistic regression

Multi-layer perceptions or neural networks:

Also like linear classification but you learn the "derived" features.

K-nearest neighbors:

Classify based on the majority vote of your k nearest neighbours.

Decision tree:

 Progressively splits the feature space into smaller and smaller boxes, so that each box is homogeneous. But you need to prune to avoid overfitting.

Which classifier should you choose?

- In practice, you should try all of the basic ones, and choose the best one.
- Or, choose one based on your prior knowledge about the problem.
- However, the "no free lunch" theorem suggests that every classifier is the best at least one task.
- People who win online contests, often combine the output of different methods – this is called "ensemble learning".

Bagging

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$$

Train separate

$$(x_1, y_1), (x_1, y_1), (x_3, y_3), ..., (x_{N-1}, y_{N-1}) \longrightarrow f_1(x_1, y_2)$$

Bootstrap samples classifiers
$$(x_1, y_1), (x_1, y_1), (x_3, y_3), ..., (x_{N-1}, y_{N-1}) \longrightarrow f_1(x)$$
 $(x_1, y_1), (x_2, y_2), (x_4, y_4), ..., (x_N, y_N) \longrightarrow f_2(x)$

etc (M samples in total)

$$bagged(\mathbf{x}) = \sum_{j} f_{j}(\mathbf{x}) / M$$

Boosting

Legend boost(
$$\mathbf{x}$$
) = $\Sigma_j \mathbf{w}_j \mathbf{f}_j(\mathbf{x})$

 (x_i, y_i) -- correct

(X62yi) -- incorrect

Ensemble learning summary

- Bagging: classifiers trained separately (in parallel) on different bootstrapped samples of the training set, and make equally weighted votes. E.g. "Random Forests" is bagged decision trees.
- Boosting: classifiers trained sequentially, weighted by performance, on samples of the training set that focus on "hard examples". Final classification is based on weighted votes. E.g. gbm: Generalized Boosted Regression models in R

Random Forests (Breiman 2001)

- Construct M bootstrapped samples of the training set (of size N)
- For each sample, build DT using CART (no pruning), but split optimally on randomly chosen features – random feature choice reduces correlation among trees, this is a good thing.
- Since bootstrap resamples training set with replacement, leaves out, on average, $(1-1/N)^N \times 100\%$ of the examples $(\sim 100/e\% = 36.7\%)$, can use these out-of-bag samples to estimate performance
- Bag predictions (i.e. average them)
- Can assess "importance" of features by evaluating performance of trees containing those features

Networks as kernels

- Can use matrix representations of graphs to generate kernels.
- One popular graph-based kernel is the diffusion kernel:
 - $-K = (\lambda I L)^{-1}$
 - Where L = D W, D is a diagonal matrix with the row sums, and W is the matrix representation of the graph.
- GeneMANIA label propagation:

$$-\mathbf{f} = (\lambda \mathbf{I} - \mathbf{L})^{-1}\mathbf{y}$$