ML4Bio

Lecture \#4: Classification

March $16^{\text {th }}, 2016$
 Quaid Morris

Predicting gene function

Fold expression change PHO81 rep1

Predicting gene function

Fold expression change PHO81 rep1

A linear classifier will try to find a line** that separates the two classes

** only a line in 2-d, a plane in 3-d, \& hyperplane in >3-d

A linear classifier will try to find a line** that separates the two classes

** only a line in 2-d, a plane in $3-\mathrm{d}$, \& hyperplane in $>3-\mathrm{d}$

A linear classifier will try to find a line** that separates the two classes

** only a line in 2-d, a plane in 3-d, \& hyperplane in >3-d

A linear classifier will try to find a line**
that separates the two classes

This class is about finding the best decision boundary zeision

** only a line in 2-d, a plane in $3-\mathrm{d}$, \& hyperplane in $>3-\mathrm{d}$

Overview

- Linear separability
- Linear classifiers
- Evaluation \& cross-validation
- Non-linear classification:
- K nearest neighbours
- Support vector machines
- Decision trees
- Neural networks (aka deep learning)

Linear separability

Linearly separable

Not linearly separable

Two classes are linearly separable, if you can perfectly classify them with a linear decision boundary. Why is this important? Linear classifiers can only draw linear decision boundaries.

Non-linear classification

Non-linear classifiers have non-linear, and possibly discontinous decision boundaries

Overfitting

- More complex models better fit the training data.
- But after some point, more complex models generalize worse to new data.

Overfitting example

Classify \mathbf{x} in the same way that a majority of the K nearest neighbours (KNN) to \mathbf{x} are labeled.

Can also use \# of nearest neighbors that are positive as a discriminant value.

Smaller values of K lead to more complex classifiers, you can set K using (nested) cross-validation.

Dealing with overfitting by regularization

- Basic idea: add a term to the objective function that penalizes \# of parameters or model complexity, e.g.:

$$
\mathrm{E}(\mathrm{X}, \Theta)=\operatorname{error}(\mathrm{X}, \Theta)+\lambda \text { complexity }(\Theta)
$$

- "Hyper-parameter" λ controls the strength of regularization - could have a natural value, or be set by (nested) cross-validation,
- Increases in model complexity need to be balanced by improved model fit. (each "unit" of added complexity must reduce error by " λ units") - these units are sometimes called bits.

Examples of regularization

- Clustering:
(K is \# params ${ }^{* * *}, N$ is \# datapoints)
- Bayes Information Criteria:
- $K \log (N)-2 L L(X ; \Theta)$
- Akaike IC:
- $2 K-2 L L(X ; \Theta)$
- Regression \& Classification:
- L1 (aka LASSO): $L L-\lambda \Sigma_{\mathrm{i}}\left|\theta_{i}\right|$

LL stands for "log likelihood" it is a measure of how well the model fits the data, higher LL means less error, Alan will discuss this in the last class
*** sometimes it is hard to count \# of params

- L2 (aka Ridge): $L L-\lambda \Sigma_{i} \theta_{i}^{2}$
- Elastic net: $L L-\lambda_{1} \Sigma_{i}\left|\theta_{i}\right|-\lambda_{2} \Sigma_{i} \theta_{i}^{2}$

Linear classification

$f(x)=x^{\top} \boldsymbol{O}$ "discriminant function (or value)"

Decision boundary:

Discriminant function $f(x)$ "projects" data points onto to a line

Practical implementation details

- Note that t is a parameter

Linear classification methods

- Logistic Regression
- Linear Discriminant Analysis (LDA)
- Naïve Bayes (sometimes, e.g. with Gaussians)
- Fisher's linear discriminant
- Linear support vector machines (SVMs)

All methods have the same model; and use the parameters $\boldsymbol{\Theta}$ in the same way, but they differ in their objective function

Logistic regression

Model:

$$
\text { Probability that } \mathrm{Y}_{\mathrm{i}} \text { is }+=\frac{1}{1+\exp \left(-\boldsymbol{\Theta}^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{i}}\right)}
$$

Objective function:
maximize sum of \log probabilities of correct classifications

"Classification by clustering" (LDA)

Idea: put all positives in
 one cluster, all negatives in the other,
Fit a Gaussian (i.e. ellipse) to each and then classify by Mahalanobis distance to the cluster means!

"Classification by clustering" (LDA)

Best decision boundary (in 2-d):

How do we deal with this situation?

Fisher's discriminant

- Very similar to LDA, except:
- Allow each class its own covariance
- Classify based on

$$
\left(\Sigma_{\mathrm{Y}=1}+\Sigma_{\mathrm{Y}=0}\right)^{-1}\left(\frac{\left.\mu_{\mathrm{Y}=1}-\mu_{\mathrm{Y}=0}\right)}{} \bullet \overrightarrow{\mathrm{X}}>\right.\text { threshold }
$$

- Fisher figured out that this maximizes the ratio of "between" to "within" class variance

$$
\frac{\sigma_{\text {between }}^{2}}{\sigma_{\text {within }}^{2}}
$$

How to choose best method?

- Logistic Regression
- LDA
- Naïve Bayes
- Fisher's linear discriminant

Same model, different objective function, which one is best?

Classification performance

- Need to quantify how well a classifier does
- Always a ‘trade-off' between:
-True Positives
-False Positives
-True Negatives
-False Negatives

Summarized graphically in 'ROC curves' or 'Precision-recall plots'

Summarized numerically using AUC, AUPRC, MCC, F1 etc...

Quaid Morris 2011

Performance as 'threshold' is varied

Area under the ROC curve (or AUC)

AUC can be interpreted:
AUC $=0.5$ for a random guesser
Distribution of AUC is known, so any difference from 0.5 can be assessed

Quaid Morris 2011

$$
\mathrm{FPR}=\mathrm{FP} /(\mathrm{FP}+\mathrm{TN}) \quad \mathrm{TPR}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})
$$

$$
\mathrm{FPR}=\mathrm{FP} /(\mathrm{FP}+\mathrm{TN}) \quad \mathrm{TPR}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})
$$

$$
\mathrm{FPR}=\mathrm{FP} /(\mathrm{FP}+\mathrm{TN}) \quad \mathrm{TPR}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})
$$

The ROC curve

Ideal classification set up

'Training': 1. Estimate the parameters of the classifier using known examples
2. Determine the best hyperparameters using a 'validation set' of additional known examples
'Testing': 3. See how your classifier does on an unseen dataset of even more known examples
A single 'threshold' parameter is left free to control the tradeoff between precision and recall (or TPR and FPR)

- More complex model has better ROC on training data...
-23 positive examples is probably not enough to make a 'test' set

Typical classification set up

- Don't have enough data for 'ideal' set up.
- Instead, 'leave out' random subsets of the data from parameter estimation
- Assess prediction using these as validation sets
- Combine the performance on these 'held out' sets
- Typically, "10-fold" or "leave one out" "cross-validation"

PHO81 rep2

PHO81.rep2 + PHO81.rep1 + PHO4 * pho85 + pho80

- More complex model has better ROC on training data...
-23 positive examples is probably not enough to make a 'test' set
-Use 10 -fold cross-validation:

$$
\begin{aligned}
& 10 * \mathrm{Cv} \cdot \mathrm{glm}(\text { phodata }, \bmod 1, \text { cost }, \mathrm{K}=10) \text { \$delta } \\
& 10 * \mathrm{Cv} \cdot \operatorname{lm}(\text { phodata }, \bmod 2, \text { cost }, \mathrm{K}=10) \text { \$delta }
\end{aligned}
$$

Note that we are fitting each model 10 times
-In R, glm has cross-validation functions in the 'boot' package
-Cross-validation can be used to evaluate any performance measure, 'cost '

- More complex model has better ROC on training data...
-23 positive examples is probably not enough to make a 'test' set
-Use 10-fold cross-validation:
Threshold TPR FPR
$0.5 \quad 7 / 23 \quad 2 / 4861$
0.1 9/23 5/4861

Threshold TPR FPR
$0.5 \quad 8 / 23 \quad 1 / 4861$
0.05 12/23 16/4861
0.1 12/23 10/4861
0.05 12/23 21/4861

Note that we are fitting each model 10 times
-Remember, these are the numbers based on 10 random sub-samples.
Repeating the cross-validation can give different results...

Non-linear classification

Non-linear classifiers have non-linear, and possibly discontinous decision boundaries

K-nearest neighbours

$$
K=15
$$

Model:

$$
f(x)=1 / K \sum_{i \mid \underline{x}_{i} \text { is one of } K \text { closest points to } x} y_{i}
$$

$$
y_{i}=1 \text { if datapoint } i \text { is a }
$$

$$
\text { positive, }-1 \text { otherwise }
$$

$$
K=1
$$

Non-linear classification: Idea \#1

- Fit a linear classifier to non-linear functions of the input features.
- E.g.: use "similarity to datapoint i " as the i-th input feature
- Problem: model has one parameter per training example, so it becomes too complex and prone to overfitting

Support Vector Machines

$\int\left(T_{i}\right.$

Picking the best decision boundary

Decision boundaries

LDA \& Fisher sol' n

Best decision boundary (in 2-d):

Unregularized logistic regression

Linear SVM solution

SVM decision boundaries

SVM objective function

- "Primal" objective (cost) function:

$$
\mathrm{E}(\boldsymbol{\Theta})=\underset{\text { data fit }}{\mathrm{C} \Sigma_{\mathrm{i}} \xi_{\mathrm{i}}}+\underset{\mathrm{L}_{2} \text { reg }}{\boldsymbol{\Theta}^{\mathbf{T}} \boldsymbol{\Theta} / 2}
$$

where $y_{i}\left(\boldsymbol{\Theta}^{\mathbf{T}} \mathbf{x}_{\mathbf{i}}\right)>1-\xi_{\mathrm{i}}$ for all i
$-\xi_{i}>=0$ is degree of "mis-classification" for datapoint $\mathrm{i}, \mathrm{C}>0$ is the hyperparameter balancing regularization and data fit.

Visualization of ξ_{i}

SVM summary

A "sparse" linear classifier (i.e. $\theta_{i}=0$ for almost all i) that uses as features "kernel functions" that measure similarity to each data point in the training set.

Discriminant function: $\mathrm{f}(\mathbf{x})=\Sigma_{\mathrm{i}} \theta_{\mathrm{i}} \mathrm{K}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}\right)$
*Sometimes written with $\theta_{i}=\alpha_{i} y_{i}$

Dot products of transformed vector as "kernel functions"

- Let $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and $\phi^{2}(x)=\left(\sqrt{ } 2 x_{1} x_{2}, x_{1}{ }^{2}, x_{2}^{2}\right)$
- Here $\phi_{2}(\mathbf{x})\left[\operatorname{or} \phi_{\mathrm{p}}(\mathbf{x})\right]$ is a vector valued function that returns all possible powers of two [or p] of x_{1} and x_{2}
- Then $\phi_{2}(\mathbf{x})^{\mathrm{T}} \phi_{2}(\mathbf{z})=\left(\mathbf{x}^{\mathrm{T}} \mathbf{z}\right)^{2}=\mathrm{K}(\mathbf{x}, \mathbf{z})$ "kernel function"
- And in general, $\phi_{\mathrm{p}}(\mathbf{x})^{\mathrm{T}} \phi_{\mathrm{p}}(\mathbf{z})=\left(\mathbf{x}^{\mathrm{T}} \mathbf{z}\right)^{\mathrm{p}}$
- Every kernel function $\mathrm{K}(\mathbf{x}, \mathbf{z})$ that satisfies some simple conditions corresponds to a dot product of some transformation $\phi(\mathbf{x})$ (aka "projection function")

Kernelization (FYI)

- Often instead of explicitly writing out the non-linear feature set, one simply calculates a kernel function of the two input vectors, i.e., $\mathrm{K}\left(\mathbf{x}^{\mathbf{i}}, \mathbf{x}^{\boldsymbol{j}}\right)=\phi\left(\boldsymbol{x}^{i}\right)^{\top} \phi\left(\boldsymbol{x}^{\mathbf{j}}\right)$
- Here's why: any kernel function $K\left(\mathbf{x}^{\mathbf{i}}, \mathbf{x}^{\prime}\right)$ that satisfies certain conditions, e.g., $\mathrm{K}\left(\mathbf{x}^{i}, \mathbf{x}^{\prime}\right)$ is a symmetric positive semi-definite function (which implies that the matrix K , where $\mathrm{K}_{\mathrm{ij}}=\mathrm{K}\left(\mathbf{x}^{\mathrm{i}}, \mathbf{x}^{\mathbf{j}}\right)$ is a symmetric positive semi-definite matrix), corresponds to a dot product $\mathrm{K}\left(\mathbf{x}^{i}, \mathbf{x}^{j}\right)=\phi\left(\mathbf{x}^{i}\right)^{\top} \phi\left(\boldsymbol{x}^{j}\right)$ for some projection function $\phi(\boldsymbol{x})$.
- Often it's easy to think of defining a kernel function that captures some notation of "similarity"
- Non-linear SVMs use the discriminant function

$$
f(\mathbf{x} ; \mathbf{w})=\Sigma_{i} w_{i} K\left(\mathbf{x}^{i}, \mathbf{x}\right)
$$

Some popular kernel functions

- $\mathrm{K}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)=\left(\boldsymbol{x}_{\boldsymbol{i}}^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{j}}+1\right)^{\mathrm{P}}$
- Inhomogeneous Polynomial kernel of degree P
- $\mathrm{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{\boldsymbol{j}}\right)=\left(\boldsymbol{x}_{i}{ }^{\mathrm{T}} \boldsymbol{x}_{\boldsymbol{j}}\right)^{\mathrm{P}}$
- Homogeneous Polynomial kernel
- $\mathrm{K}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)=\exp \left\{-\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right)^{\mathrm{T}}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right) / \mathrm{s}^{2}\right\}$
- Gaussian "radial basis function" kernel
- $\mathrm{K}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)=\operatorname{Pearson}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)+1$
- "Bioinformatics" kernel
- Also, can make a kernel out of an interaction network!

Decision trees

 For each leaf:1) Choose a dimension to

Split criterion:
C4.5 (Quinlan 1993): Expected decrease in (binary) entropy
CART (Breiman et al 1984): Expected decrease in Gini impurity (1-sum of squared class probabilities)

Decision trees

Decision trees

Decision trees

Decision tree summary

Decision trees learn a recursive splits of the data along individual features that partition the input space into "homogeneous" groups of data points with the same labels.

Ensemble classification

- Combining multiple classifiers together by training them separately and then averaging their predictions is a good way to avoid overfitting.
- Bagging (Breiman 1996):
- Resample training set, train separate classifiers on each sample, have the classifiers vote for the classification
- Boosting (e.g. Adaboost, Freund and Schapire 1997):
- Iteratively reweight training sets based on errors of a weighted average of classifiers:
- Train classifier ("weak learner") to minimize weighted error on training set
- Weight new classifier according to prediction error, reweight training set according to prediction error
- Repeat
- Minimizes exponential loss on training set over a convex set of functions

Non-linear classification summary

- Support vector machines:
- Linear classification for "derived" features that are functions of the original features.
- Can do linear classification using "kernel functions" that often measure the similarity of each new data point to those in the training set
- Could try doing the same thing with elastic net regularized logistic regression
- Multi-layer perceptions or neural networks:
- Also like linear classification but you learn the "derived" features.
- K-nearest neighbors:
- Classify based on the majority vote of your k nearest neighbours.
- Decision tree:
- Progressively splits the feature space into smaller and smaller boxes, so that each box is homogeneous. But you need to prune to avoid overfitting.

Which classifier should you choose?

- In practice, you should try all of the basic ones, and choose the best one.
- Or, choose one based on your prior knowledge about the problem.
- However, the "no free lunch" theorem suggests that every classifier is the best at least one task.
- People who win online contests, often combine the output of different methods this is called "ensemble learning".

Bagging

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right) \\
& \begin{array}{l}
\text { Train separate } \\
\text { classifiers }
\end{array} \\
& \begin{array}{l}
\text { Bootstrap samples } \\
\left(x_{1}, y_{1}\right),\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{N-1}, y_{N-1}\right) \longrightarrow f_{1}(x) \\
\\
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{4}, y_{4}\right), \ldots,\left(x_{N}, y_{N}\right) \longrightarrow f_{2}(x) \\
\text { etc }(M \text { samples in total })
\end{array}
\end{aligned}
$$

$$
\operatorname{bagged}(\mathbf{x})=\Sigma_{\mathrm{j}} \mathrm{f}_{\mathrm{j}}(\mathbf{x}) / \mathrm{M}
$$

Boosting

$\left(x_{2}, y_{2}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N-1}, y_{N-1}\right)$

\downarrow	Train classifier
$\mathrm{f}_{1}(\mathrm{x})$	
$\begin{gathered} \text { Assess } \\ \text { performance } \end{gathered}$	

$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{N}}, \mathrm{y}_{\mathrm{N}}\right)$

$$
\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{N}-1}, \mathrm{y}_{\mathrm{N}-1}\right)
$$

Legend
($\mathrm{x}_{\mathrm{i},} \mathrm{y}_{\mathrm{i}}$) -- correct
$\left(X_{\beta}, 2 y_{i}\right)$-- incorrect

Ensemble learning summary

- Bagging: classifiers trained separately (in parallel) on different bootstrapped samples of the training set, and make equally weighted votes. E.g. "Random Forests" is bagged decision trees.
- Boosting: classifiers trained sequentially, weighted by performance, on samples of the training set that focus on "hard examples". Final classification is based on weighted votes. E.g. gbm: Generalized Boosted Regression models in R

Random Forests (Breiman 2001)

- Construct M bootstrapped samples of the training set (of size N)
- For each sample, build DT using CART (no pruning), but split optimally on randomly chosen features - random feature choice reduces correlation among trees, this is a good thing.
- Since bootstrap resamples training set with replacement, leaves out, on average, $(1-1 / N)^{N} \times 100 \%$ of the examples ($\sim 100 / \mathrm{e} \%=36.7 \%$), can use these out-of-bag samples to estimate performance
- Bag predictions (i.e. average them)
- Can assess "importance" of features by evaluating performance of trees containing those features

Networks as kernels

- Can use matrix representations of graphs to generate kernels.
- One popular graph-based kernel is the diffusion kernel:
$-\mathrm{K}=(\lambda I-L)^{-1}$
- Where $\mathrm{L}=\mathrm{D}-\mathrm{W}, \mathrm{D}$ is a diagonal matrix with the row sums, and W is the matrix representation of the graph.
- GeneMANIA label propagation:
$-\mathbf{f}=(\lambda I-L)^{-1} \mathbf{y}$

