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Overview

•  Linear separability
•  Linear classifiers
•  Evaluation & cross-validation
•  Non-linear classification:

– K nearest neighbours
– Support vector machines
– Decision trees
– Neural networks (aka deep learning)

8 



Linear separability

x2 

x1 

Linearly separable 

x2 

x1 

Not linearly separable 

Two classes are linearly separable, if you can perfectly 
classify them with a linear decision boundary. 
Why is this important?  Linear classifiers can only draw 
linear decision boundaries. 



Non-linear classification

10 

x2 

x1 
Non-linear classifiers have non-linear, and possibly 

discontinous decision boundaries 



Overfitting

•  More complex models 
better fit the training 
data.

•  But after some point, 
more complex models 
generalize worse to 
new data.
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# of parameters or 
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Generaliza4on	  (test	  set)	  error	  

Training	  set	  error	  



Overfitting example

Classify x in the same way 
that a majority of the K 
nearest neighbours (KNN) 
to x are labeled. 
 
Can also use # of nearest 
neighbors that are positive 
as a discriminant value. 
 
Smaller values of K lead to 
more complex classifiers, 
you can set K using 
(nested) cross-validation. 

K = 15 

K = 1 

Images from Elements of Stat Learning, Hastie, Tibshirani, Efron (available online) 



Dealing with overfitting by 
regularization

•  Basic idea: add a term to the objective function that 
penalizes # of parameters or model complexity, e.g.: 

 E(X, Θ) = error(X, Θ) + λ complexity(Θ)

•  “Hyper-parameter” λ controls the strength of 
regularization – could have a natural value, or be set by 
(nested) cross-validation,

•  Increases in model complexity need to be balanced by 
improved model fit.  (each “unit” of added complexity must 
reduce error by “λ units”) – these units are sometimes 
called bits.

13 



Examples of regularization
•  Clustering: 

(K is # params***, N is # datapoints)
– Bayes Information Criteria:

•  K log(N) – 2 LL(X; Θ) 
– Akaike IC: 

•  2K – 2 LL(X; Θ) 
•  Regression & Classification:

–  L1 (aka LASSO):  LL – λ Σi | θi | 
–  L2 (aka Ridge):  LL – λ Σi θi

2 

– Elastic net:  LL – λ1 Σi | θi | - λ2 Σi θi
2 

14 

LL	  stands	  for	  “log	  likelihood”	  it	  
is	  a	  measure	  of	  how	  well	  the	  
model	  fits	  the	  data,	  higher	  LL	  
means	  less	  error,	  Alan	  will	  
discuss	  this	  in	  the	  last	  class	  
	  
***	  some4mes	  it	  is	  hard	  to	  
count	  #	  of	  params	  



Linear classification

x2 

x1 

Can define decision 
boundary with a vector 
of feature weights, b, 
and a threshold, t, if 
xTΘ > t , predict + and 
otherwise predict -, can 
change false positives 
versus false negatives 
by changing t 

θ1x1 + θ2x2 = xTΘ = t 

Θ	  

Decision	  boundary:	  	  
f(x) = xTΘ “discriminant function (or value)”



Discriminant function f(x) 
“projects” data points onto to a 

line

x2 

x1 xTΘ = t 

Θ	  

f(x) = xTΘ 

xTΘ = t+1 

f(x) 
0 

 t	    t+1	  



Practical implementation 
details

x2 

x1 θ1x1 + θ2x2 + (-t)1 = 0 

Θ	  

θ1x1 + θ2x2 + (-t+1)1 = 0 

-  Note that t is a parameter 
too.

-  For convenience, often a “1” 
is added to x, to fit t

-  So we write:

f([x; 1]) = [x; 1]T[Θ; -t] > 0 

From now on Θ means [Θ; -t]



Linear classification methods 
•  Logistic Regression 
•  Linear Discriminant Analysis (LDA) 
•  Naïve Bayes (sometimes, e.g. with 

Gaussians) 
•  Fisher’s linear discriminant 
•  Linear support vector machines (SVMs) 

 
All methods have the same model; and use the 

parameters Θ in the same way, but they differ in their 
objective function 



Logistic regression 

Probability that Yi is +  = 
1 

1 + exp(-ΘTxi) 

Objective function: 
 maximize sum of log probabilities of correct 

    classifications  

Model: 



x1 

x2 

“Classification by 
clustering” (LDA)

Idea: put all positives in 
one cluster, all negatives in 

the other, 
Fit a Gaussian (i.e. ellipse) 
to each and then classify 
by Mahalanobis distance 

to the cluster means! 



x1 

x2 

Best decision boundary (in 2-d): 
parallel to the direction of 

greatest variance. 

“Classification by 
clustering” (LDA)



How do we deal with this 
situation?

x1 

x2 



Fisher’s discriminant 
•  Very similar to LDA, except: 

– Allow each class its own covariance 
– Classify based on 

•  Fisher figured out that this maximizes the 
ratio of “between” to “within” class variance 

> threshold X 	   (µY=1 - µY=0) (Σ Y=1 + Σ Y=0)-1 

σ2 

σ2 
within 

between 



How to choose best method? 

•  Logistic Regression 
•  LDA 
•  Naïve Bayes 
•  Fisher’s linear discriminant 

 
Same model, different objective function, 
 which one is best? 



Classification performance 
•  Need to quantify how well a classifier does 
•  Always a ‘trade-off’ between: 
-True Positives 
-False Positives 
-True Negatives 
-False Negatives 

 

These 4 numbers are combined 
in every possible way: 

Quaid Morris 2011 

and true positive rate 

False positive rate: #FP/(#FP	  +	  #TN)	  

Summarized graphically 
in ‘ROC curves’  or 
‘Precision-recall plots’ 

Summarized numerically 
using AUC, AUPRC, 
MCC, F1 etc… 



Performance	  as	  ‘threshold’	  is	  
varied	  

Area	  under	  the	  ROC	  curve	  (or	  
AUC)	  

a.k.a	  False	  Posi4ve	  Rate	  

Tr
ue

	  P
os
i4
ve
	  R
at
e	  

a.
k.
a	   AUC	  can	  be	  interpreted:	  	  

	  
AUC	  =	  0.5	  for	  a	  random	  guesser	  
	  
Distribu4on	  of	  AUC	  is	  known,	  so	  any	  
difference	  from	  0.5	  can	  be	  assessed	  

Quaid Morris 2011 



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

predict(mod1, type = "response")

p
h
o
d
a
ta
$
p
p
a
th
w
a
y

Positive, Y=1 

Negative, Y=0 

Prediction of logistic regression 

Threshold = 0.5 

7 True positives 

2 False positives 4859 True negatives 

16 False negatives 

TPR = TP/(TP+FN) FPR = FP/(FP+TN)  

TPR  FPR  Threshold  
0.5         7/23   2/4861  



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

predict(mod1, type = "response")

p
h
o
d
a
ta
$
p
p
a
th
w
a
y

Positive, Y=1 

Negative, Y=0 

Prediction of logistic regression 

Threshold = 0.7 

6 True positives 

2 False positives 4859 True negatives 

17 False negatives 

TPR = TP/(TP+FN) FPR = FP/(FP+TN)  

TPR  FPR  Threshold  
0.5         7/23   2/4861  

0.7         6/23   2/4861  



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

predict(mod1, type = "response")

p
h
o
d
a
ta
$
p
p
a
th
w
a
y

Positive, Y=1 

Negative, Y=0 

Prediction of logistic regression 

Threshold = 0.8 

6 True positives 

1 False 
positive 4860 True negatives 

16 False negatives 

TPR = TP/(TP+FN) FPR = FP/(FP+TN)  

TPR  FPR  Threshold  
0.5         7/23   2/4861  

0.7         6/23   2/4861  

0.8         6/23   1/4861  



TPR  FPR  Threshold  
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Ideal classification set up 
1.  Estimate the parameters of the 

classifier using known examples 
2.  Determine the best hyper-

parameters using a ‘validation 
set’ of additional known 
examples 

3.  See how your classifier does on 
an unseen dataset of even more 
known examples 

‘Training’:	  	  

‘Tes4ng’	  :	  	  

A	  single	  ‘threshold’	  parameter	  is	  le]	  free	  to	  control	  the	  tradeoff	  between	  precision	  and	  
recall	  (or	  TPR	  and	  FPR)	  
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FPR  

PHO81	  rep2	  

• More	  complex	  model	  has	  beaer	  ROC	  on	  training	  data…	  

• 23	  posi4ve	  examples	  is	  probably	  not	  enough	  to	  make	  a	  ‘test’	  set	  



Typical classification set up 
•  Don’t have enough data for ‘ideal’ set 

up. 
•  Instead, ‘leave out’ random subsets of 

the data from parameter estimation  
•  Assess prediction using these as 

validation sets 
•  Combine the performance on these ‘held 

out’ sets  
•  Typically, “10-fold” or “leave one out” 

“cross-validation” 
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• More	  complex	  model	  has	  beaer	  ROC	  on	  training	  data…	  
• 23	  posi4ve	  examples	  is	  probably	  not	  enough	  to	  make	  a	  ‘test’	  set	  
• Use	  10-‐fold	  cross-‐valida4on:	  

Note that we are 
fitting each 
model 10 times 

10*cv.glm(phodata,mod1,cost,K=10)$delta

10*cv.glm(phodata,mod2,cost,K=10)$delta

• In R, glm has cross-validation functions in the ‘boot’ package 

• Cross-validation can be used to evaluate any performance measure, ‘cost‘ 
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• More	  complex	  model	  has	  beaer	  ROC	  on	  training	  data…	  
• 23	  posi4ve	  examples	  is	  probably	  not	  enough	  to	  make	  a	  ‘test’	  set	  
• Use	  10-‐fold	  cross-‐valida4on:	  

TPR  FPR  Threshold  TPR  FPR  
0.5         7/23   2/4861  0.5         8/23   1/4861  
0.1         9/23   5/4861  0.1        12/23 10/4861  
0.05     12/23 16/4861  0.05      12/23 21/4861  

• Remember,	  these	  are	  the	  numbers	  based	  on	  10	  random	  sub-‐samples.	  	  
Repea4ng	  the	  cross-‐valida4on	  can	  give	  different	  results…	  

Note that we are 
fitting each 
model 10 times 

Threshold  



Non-linear classification

37 

x2 

x1 
Non-linear classifiers have non-linear, and possibly 

discontinous decision boundaries 



K-nearest neighbours

f(x) = 1/K     Σ     yi 

K = 1 

Images from Elements of Stat Learning, Hastie, Tibshirani, Efron (available online) 

i | xi is one of K closest points to x 

yi	  =	  1	  if	  datapoint	  i	  is	  a	  
posi4ve,	  -‐1	  otherwise	  

K = 15 

Model: 



Non-linear classification: Idea #1

•  Fit a linear classifier to non-linear 
functions of the input features.

•  E.g.: use “similarity to datapoint i” as the 
i-th input feature

•  Problem: model has one parameter per 
training example, so it becomes too 
complex and prone to overfitting

39 
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Vladimir 
Vapnik 

Support Vector Machines



Picking the best decision boundary

x1 

x2 

What’s the best decision 
boundary to choose when one?  

That is, what is the one most 
likely to generalize well to new 

datapoints? 

Decision boundaries 



LDA & Fisher sol’n

x1 

x2 

Best decision boundary (in 2-d): 
parallel to the direction of 

greatest variance. 



Unregularized logistic regression
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x1 

x2 

All solutions are equally good 
because each one perfectly 

discriminates the classes. (note: 
this changes if there’s 

regularization) 



Linear SVM solution
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x1 

x2 

Vladimir 
Vapnik 

Maximum margin boundary. 

Margin 



SVM decision boundaries

45 

x1 

x2 

Vladimir 
Vapnik 

Here, the maximum margin 
boundary is specified by 
three points, called the 
support vectors. 

Margin 

Support vectors 



SVM objective function

•  “Primal” objective (cost) function:
 

  E(Θ) = C Σi ξi + ΘTΘ/2  

where yi (ΘTxi) > 1-ξi for all i
 

–  ξi >= 0 is degree of “mis-classification” for 
datapoint i, C>0 is the hyperparameter balancing 
regularization and data fit. 

46 

data fit L2 reg



Visualization of ξi 
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x1 

x2 

Vladimir 
Vapnik 

ξi	  

Misclassified point	  

If linearly 
separable, all 
values of ξi = 0 



SVM summary

A “sparse” linear classifier (i.e. θi = 0 for 
almost all i) that uses as features “kernel 
functions” that measure similarity to each 
data point in the training set.

Discriminant function: f(x) = Σi θiK(xi,x)

48 

*Sometimes written with θi = αiyi	  



Dot products of transformed 
vector as “kernel functions”

•  Let x = (x1, x2) and ϕ2(x) = (√2x1x2, x1
2, x2

2) 
•  Here ϕ2(x) [or ϕp(x)] is a vector valued function 

that returns all possible powers of two [or p] of x1 
and x2 

•  Then  ϕ2(x)Tϕ2(z) = (x T z)2 = K(x,z) “kernel function”

•  And in general, ϕp(x)Tϕp(z) = (x T z)p

•  Every kernel function K(x,z) that satisfies some simple 
conditions corresponds to a dot product of some 
transformation ϕ(x) (aka “projection function”)  

49 



Kernelization (FYI)
•  Often instead of explicitly writing out the non-linear 

feature set, one simply calculates a kernel function 
of the two input vectors, i.e., K(xi, xj) = φ(xi)Tφ(xj)

•  Here’s why: any kernel function K(xi, xj) that 
satisfies certain conditions, e.g., K(xi, xj) is a 
symmetric positive semi-definite function (which 
implies that the matrix K, where Kij = K(xi, xj) is a 
symmetric positive semi-definite matrix), 
corresponds to a dot product K(xi, xj) = φ(xi)T φ(xj) 
for some projection function φ(x).

•  Often it’s easy to think of defining a kernel function 
that captures some notation of “similarity”

•  Non-linear SVMs use the discriminant function
f(x; w) =Σi wiK(xi,x)      



Some popular kernel functions

•  K(xi, xj) = (xi
Txj + 1)P 

–  Inhomogeneous Polynomial kernel of degree P
•  K(xi, xj) = (xi

Txj )P 

– Homogeneous Polynomial kernel
•  K(xi, xj) = exp{-(xi-xj) T(xi-xj) / s2 } 

– Gaussian “radial basis function” kernel
•  K(xi, xj) = Pearson(xi,xj) + 1 

–  “Bioinformatics” kernel
•  Also, can make a kernel out of an interaction network!



Neural Networks  
(aka multilayer perceptrons)

f(x,Θ)	  =	  Σk	  vkhk(x)	  
	  
Where	  “hidden	  unit”:	  
hk(x)	  =	  σ(Σi	  wikxi)	  

O]en:	  
 σ(x) = 1 / (1 + e-x) 

x1 

x2 

h1 

h2 h3 

h4 

Notes:	  
-‐ Fi4ng	  the	  hidden	  units	  has	  
become	  a	  lot	  easier	  using	  
deep	  belief	  networks	  
- Could also fit means of 
RBF for hidden units

v and W are parameters 



Decision trees

x1

x2

Split criterion: 
 C4.5 (Quinlan 1993): Expected decrease in (binary) entropy 
CART (Breiman et al 1984): Expected decrease in Gini impurity (1-sum of 
squared class probabilities)   

For	  each	  leaf:	  
	  1)	  Choose	  a	  dimension	  to	  
split	  along,	  and	  choose	  best	  
split	  using	  a	  “split	  	  
criterion”	  (see	  below)	  
2)	  Split	  along	  dimension,	  
crea4ng	  two	  new	  leaves,	  
return	  to	  (1)	  un4l	  leaves	  
are	  pure.	  
	  
To	  reduce	  overfigng,	  it	  is	  
advisable	  to	  prune	  the	  tree	  
by	  removing	  leaves	  with	  
small	  numbers	  of	  examples	  	  	  



Decision trees

x1

x2 a 

x2 > a? 
yes	  

no	  



Decision trees

x1

x2 a 

x2 > a? 
yes	  

no	  

x2 > b? 

b 

no	  

yes	  

etc 



Decision trees

x1

x2 a 

x2 > a? 
yes	  

no	  

x2 > b? 

b 

no	  

yes	  

etc 



Decision tree summary

Decision trees learn a recursive splits of the 
data along individual features that partition 
the input space into “homogeneous” 
groups of data points with the same labels. 
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Ensemble classification
•  Combining multiple classifiers together by training them 

separately and then averaging their predictions is a good 
way to avoid overfitting.

•  Bagging (Breiman 1996):
–  Resample training set, train separate classifiers on each sample, 

have the classifiers vote for the classification
•  Boosting (e.g. Adaboost, Freund and Schapire 1997):

–  Iteratively reweight training sets based on errors of a weighted 
average of classifiers:

•  Train classifier (“weak learner”) to minimize weighted error on training 
set

•  Weight new classifier according to prediction error, reweight training set 
according to prediction error

•  Repeat
–  Minimizes exponential loss on training set over a convex set of 

functions



Non-linear classification 
summary

•  Support vector machines:
–  Linear classification for “derived” features that are functions of the original features.
–  Can do linear classification using “kernel functions” that often measure the similarity of each 

new data point to those in the training set
–  Could try doing the same thing with elastic net regularized logistic regression

•  Multi-layer perceptions or neural networks:
–  Also like linear classification but you learn the “derived” features.

•  K-nearest neighbors:
–  Classify based on the majority vote of your k nearest neighbours.

•  Decision tree:
–  Progressively splits the feature space into smaller and smaller boxes, so that each box is 

homogeneous. But you need to prune to avoid overfitting.
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Which classifier should you 
choose?

•  In practice, you should try all of the basic 
ones, and choose the best one.

•  Or, choose one based on your prior 
knowledge about the problem.

•  However, the “no free lunch” theorem 
suggests that every classifier is the best at 
least one task.

•  People who win online contests, often 
combine the output of different methods – 
this is called “ensemble learning”.
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 Bagging
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(x1, y1), (x2, y2), …, (xN, yN) 
 
 

(x1, y1), (x1, y1), (x3, y3), …, (xN-1, yN-1) 
 
 (x1, y1), (x2, y2), (x4, y4), …, (xN, yN) 
 
 etc (M samples in total) 
 
 

Bootstrap	  samples	  

f1(x)	  

f2(x)	  

Train	  separate	  
classifiers	  

bagged(x) = Σj fj(x) / M 



 Boosting
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(x1, y1), (x2, y2), …, (xN, yN) 
 
 

f1(x)	  
ft(x)	  

boost(x) = Σj wjfj(x) 

Train	  classifier	  

Assess	  
performance	  

(x1, y1), (x2, y2), …, (xN, yN) 
 
 
 
Legend 
(xi, yi) -- correct 
(xi, yi) -- incorrect 
 
 

Resample 
“hard” 
cases,
Set wt

(x2, y2), (x2, y2), …, (xN-1, yN-1) 
 
 Train	  classifier	  

Assess	  
performance	  

(x2, y2), (x2, y2), …, (xN-1, yN-1) 



Ensemble learning summary
•  Bagging: classifiers trained separately (in parallel) on 

different bootstrapped samples of the training set, and 
make equally weighted votes. E.g.  “Random Forests” is 
bagged decision trees.

•  Boosting: classifiers trained sequentially, weighted by 
performance, on samples of the training set that focus on 
“hard examples”.  Final classification is based on 
weighted votes. E.g. gbm: Generalized Boosted 
Regression models in R
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Random Forests (Breiman 2001)
•  Construct M bootstrapped samples of the training set (of size 

N)
•  For each sample, build DT using CART (no pruning), but split 

optimally on randomly chosen features – random feature 
choice reduces correlation among trees, this is a good thing.

•  Since bootstrap resamples training set with replacement, 
leaves out, on average, (1-1/N)N x 100% of the examples 
(~100/e% = 36.7%), can use these out-of-bag samples to 
estimate performance

•  Bag predictions (i.e. average them)
•  Can assess “importance” of features by evaluating 

performance of trees containing those features  



Networks as kernels
•  Can use matrix representations of graphs 

to generate kernels.
•  One popular graph-based kernel is the 

diffusion kernel:
– K =(λI – L)-1

– Where L = D – W, D is a diagonal matrix with 
the row sums, and W is the matrix 
representation of the graph.

•  GeneMANIA label propagation:
–  f = (λI – L)-1y


