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Topics for today

• Univariate simple linear regression
• Local regression
• Multiple regression (with regularization!)
• Generalized linear models





How to do this estimation ?
• The usual way to fit simple linear 

regressions is using the “ordinary least 
squares” (or OLS) method 

• Predicted Y = b0 + b1 X 
• choose parameters to minimize sum of 

squared residuals cost function

• In the simple case, this can be done 
analytically

SSR =     (Yi – Yi)2 =      [Yi – (b0 + b1 Xi)]2Σ
i

^

Σ
i

^



What is the SSR ?

Y1 – (b0 + b1 X1)

Y4 – (b0 + b1 X4)



What’s so great about simple linear 
regression?

• Y = b0 + b1 X 
• Simple formulas for parameter estimates

Where s are the standard deviations, and r is 
“Pearson’s correlation coefficient”

b1= r sX

sY

E[ (X – E[X]) (Y – E[Y]) ]   
sXsY

r  =  



What’s so great about simple linear 
regression?

• Y = b0 + b1 X
• Simple formulas for parameter estimates

• Rigorous interpretation of model in terms 
of variance explained

r2 = 1- = 1-
[Yi – (b0 + b1 Xi)]2Σ

i

(Yi – E[Y])2Σ
i

[Yi – Y]2Σ
i

(Yi – E[Y])2Σ
i

^



What’s so great about simple linear 
regression?

• Y = b0 + b1 X
• Simple formulas for parameter estimates

• Rigorous interpretation of model in terms 
of variance explained

• Ideas like “variance explained” and “least 
squares” can be applied more generally



Using the correlation to test for association 
between two variables

• Pearson correlation is a powerful test 
statistic for association.

• E.g., used in statistical genetics

• What is the null hypothesis?
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Using the correlation to test for association 
between two variables

• Non-parametric test for association is the 
correlation of the ranks, a.k.a Spearman’s 
rank correlation
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Topics for today

• Univariate simple linear regression
• Local regression
• Multiple regression (with regularization!)
• Generalized linear models



What if the data deviate from a 
line?

data collated in Csardi et al. PLoS Genetics 2015



• Predict Y to be a weighted average of nearby datapoints.

• Weights are a function of distance between nearby 
datapoint and point where you want the prediction

• This function is called the “Kernel”
• Kernel (usually) depends on a “bandwidth” (a 

hyperparameter) that determines the distance scale for 
the averaging

Kernel regression

Ŷ at X0 

Kernel



data collated in Csardi et al. PLoS Genetics 2015



Local regression and smoothing
• LOESS is a type of local regression that 

fits a polynomial (instead of a simple 
weighted average)

• These methods are often used to “smooth”  
data by fitting a curve to the points

• Popular because they don’t assume any 
particular shape or form for the curve they 
fit

• Drawback is that you have to remember 
the whole training set to make predictions
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• Generalized linear models



Multiple regression
• Predict Y given arbitrarily many dimensions of X

• How do we fit polynomials?

Yi = b0 +  b1 X1i + b2 X2i + b3 X3i + …

Yi=      bj XjiΣ
j

Yi = Xi b
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Overfitting in multiple regression

• Multiple regression will find covariates that 
match the noise in the data

• Under assumptions, we can write a logL 
objective function for regression and use 
the AIC to choose which covariates to 
include.



Predicting gene expression 
based on TFBS motifs

• YETFASCO database has motifs for more 
than 200 yeast transcription factors

• Predict matches for each of these to 
promoters of all yeast genes. 

• Predict gene expression (Y) based on 
these matches (X)

de Boer et al. NAR 2011
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Overfitting in multiple regression

• Multiple regression will find covariates that 
match the noise in the data

• With large numbers of covariates, there 
are simply too many models to try

• If the number of covariates approaches or 
surpasses the number of observations, 
multiple regression breaks down



Regularization
• We often expect most of the ‘b’s to be 0 (Y is 

independent of most of the Xs) 
• “Regularization”: Modify the cost function to 

penalize the number of non-zero ‘b’s

SSR =     [Yi – b Xi]2Σ
i

SSRL1 =     [Yi – b Xi]2 + α     |bj| Σ
j

• controls the trade-off between a “good fit” and “over fit”
Regularization will “choose” the X’s that are most useful for explaining Y

OLS

Ridge

LASSO

SSRL2 =     [Yi – b Xi]2 + α     bj
2

Σ
i

Σ
i

Σ
j

Elastic NetSSREN =     [Yi – b Xi]2 + λ1 |bj| + λ2 bj
2Σ

i
Σ

j
Σ

j Zhou & Hastie 2005

Tibshirani 1996

Gauss ~1794
Legendre 1805

Hoerl 1962
Tychonoff 1943



SSRL1 =     [Yi – b Xi]2 + α     |bj| LASSOΣ
i Tibshirani 1996Σ

j

• α controls the importance of the 
regularization relative to the “data fit”

• We can always minimize the cost function 
by setting α to 0 …

But then we have no regularization.
• α is a “hyperparameter” – it can’t be 

chosen to optimize the cost function. 
• How do we choose it?



Trade off between L1 and L2 
regularization

• L1 does great at removing co-variates that 
don’t predict, but if there are two 
correlated variables it will choose one of 
them

• L2 “shares” the fit among the correlated 
variables, but doesn’t work very well for 
removing the uncorrelated variables



More general types of 
regularization

• So far, regularization has been used to 
encourage sparsity

• Regularization can be used to influence 
model structure in other ways

• E.g., population structure in GWAS or cell-
lineage structure in gene expression 
modeling

Puniyani et al. Bioinformatics 2010
Jojic et al. Nat Immunol. 2013 
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Regression is not just “linear”

• Linear regression means linear in the b’s, 
not in X.

• So any function of bX is allowed.
• E.g., Predicted Y = √b0 + b1 X
• Or more generally,          Y = fL(bX)

• We’ve seen logistic regression, where
“link” function

Vector of b’s

fL (t) =     11 + e-t

^
^



Generalized linear models

• Choose the “link function” to match the 
type of data in Y.

• Binary classification: positive or negative
• Multi-way classification: e.g., 5 cell types
• Natural numbers: 0,1,2,3 … 

What if the data in X are not real 
numbers? 
E.g., genotypes or number of 
matches to TFBS motifs?


