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Topics for today

Univariate simple linear regression
Local regression

Multiple regression (with regularization!)
Generalized linear models
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How to do this estimation ?

* The usual way to fit simple linear
regressions is using the “ordinary least
squares’ (9\r OLS) method

* Predicted Y =b, + b, X

* choose parameters to minimize sum of
squared residuals cost function

SSR =), (Y, = Y2 = DIV, = (by + by X)I

* In the simple case, this can be done
analytically



What is the SSR ?
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What's so great about simple linear
regression?

* Y=Dby+bX
« Simple formulas for parameter estimates
_ Sy
b,=r S

Where s are the standard deviations, and r is
“Pearson’s correlation coefficient”

E[ (X—E[X]) (Y - E[Y]) ]
Sx Sy

r —



What's so great about simple linear
regression?

* Y=Dby+bX
« Simple formulas for parameter estimates

» Rigorous interpretation of model in terms
of variance explained
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What's so great about simple linear
regression?

Y=Dby+ by X
Simple formulas for parameter estimates

Rigorous interpretation of model in terms
of variance explained

|deas like “variance explained” and “least
squares” can be applied more generally



Using the correlation to test for association
between two variables

* Pearson correlation is a powerful test
statistic for association.

* E.g., used in statistical genetics
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* What is the null hypothesis?



Using the correlation to test for association
between two variables

* Non-parametric test for association is the
correlation of the ranks, a.k.a Spearman’s
rank correlation
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Topics for today

Univariate simple linear regression
Local regression

Multiple regression (with regularization!)
Generalized linear models



What if the data deviate from a
line?
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Kernel regression

Predict Y to be a weighted average of nearby datapoints.

Kernel

rd
i=1 K(|1X; = Xo|)Y,
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Weights are a function of distance between nearby
datapoint and point where you want the prediction

This function is called the “Kernel”

Kernel (usually) depends on a “bandwidth” (a
hyperparameter) that determines the distance scale for
the averaging
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Local regression and smoothing

 LOESS is a type of local regression that
fits a polynomial (instead of a simple
weighted average)

* These methods are often used to “smooth
data by fitting a curve to the points

* Popular because they don’'t assume any
particular shape or form for the curve they
fit

* Drawback is that you have to remember
the whole training set to make predictions
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Topics for today

Univariate simple linear regression
Local regression

Multiple regression (with regularization!)
Generalized linear models



Multiple regression

* Predict Y given arbitrarily many dimensions of X

N\
Yi=by + by Xjj +by Xy b3 X5+ ...

N\

Y= 2. b X; Y X b
/A ) [ / \ B
Y. =X b

m “features” or
“co-vriates” or
dimensions

n “datapoints” or
observations

Il
n “datapoints” or
observations

A = :
Y=Xb L1 AR

m “features” or
“co-vriates” or
dimensions

 How do we fit polynomials?



Overfitting in multiple regression

* Multiple regression will find covariates that
match the noise in the data

» Under assumptions, we can write a logL
objective function for regression and use
the AIC to choose which covariates to
include.



Predicting gene expression

based on TFBS motifs

 YETFASCO database has motifs for more

than 200 yeast transcription factors
de Boer et al. NAR 2011

* Predict matches for each of these to
promoters of all yeast genes.

* Predict gene expression (Y) based on
these matches (X)
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Model fit (R?)
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Overfitting in multiple regression

* Multiple regression will find covariates that
match the noise in the data

« With large numbers of covariates, there
are simply too many models to try

* |If the number of covariates approaches or
surpasses the number of observations,
multiple regression breaks down



Regularization

* We often expect most of the ‘b’'sto be 0 (Y is
independent of most of the Xs)

+ “Regularization™. Modify the cost function to
penalize the number of non-zero ‘b’s

B ) Gauss ~1794
SSR —2 [Yi -b X] < OLS L:;lz;dre 1805

SSR; =2 Y.-bX]*+ az b| <—— LAssO

Tibshirani 1996

Hoerl 1962

SSR;, =Y [Y,—=bX]?+a) b? < Ridge
2 Z Tychonoff 1943

SSRepy :Z[Y b X.]?+ A Z|b |+ A sz <— Elastic Net

Zhou & Hastie 2005

* controls the trade-off between a “good f|t and “over fit”
Regularization will “choose” the X's that are most useful for explaining Y



SSRy :Z [Y;—b Xi]2 * O‘Zj: |bj| Tilgﬁi?afi?996

* o controls the importance of the
regularization relative to the “data fit”

* We can always minimize the cost function
by setting a to O ...

But then we have no regularization.

* o Is a “hyperparameter” — it can’t be
chosen to optimize the cost function.

« How do we choose it?



Trade off between L1 and L2

regularization

* L1 does great at removing co-variates that
don’t predict, but if there are two
correlated variables it will choose one of
them

« L2 “shares” the fit among the correlated
variables, but doesn’t work very well for
removing the uncorrelated variables



More general types of
regularization

* So far, regularization has been used to
encourage sparsity

» Regularization can be used to influence
model structure in other ways

* E.g., population structure in GWAS or cell-
lineage structure in gene expression
modeling

Puniyani et al. Bioinformatics 2010
Jojic et al. Nat Immunol. 2013
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Generalized linear models



Regression is not just “linear”

Linear regression means linear in the b’s,
not in X.

So any function /?f bX is allowed.
E.g., Predicted Y = \b,, + 1/3\1 X vectorotos
Or more generally, Y =1, (bX)

“link” function /

We've seen logistic regression, where

|
fL (t) — 1 + e-t




Generalized linear models

Choose the “link function” to match the
type of data in Y.

Binary classification: positive or negative
Multi-way classification: e.g., 5 cell types
Natural numbers: 0,1,2,3 ...

What if the data in X are not real
numbers?

E.g., genotypes or number of
matches to TFBS motifs?



