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Abstract
Research into genome assembly algorithms has experienced a resurgence due to new challenges created by the
development of next generation sequencing technologies. Several genome assemblers have been published in
recent years specifically targeted at the new sequence data; however, the ever-changing technological landscape
leads to the need for continued research. In addition, the low cost of next generation sequencing data has led
to an increased use of sequencing in new settings. For example, the new field of metagenomics relies on large-
scale sequencing of entire microbial communities instead of isolate genomes, leading to new computational
challenges. In this article, we outline the major algorithmic approaches for genome assembly and describe recent
developments in this domain.
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INTRODUCTION
DNA sequencing technologies have revolutionized

biology. Since the introduction of the chain termi-

nation sequencing method by Frederick Sanger in

1977 [1], the genomes of more than 800 bacteria

and 100 eukaryotes have been sequenced, including

the genomes of several human individuals [2–4].

Close to a trillion base pairs are currently deposited

in Genbank (as of December 2008)—a central repos-

itory of genetic sequence information hosted by

the NCBI—and this number is rapidly increasing.

This wealth of data has resulted in numerous biolog-

ical discoveries and led to a better understanding

of the fundamental principles of life. The dramatic

impact of sequencing as a key component of modern

biological research is, at first glance, surprising due

to limitations in the length of DNA fragments

that can be sequenced with current technologies.

Modern sequencing instruments can only ‘read’

DNA fragments of up to �2000 bp (commonly

just 600–1000 bp), orders of magnitude shorter

than the genomes of most living organisms.

Throughout the years, in fact, many thought that

such limitations would prevent the sequencing of

large genomes [5]. Today, however, the sequencing

of bacteria (millions of base pairs in length) is done

routinely and the sequencing of 1000 human gen-

omes (3 billion bp in length, each) is considered pos-

sible within the next 3 years [6]. The apparent

disconnect between the limitations of sequencing

technologies and their successful application in

many genome projects can be explained by the

clever combination of sequencing and computation,

embodied in the shotgun sequencing method pro-

posed by Roger Staden in 1979 [7].

The shotgun process involves shearing the

genome of an organism into multiple small frag-

ments, each of which being then sequenced sepa-

rately. The resulting DNA segments are combined

into a reconstruction of the original genome using

computer programs called genome assemblers. The

assembly process is often compared to solving

a jigsaw puzzle—metaphor that highlights several

challenges. First, the assembly problem is compli-

cated by genomic repeats—sections of DNA

that occur in a near-identical form throughout a

genome—equivalent to large stretches of sky in

a jigsaw puzzle. Second, the complexity of a jigsaw
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puzzle increases dramatically with the number of

pieces (a puzzle with 1000 pieces is more than

twice as hard as a puzzle with 500 pieces).

Similarly, the difficulty of the assembly problem

is dependent on the number of reads being

assembled—large genomes and/or short DNA frag-

ments posing specific challenges. To overcome such

challenges, sophisticated computational algorithms

have been developed over the years, resulting in

genome assemblers capable of reconstructing large

mammalian genomes [8, 9]. These programs have

been critical to the success of many recent genome

projects including mammals [3], plants [10] and

worms [11]. Despite such successes, genome assem-

bly is far from being a solved problem. New chal-

lenges are posed by recent advances in genome

sequencing technologies [12, 13], both due to

the sheer size of the data that need to be processed

(a single sequencing instrument can provide

throughput similar to what was previously only

achievable at a genome center), and due to the

characteristics of the new data: shorter sequencing

reads and new types of sequencing errors.

Furthermore, assembly software must adapt to new

applications of DNA sequencing in biological

research. Perhaps the biggest new challenge is

posed by the large-scale sequencing of entire micro-

bial communities (metagenomics). The goal of this

article is to summarize recent developments in

genome assembly aimed at addressing the challenges

posed by new sequencing technologies and by

the application of sequencing beyond single

genomes.

SHOTGUN SEQUENCING
Before proceeding, it is important to closer examine

the shotgun-sequencing process we briefly outlined

in the introduction. To recap, the process starts

by randomly shearing a genome of interest into a

collection of fragments. A subset of the fragments

is then selected, usually those that fall within a pre-

scribed size range, and their sequence is ‘read’ using

a sequencing instrument, resulting in a collection of

readsçDNA fragments whose sequence is known.

Commonly, the length of the fragments exceeds

the read length achievable by a sequencing technol-

ogy, therefore only the ends of DNA fragments

are being sequenced. This feature has resulted in

a variant of the shotgun method, double-barreled

shotgun sequencing, wherein sequence reads are

generated from both ends of each DNA fragment,

resulting in a collection of read pairs (mate-pairs) that

are separated by a known distance (the size of the

original fragment).

Shotgun sequencing can be viewed as a random

sampling process, each DNA fragment originating

from a random location within the genome. It can

be mathematically shown [14] that a certain amount

of over-sampling is necessary in order to ensure

(with high probability) that every base in the

genome is sampled by at least one of the reads.

The amount by which a genome is over-sampled

is commonly referred to as coverage—the ratio

between the cumulative size of the set of reads

and the size of the genome (3-fold or 3� coverage

implies that the set of reads span three times as much

DNA as the genome being sequenced).

SEQUENCINGTECHNOLOGIES
Before discussing assembly algorithms it is important

to briefly survey recent developments in genome

sequencing technologies. For an in-depth descrip-

tion of these technologies please see [12, 13].

Furthermore, the challenges these technologies

pose to assembly algorithms are summarized in

Table 1. For almost 30 years, genome sequencing

was primarily performed with a technology

called Sanger sequencing (named after its creator

Frederick Sanger). Sanger sequencing instruments can

produce relatively long reads (1000–2000 bp can

be routinely achieved). Mate-pair libraries can be

constructed for a wide range of insert sizes

(spacing between the paired reads), including

2–10 kbp (clone), 35–40 kbp (fosmid) and

50–150 kbp (BAC). A series of new sequencing tech-

nologies have emerged in recent years, starting

with the introduction of the 454 pyrosequencing

machine in 2005 [15], followed by Solexa/Illumina

in 2006, the SOLiD technology from Applied

Biosystems in 2007 and the Helicos single-molecule

sequencing technology in 2008 [16]. Common to

all these technologies is the high degree of parallelism

in the sequencing process. Millions of DNA frag-

ments are immobilized to a surface then sequenced

simultaneously, leading to a throughput order

of magnitude higher than that achievable through

Sanger sequencing. This performance comes at

a price: read lengths are considerably shorter, ranging

from �400 bp (454 Titanium instrument [17])

to 25–50 bp (SOLiD and Helicos). Furthermore,
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while mate-pair protocols are available for these

technologies, they can add substantial costs to the

sequencing process—in practice most data being

generated are un-mated reads. An exception is the

SOLiD technology, which was designed specifically

to generate mate-pair information. In addition to

short read length, some of the new technologies

have specific error characteristics that complicate

the assembly process. The 454 technology can

‘stutter’ in homopolymer regions, i.e. has difficulty

estimating the length of DNA stretches consisting

of a single repeated nucleotide (e.g. AAAAA),

while current Helicos instruments sequence each

DNA fragment two or more times in order to

correct for high error rates, leading to duplicated

reads. All current sequencing technologies produce

an estimate of the quality of the data being produced,

in the form of phred quality values [18, 19]—the

logarithm of the probability that a particular base

in the sequence was incorrectly read. This informa-

tion can be used throughout the assembly process

to distinguish between sequencing errors and true

differences between the reads being assembled.

GENOMEASSEMBLY
When discussing genome assembly it is important

to distinguish between de novo approaches, aimed at

reconstructing genomes that are not similar to

any organisms previously sequenced, and compara-

tive (re-sequencing) approaches that use the

sequence of a closely related organism as a guide

during the assembly process. Mathematically, the de
novo genome assembly problem can be proven to

be difficult, falling within a class of problems

(NP-hard) for which no efficient computational

solution is known [20, 21]. In contrast, comparative

assembly is a much easier task—it is essentially

sufficient to align the set of reads to the reference

genome in order to characterize a newly sequenced

organism. The two approaches are not exclusive—

even if a reference genome is available, regions

of the sequenced genome that differ significantly

from the reference (e.g. large insertions) can only

be reconstructed through denovo assembly. The char-

acteristics of the sequencing technology being

used also restrict the choice of assembly strategy.

Short reads and the absence of mate-pairs make it

difficult for de novo assemblers to resolve repeats,

while the large number of reads generated by new

generation sequencing machines leads to efficiency

issues. Due to these challenges, short-read sequen-

cing technologies (Solexa, SOLiD) have primarily

been used in re-sequencing applications. De novo
assembly of these data has largely been restricted to

bacterial genomes, though an assembly of an entire

human genome from Solexa reads was recently

reported [22]. Irrespective of genome size, de novo
assemblies constructed from short-read data are

highly fragmented [22, 23]. This approach is, there-

fore, better suited for long reads or for combinations

of data from multiple sequencing technologies [24].

De novo methods, however, are essential to

our efforts to characterize the biological diversity

in our world. Comparative approaches can only be

applied to the few genomes for which reference

sequences are available. In this section we will

primarily focus our discussion on the main strategies

for de novo assembly—greedy, overlap-layout-

consensus and Eulerian—and conclude with a brief

overview of comparative approaches.

Overlap computation
A key component of the greedy and overlap-layout-

consensus (OLC) strategies is a module, called an

overlapper that computes all pairwise alignments

Table 1: Summary of main features of the new generation sequencing data and their impact on assembly software

Sequencing technology feature Assembly challenge

Short reads Difficulty assembling repeats
Mate-pairs absent or difficult/expensive to obtain Difficulty assembling repeats

Lack of scaffolding information
New types of errors Need to modify existing software and/or incorporate technology-

specific features in assembly software
Large amounts of data (number of reads and size of auxiliary
information)

Efficiency issues
Require parallel implementations or specialized hardware when
applied to large genomes

The individual features do not necessarily apply to all new sequencing technologies.
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between a set of reads. The computation of overlaps

is one of the most time-intensive components of

an assembly program requiring, in the worst case,

time proportional to the square of the number

of reads provided to the assembler (each read must

be compared to all other reads, leading to ð
n
2 Þ opera-

tions). In most practical cases the performance is

much better—running times roughly proportional

to the number of reads can be achieved through

simple indexing strategies. An example are indices

based on exact matches of length k (k-mers)—only

the reads sharing a same k-mer need to be compared

when computing overlaps. Note that a quadratic

behavior can still be observed in repeat regions—all

reads sharing a same k-mer must be compared to

each other. For this reason, many assemblers exclude

from the index k-mers that appear repetitive, i.e.

those contained in more reads than expected given

the sequencing coverage.

Overlap computation can be easily parallelized,

allowing the running time to be reduced through

the use of multi-processor machines (most modern

desktops contain several processors) or computational

grid resources (available at most major research insti-

tutions). It is important to note that the use of short-

read sequencing technologies has a significant impact

on the complexity of overlap computation, in par-

ticular due to the increased number of reads gener-

ated in a short-read sequencing project—such

projects generate an order of magnitude more reads

than were commonly generated in Sanger-based

projects.

Greedy
Greedy algorithms represent the simplest, most intui-

tive, solution to the assembly problem. Individual

reads are joined together into contigs in an iterative

fashion, starting with the reads that overlap best, and

ending once no more reads or contigs can be

joined. By overlap we mean that the prefix of one

of the reads shares sufficient similarity with the suffix

of another read (Figure 1A). The definition of over-

lap quality depends on implementation, commonly

used measures being the length of the overlap and

the level of identity (percentage of base pairs shared

by the two reads) between the reads within the over-

lapping region. The term ‘greedy’ refers to the fact

that the decisions made by the algorithm optimize

a local objective function (in the case of assembly,

the quality of the overlap between two reads),

approach that may not lead to a globally optimal

solution. For example, by always processing the

best overlap first, a greedy assembler may misassem-

ble repeats (Figure 1B and C).

The variant of the greedy approach outlined

above was used by several of the most widely used

genome assemblers for Sanger data, such as phrap,

TIGR Assembler and CAP3. Recent software

aimed at assembling short-read sequencing data

(SSAKE, VCAKE and SHARCGS), use a different

greedy strategy. An unassembled read is chosen to

start a contig, which is then repeatedly extended

by identifying reads that overlap the contig on its

30 end until no more extensions are possible. The

process is repeated in the 50 direction using

the reverse complement of the contig sequence.

The assembly continues in an iterative fashion by

scanning through the unassembled reads. The reads

are considered in decreasing order of their quality,

as defined either by depth of coverage (number of

reads confirming a section of a given read) [25] or

by using a combination of coverage, quality values

and the presence of at least one perfect overlap with

A

A

C

B C D

B CA D

ACAGGTAG-GT

G-AGTGTCCAGA

D

B

Figure 1: (A) Overlap between two readsçnote that agreement within overlapping region need not be perfect;
(B) Correct assembly of a genome with two repeats (boxes) using four reads A^D; (C) Assembly produced by the
greedy approach. Reads A and D are assembled first, incorrectly, because they overlap best and (D) Disagreement
between two reads (thin lines) that could extend a contig (thick line), indicating a potential repeat boundary.
Contig extension must be terminated in order to avoid misassemblies.
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another read [26]. To avoid misassemblies the exten-

sion process is terminated once conflicting informa-

tion is found, i.e. two or more reads that could

extend the contig; however, these reads do not over-

lap each other (Figure 1D).

Overlap-layout-consensus (OLC)
This strategy breaks down the assembly into three

distinct steps in order to enable a global analysis

of the relationships between the reads unlike the

inherently localized approach taken by the greedy

approaches. The first step is the same as for the

greedy approach—the reads are compared to each

other to construct a list of pair-wise overlaps. This

information is then used to construct an overlap

graph—a graph containing each read as a node,

and an edge connects two nodes if an overlap was

identified between the corresponding reads. During

the layout stage, the overlap graph is analyzed in

order to identify paths through the graph that cor-

respond to segments of the genome being assembled.

The ultimate goal is a single path that traverses

each node in the overlap graph exactly once, corre-

sponding to a reconstruction of the genome using

all the sequencing reads provided as input to the

assembler. Note that in the general case identifying

such a path (called a Hamiltonian path) is computa-

tionally difficult, falling in the same class of NP-hard

problems as the general de novo assembly problem.

Nevertheless, the graph formulation for assembly

enables several analyses not possible in the greedy

setting. For example, the genome represented in

the overlap graph shown in Figure 2 can be inferred

to contain two copies of segment B separated by a

copy of segment C (the genome ‘reads’ ABCBD).

The greedy strategies described above would either

construct a fragmented assembly that breaks at

the boundary of the repeat B (a possible reconstruc-

tion is AB, C, D) or incorrectly traverse the repeat,

leading to a misassembly, i.e. reconstructing a DNA

segment not actually present in the genome being

assembled (e.g. ABD, C). The final step in the OLC

strategy is consensus computation—determining

the DNA sequence that is implied by the arrange-

ment of reads along the chosen path through the

graph. This latter step is performed by allowing

the reads that overlap a same base within the recon-

structed genome to vote on the identity of the

base, the votes being weighted by sequence quality

values [27].

The layout stage, the core of the OLC strategy,

merits further discussion. Practical implementations

of OLC assemblers use a hierarchical approach for

the layout task. First, segments of the overlap graph

are identified that can be unambiguously assembled,

representing segments of DNA that are definitely

present in the assembled genome—generally DNA

segments that do not contain repeats, or that are

entirely contained within a single copy of a repeat.

For example Celera Assembler defines the concept

of a unitig (uniquely assemblable contig) that can

be constructed by following overlap edges until

encountering a ‘fork’ in the graph. By fork we

mean a read A that overlaps two other reads, B

and C; however, B and C do not overlap each

other. Such a situation often represents the boundary

between a repeat and the genomic regions adjacent

to the copies of this repeat throughout the genome;

however, forks can also be caused by sequencing

errors (e.g. the overlap between B and C is obscured

by errors in one or both of the reads). Forks caused

by errors can be resolved through simple heuristics,

A

C

DB

Figure 2: Overlap graph of a genome containing a two-copy repeat (B). Note the increased depth of coverage
within the repeat. The correct reconstruction of this genome spells the sequence ABCBD, while conservative
assembly approaches would lead to a fragmented reconstruction.
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e.g. by removing ‘spurs’—single reads that disagree

with the bulk of the reads within a region of the

assembly graph [8, 28] —or by adding to the graph

the overlaps that were ‘hidden’ by sequencing errors

[29]. Unitigs can also be constructed with the help

of mate-pair information—Arachne seeds the assem-

bly process with groups of mate-pairs that overlap

at both ends (paired pairs) [29].

Unitig construction is intentionally conservative

and rarely results in misassemblies with the exception

of potentially collapsing multiple copies of a repeat

into a single unitig. The resulting set of unitigs

is, however, highly fragmented as unitigs cannot

cross repeat boundaries. A unitig-only assembly is

sufficient for some applications, e.g. for Chip-Seq

experiments [30] or in transcriptome sequencing

[31]. In such cases unitigs can be obtained with

standalone assemblers such as Minimus [32] or

newbler (assembler provided with the 454 sequenc-

ing instrument), or by examining the internal datas-

tructures of Celera Assembler or Arachne.

For the assembly of whole genomes, the unitig

reconstruction is just a first step in the assembly pro-

cess and is followed by more sophisticated analyses

of the assembly graph aimed at reconstructing

larger contiguous segments of the genome being

assembled. For example, Celera Assembler and

Arachne use mate-pair information to identify sets

of unitigs that could be merged into larger structures.

Further, algorithms based on network flow analysis

have been proposed to identify paths through

the assembly graph that accurately account for the

copy number of repeats [21, 33], leading to correct

reconstructions of larger segments of the genome.

The OLC strategy is arguably the most successful

assembly strategy in a practical setting. The majority

of the large genomes sequenced in recent years

through shotgun sequencing has been assembled

with either Celera Assembler or Arachne, and the

rapid adoption of the 454 sequencing technology

is in part due to the performance of the newbler

assembler. The OLC approach was also successful

for the assembly of data with very short read

lengths (e.g. Solexa)—the OLC assembler Edena

was shown to outperform several greedy assemblers

(SSAKE, SHARCGS), as well an Eulerian path

assembler (Velvet) [28]. In part, this success is due

to the inherent flexibility of the OLC strategy. The

approach is inherently modular and the overlap

graph structure lends itself to multiple types of ana-

lyses. It is important to note that most OLC

assemblers allow users to extract graph information,

providing the opportunity for additional downstream

analyses (e.g. this information could guide the design

of finishing experiments [34].

Eulerian path
The Eulerian path strategy was inspired by early

work on sequencing by hybridization (SBH) [35].

The output of an SBH experiment is a list of all

oligomers of a given length k present in the

genome being sequenced. This information is also

referred to as the k-mer spectrum of a genome

(Figure 3A) and is, conceptually, more valuable

than the information produced by a shotgun sequen-

cing experiment. In fact, the k-mer spectrum can

be viewed as the output of a perfect shotgun exper-

iment where the reads all have equal length k and

perfectly sample the genome, with a read starting

at every single base. The SBH technology was ulti-

mately not successful due to technical challenges,

partly because it is simply too difficult to experimen-

tally interrogate every single k-mer in a genome with

the exception of small values of k (corresponding

to very short sequencing reads). However, the the-

oretical analysis of the problem of assembling a

genome from SBH data has resulted in a new strat-

egy for assembling a genome. This Eulerian path

A ACCACGGTGCGGTAGAC
ACCA GGTG GGTA

CCAC GTGC GTAG
CACG TGCG TAGA

ACGG GCGG AGAC
CGGT CGGT

B CGG

GTG

GGT

TGC

GTA

C

CGGT
GGTG

GGTA

GTGC

Figure 3: (A) k-mer spectrum of a DNA string (bold)
for k¼ 4; (B) Section of the corresponding deBruijn
graph. The edges are labeled with the corresponding
k-mer and (C) Overlap between two reads (bold) that
can be inferred from the corresponding paths through
the deBruijn graph.
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approach starts by breaking up the set of reads into

their k-mer spectrum, effectively reconstructing

the information that would be obtained in an SBH

experiment. In fact, the data extracted from reads

also carries additional information—the abundance

(coverage) of each k-mer, information that can

be useful in resolving repeats. The resulting k-mer

spectrum is then used to construct a deBruijn

graph—a graph containing as nodes the k� 1

length prefixes and suffixes of the original k-mers,

two nodes being linked by an edge if the adjacent

k� 1-mers have an exact overlap of length k� 2

(Figure 3B). In effect each k-mer identified within

the set of reads is converted into an edge of

the deBruijn graph, and the assembly problem

becomes equivalent to finding a path through this

graph that uses every edge in the graph (we know

each k-mer is present in the genome, therefore

the corresponding edge must be included in the

reconstruction). Such a path is called a Eulerian

path, hence the name for this assembly strategy.

Intuitively, the Eulerian approach offers several

advantages over the OLC strategy. First of all, pair-

wise overlaps between reads are never explicitly

computed, hence no expensive overlap step is neces-

sary, rather overlaps are implicitly represented in

the deBruijn graph by paths that traverse from one

read to its neighbor (Figure 3C). Furthermore, effi-

cient algorithms exist for finding a Eulerian path in

a graph, in contrast to the OLC approach that leads

to the difficult task of finding a Hamiltonian path.

This intuition, however, ignores the fact that, in

general, an exponential number of distinct Eulerian

paths can be found in a graph, corresponding to

the many different ways a genome can be rearranged

around its repeats. Ultimately, the task of an assem-

bler is to find just one of the possible paths,

corresponding to the correct reconstruction of the

genome. Adding additional constraints to the

Eulerian path approach in order to guide the algo-

rithm toward this one correct path, leads to a con-

siderably harder computational problem [21]. In fact,

simple transformations of the overlap graph from

the OLC paradigm leads to a graph structure

(string graph) that is functionally equivalent to the

deBruijn graph of a genome [33], hinting at the

equivalence between these assembly paradigms.

As described above, the construction of the

deBruijn graph leads to a loss of information—chop-

ping up the reads into a set of k-mers results in a

loss of long-range connectivity information implied

by each read. This information is critical in reducing

the ambiguity in the graph structure caused by short

repeats. In order to incorporate read information

in the assembly process, Pevzner etal. [36] formulated

a new variant of the Eulerian path problem called

the Eulerian superpath problem—the task of finding

a Eulerian path through the graph that is constructed

from sub-paths corresponding to individual reads

provided as input to the assembler.

The Eulerian strategy has been proposed as an

alternative to OLC for the assembly of Sanger data

and was implemented in the Euler series of assem-

blers [36–40]; however, was not widely adopted,

in part due to its sensitivity to sequencing errors.

Errors lead to the creation of ‘new’ k-mers and

dramatically increase the size and complexity of

the resulting deBruijn graph, leading to the need

for sophisticated error correction algorithms [36,

40]. New sequencing technologies, in particular

those generating short reads, are a better target

for the Eulerian strategy. These technologies gener-

ate high depths of coverage in reads that are

roughly equal in length, effectively generating the

same information that would be produced by an

SBH experiment. Two recently developed assem-

blers specifically targeted at short-read sequence

data use the Eulerian strategy: Velvet [41], and

Allpaths [42].

Scaffolding
None of the assembly strategies described above can

completely reconstruct a genome from read data

alone, the output of most assemblers consisting of

a (often large) collection of independent contigs.

Other sources of information can be used to deter-

mine the relative placement of these contigs along

a genome in a process called scaffolding. The output

of this process consists of a series of scaffolds—groups

of contigs whose relative placement is known even

though the DNA sequence of the genomic regions

connecting adjacent contigs is unknown. Most com-

monly, scaffolding relies on mate-pair information.

Two contigs can be inferred to be adjacent in

the genome if one end of a mate-pair is assembled

within the first contig, and the other end is assembled

within the second contig. In practice, two or more

such links are required between two contigs in order

to reduce the impact of experimental errors. Like

de novo assembly, scaffolding can be shown to

be computationally difficult [43]; however, simple

heuristics perform well in practice. All modern
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assemblers, irrespective of the underlying assembly

paradigm, contain a scaffolding module: Euler [37],

Arachne [29], Celera Assembler [8], Velvet [41].

Stand-alone scaffolders are also available, such as

Bambus [44] allowing mate-pair information to be

added to virtually any assembler.

Scaffolding algorithms often follow a greedy

approach, starting with the most reliable information

then iteratively incorporating more data as long as

the new information does not conflict with the

already constructed scaffold. In Bambus [44] the

order in which mate-pairs are processed is specified

by the user either by library (e.g. process clone

libraries first, followed by fosmids, then BAC-

ends), or by the number of links connecting adja-

cent contigs. In Celera Assembler [8], unique contigs

that are well connected to the rest of the assembly

(called rocks) are processed first, followed by contigs

that are not only connected by one mate pair but

also overlap an adjacent contigs (stones), followed

by unconnected contigs that can be used to tile

across gaps in the assembly (pebbles). Velvet [41]

starts the scaffolding process with contigs longer

than the mate-pair size, using the deBruijn graph

information together with mate-pairs to ‘walk’

across the gap between these contigs. Note that

in the Eulerian approach, mate-pairs define paths

through the graph that need to be traversed in

a reconstruction of a genome, thus mate-pair infor-

mation can be processed with the same algorithms

used to solve the Eulerian super-path problem [37].

Scaffolding information can also be obtained from

whole-genome mapping data. In particular, optical

mapping [45] has been successfully used in this con-

text. In brief, optical mapping can determine

the approximate location of restriction enzyme cuts

along a genome, thereby generating an ordered list

of restriction fragment lengths along the genome.

Such information can be used to identify the location

of assembled contigs within the genome, leading

to a single genome-wide scaffold. The scaffolding

process, implemented in the program SOMA [46],

involves constructing in silico restriction maps from

a set of contigs, then mapping these contigs along

a genome-wide optical map. The initial application

of this approach to bacterial genomes has resulted

in scaffolds that cover up to 80–90% of the entire

genome sequence [46].

Mate-pair and optical mapping data provide com-

plementary information to the scaffolding process.

Mate-pairs can offer high-resolution but inherently

local information while optical maps generate a

global, low-resolution view of the genome. These

technologies can be effectively combined, for exam-

ple, by using an optical map to anchor a set of

large contigs along the genome, then using mate-

pair information to complete the gaps within the

scaffold. Note that both mate-pair and mapping-

based scaffolding approaches have difficulties scaf-

folding short contigs and may, therefore, be difficult

to apply to fragmented assemblies generated from

short-read sequencing data.

Comparative assembly
Often the genome being sequenced is closely related

to a genome that has been previously sequenced.

This is the case, for example, when studying geno-

mic variation within a population, e.g. in human

resequencing experiments, or when sequencing

multiple strains of a same bacterium. The available

reference sequence can be used to guide the assembly

of a genome using a process called comparative, or

templated assembly. Briefly, the reads are mapped

to the reference genome and their placement is

used to infer the structure of the genome being

sequenced (target genome). In this process care

must be taken to avoid obscuring differences

between the two genomes. For example, the com-

parative assembler AMOScmp [47] identifies loca-

tions in the reference where the alignment of

multiple reads ‘breaks’ and flags these regions as

the location of possible insertions or deletions

between the two genomes. In the context of rese-

quencing experiments using short-read sequence

data, the program Maq [48] uses a probabilistic

framework to assign a quality value to each read

alignment, then uses this information together

with sequence quality data in order to characterize

single nucleotide polymorphisms (SNPs) between

the target genome and the reference. Furthermore

Maq assumes that the target genome is haploid, thus

each SNP may represent one of three possible gen-

otypes (aa, ab, bb).

Finally, the comparative approach can also be

applied when the reference is a protein sequence.

In this case the goal is to reconstruct an individual

gene rather than organism. Such an approach is

implemented in the assembler ABBA [49]. Here

the reads are translated in all six reading frames

then aligned to the sequence of a protein of interest

and the alignment information is used to guide

the assembly process. Since protein sequences are
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conserved across longer evolutionary distances than

DNA, protein-guided assembly can be successful

even if no closely related reference sequences are

available. Further, this approach is effective even

for very short reads (25 bp/eight amino acids) as

long repeats are unlikely to occur within the span

of a single gene.

ASSEMBLY VALIDATION
No genome assembler is perfect. Assembly errors

can occur either due to limitations of the assembly

algorithm, or due to incomplete or incorrect infor-

mation provided to the assembler. The detection

of assembly errors is important both during the

assembly process, in which case such errors can be

corrected [9, 50], but also post-assembly, either

during genome finishing or to inform downstream

analyses of the assembly data. Errors can often be

detected by identifying several types of inconsisten-

cies in the assembled data. Collapsed repeats, for

example, lead to regions within the assembly that

have unusually deep coverage. Such regions can be

identified through statistical approaches: Kim et al.
[51] use an ad hoc probability distribution based

on k-mer frequencies to estimate the likelihood

that an individual read contributes to a misassembly,

while Celera Assembler [8] and Velvet [41] use

Poisson statistics to estimate the likelihood that

a particular genomic region represents a collapsed

repeat. Large numbers of disagreements between

reads within the assembly can also be caused by

collapsed repeats due to differences between the

sequence of different repeat copies. To identify

such regions the DNP framework of Tammi et al.
[52] estimates the likelihood that two polymorph-

isms occur nearby each other using sequence quality

values and Poisson statistics. When identified, such

errors can be resolved either by splitting apart the

set of reads into multiple repeat copies—approach

taken by DNPtrapper [53]—or by shuffling reads

around the genome in order to improve overall

quality of the consensus sequence—as implemented

in Euler-AIR [54].

Mate-pairs provide a powerful tool for identifying

large-scale misassemblies. In a correct assembly, the

tiling of reads should be consistent with the con-

straints imposed by mate-pairs (relative orientation

and spacing of paired reads). Deviations from this

ideal, especially when confirmed by multiple mate-

pairs, often indicate the presence of errors. The

Tampa program [55] uses a geometric approach

to identify assembly errors using mate-pair data,

that can also categorize the type of error identified

(insertion, deletion, inversion or transposition). The

C/E statistic of Zimin [56] estimates the likelihood

that a cluster of mate-pairs indicates an insertion

or deletion within the assembly. Visual tools for

validating assemblies with the help of mate-pair

information are available in a variety of packages

including consed [57], BACCardI [58] and

Hawkeye [59].

Finally, whole genome mapping data can be

effectively used to assess the quality of an assembly,

by comparing an in silico map constructed from

the set of contigs to the experimentally derived

map. In the context of optical restriction maps,

when using the scaffolder SOMA [46], contigs that

do not have a good match to the optical map can

be inferred to represent misassemblies. Map-based

validation has been used in multiple genome

projects including, e.g. human [60], drosophila [8],

Plasmodium falciparum [61], to name just a few.

Note, however, that contigs must be large enough

to contain multiple markers in order to be accurately

compared to a genome map, limiting the effective-

ness of this approach in the context of short-read

sequencing data.

Due to inherent experimental variability in the

sequencing process, validation methods relying on

just one source of information can result in many

false positives (regions incorrectly tagged as mis-

assemblies). This problem can be alleviated integrat-

ing multiple sources of information in the validation

process. Two recently developed software packages

provide a framework for achieving such integration.

In Amosvalidate [62], the output of multiple valida-

tion modules is reported as a series of features along

the assembly and regions that are densely populated

by such features are flagged for further inspection.

The output of Amosvalidate is integrated with the

viewer Hawkeye allowing the visual inspection

of the flagged regions. Choi et al. [63] propose

the integration of multiple validation methods

through machine-learning techniques. They use

data with known misassembly characteristics (e.g.

assemblies of a genome for which a reference is avail-

able) to train the weights associated with individual

measures of assembly correctness and show that

this approach leads to a better prediction of misas-

semblies than methods relying on just one source of

information.
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INFORMATION INTEGRATION
The recent availability of multiple sequencing

technologies provides the opportunity for a hybrid

assembly approach wherein different sources of

data are combined to take advantage of their com-

plementary strengths. Directly integrating data from

different technologies into an assembler can be dif-

ficult due to the different characteristics of the

data. For example, overlap computation can be

difficult when mixing reads of substantially different

lengths, e.g. when combining Solexa with Sanger

sequencing data. The Eulerian strategy is perhaps

the best suited for hybrid assembly as read length

becomes immaterial once a k-mer spectrum is con-

structed; however, none of the existing Eulerian

assemblers (Euler-SR [39], Euler-USR [40], Velvet

[41], Allpaths [42]) allow such functionality. In

the context of the OLC paradigm, proposed

approaches for integrating different types of sequenc-

ing data have relied on the use of multiple genome

assemblers. Goldberg et al. [64] combine Sanger

and 454 data by first assembling the 454 data with

the newbler assembler, then chopping the resulting

contigs into a set of Sanger-like reads which are

then assembled together with the Sanger data using

Celera Assembler. A similar approach is used by

Reinhardt et al. [24] to combine Solexa and 454

data. In this case the Solexa data were first assembled

with VCAKE, then entire contigs were combined

with 454 data using the newbler assembler. Due

to the small size of contigs generated by VCAKE,

no additional shearing of these contigs was necessary

prior to assembly with newbler. Sundquist et al. [65]

propose to use 454 sequencing to assemble large

genomes by integrating information provided by

a hybrid sequencing strategy. Their SHRAP strategy

involves the construction of a BAC (or other large

insert) library from a genome, then sequencing

each individual clone through 454 sequencing.

They show that the resulting data can be used

to simultaneously build an assembly and construct

a clone map of the genome (the latter step is an

expensive component of traditional sequencing

approaches).

METAGENOMICS/MIXTURES
OF ORGANISMS
New assembly challenges are created by the

sequencing of mixtures of organisms, primarily

through metagenomic projects (sequencing of

entire microbial communities). The assembly soft-

ware described in this article was designed specifically

for the assembly of isolate genomes, i.e. the expected

output from these assemblers is a linear (or in the

case of most bacteria, circular) sequence. These

assemblers can be confused by two main character-

istics of metagenomic data: (i) uneven representation

of the organisms within a sample and (ii) polymorph-

isms between closely related members of an environ-

ment. As described above, many assemblers use

depth of coverage statistics to identify repeats. In

metagenomic data, due to uneven coverage, these

assemblers would incorrectly label as repeats the

most abundant members of a community, and

avoid assembling these genomes to prevent misas-

semblies—phenomenon observed, for example,

when Celera Assembler was used to assemble micro-

bial communities from the ocean [66]. Differences

between very closely related organisms (e.g. pro-

phages inserted at different locations within individ-

uals from a same strain, or genomic rearrangements)

make it impossible to construct a single consensus

sequence. Instead, most assemblers construct unre-

lated contigs for each section of the genome that

is consistent across multiple individuals in the

sample, resulting in a fragmented reconstruction

and obscuring the population structure within the

environment [67]. Assemblers designed for large

eukaryotic projects allow for limited polymorphisms

between the two homologous chromosomes being

assembled; however, they have difficulty assembling

highly polymorphic genomes [68]. Initial metage-

nomic projects have primarily used traditional assem-

blers—phrap was used to assemble a microbial

community from acid mine drainage [69], and

Celera Assembler was used to assemble ocean [66]

and human fecal communities [70]. Specialized soft-

ware was used in such studies to infer community

structure from the assembly data [71, 72].

Mavromatis etal. [73] performed simulations compar-

ing the performance on metagenomic data of several

assemblers (phrap, Arachne and Jazz—an assembler

used in-house at the Joint Genome Institute) and

concluded that Arachne provided the best trade-off

between contiguity and number of errors (in this case

errors refer to situations when reads from distinct

organisms are co-assembled). A promising approach

to the assembly of mixtures, in particular in the case

of polyploid organisms, is provided by Allpaths [42].

This assembler produces as output a graph structure

representing the ambiguity in the structure of the
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reconstructed genome, and this graph can be used

to identify and analyze regions of polymorphism.

CONCLUSIONS
We hope our article provides the reader with a suit-

able overview of current challenges in genome

assembly research and we would like to conclude

our review with a few comments. First, as sequen-

cing technologies continue to evolve, assembly algo-

rithms and software will have to keep up with this

ever-changing field. Research efforts must continue

to better establish how data characteristics affect

the assembly process. Chaisson et al. [40] have, for

example, attempted to quantify the effect of read

length on the ability to assemble a genome, revealing

a surprising result—increases in read lengths beyond

�35–60 bp do not necessarily yield significant

improvements in the quality of assembly when

mate-pairs are available. Their results are obtained

in a very limited setting: they focused on small gen-

omes (bacteria and yeast) and used mate-pairs—

information that can add significant costs to the

sequencing process and is often unavailable. More

studies are needed to determine whether these

results hold for large repeat-rich organisms, and

many more questions remain to be answered, e.g.

is assembly possible with very long (10–100 kb)

reads with high error rates? Second, research must

continue on automated (both computational and

experimental) approaches for validating genome

assembly. The wealth of data being generated by

the new sequencing technologies can no longer

be validated ‘by hand’, and we will soon see a sig-

nificant decrease in the role assembly viewers (such

as consed or Hawkeye) play in genomic research.

Third, it is likely that multiple sequencing technol-

ogies will co-exist in the future technological land-

scape, leading to the need for new approaches for

combining multiple types of data in the assembly

process, including non-sequence data such as that

obtained through high throughput mapping tech-

nologies. Fourth, the assembly of mixtures of organ-

isms will become routine in the near future, perhaps

surpassing in volume the sequencing of isolated gen-

omes. Software tools need to be developed that

are specifically targeted at such mixed samples.

New ways to represent assembly data, such as the

graphs produced by Allpaths, must also be developed

as well as analysis tools able to process these new

types of data. Finally, the development of new

sequencing technologies has resulted in the develop-

ment of many new assemblers even though the

algorithms employed by these assemblers closely

resemble algorithms already implemented in the

assemblers developed for Sanger data. This trend

is impractical as new sequencing technologies con-

tinue to be developed, rather future genome assem-

blers will have to be able to adapt to the changing

technological landscape with few modifications.

Key Points

� Next generation sequencing technologies are creating new
challenges for genome assembly software.

� Additional assembly challenges are posed by efforts to
sequencemixtures of organisms (metagenomics).

� Multiple genome assemblers have been created in recent
years to address such challenges butmore research is necessary
due to an ever-changing technological landscape and new
applications of sequencing technologies.
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